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Abstract

With the increase in visual categories that become more

and more fine-granular, maintaining high accuracy is a

challenge. As the visual world can be organized in a seman-

tic hierarchy, which is usually in form of a directed acyclic

graph of many levels of abstraction, a classifier should be

able to select an appropriate level trading off specificity for

accuracy in case of uncertainty. In this work, we study the

problem of finding accuracy vs. specificity trade-offs. To

this end, we propose a Level Selector network, which se-

lects the class granularity for the class prediction for an

image or video, and a self-supervision based training strat-

egy to train the Level Selector network. We show as part

of the empirical evaluation, that our approach achieves su-

perior results compared to the current state of the art on

large-scale image and video datasets.

1. Introduction

Classification is a fundamental task in computer vision

or machine learning and it is a building block of many other

computer vision tasks such as object detection, scene pars-

ing, or action localization. Over the years, the datasets for

image or action classification not only increased in the num-

ber of samples but also in the number of classes [7, 15].

With an increasing number of target classes, however, also

the granularity of the classes becomes finer and maintain-

ing a high classification accuracy becomes a challenge. One

way to address this issue is to exploit a semantic hierarchy

that organizes the visual world as shown in Figure 1. For

example, a Siberian Husky is also a Spitz, a dog, an ani-

mal and an entity. While it is correct to label an image of

a Siberian Husky as Siberian Husky, Spitz, dog, animal or

entity, the specificity of the labels varies. Although the la-

bel with highest specificity is preferred when the prediction

is correct, it might be preferable to predict a label with less

specificity in case of uncertainty. For instance, correctly

classifying an image as dog is often better than classifying

the image wrongly as Alaskan Malamute. This requires to

find an optimal trade-off between accuracy and specificity.

In the two extreme cases, either the label with highest speci-

ficity is always predicted with a high risk of classification

errors or the entity label is predicted all the time, which is

always correct but not specific.

The first approach that addresses trade-offs between ac-

curacy and specificity has been proposed by Deng et al. [8].

The so-called Dual Accuracy Reward Trade-off Search

(DARTS) is an optimization approach for finding the op-

timal trade-off between accuracy and specificity. It selects

for a given image and the estimated classification proba-

bilities for the classes with highest specificity, the label at

a level in the hierarchy where the prediction is one hand

certain and on the other hand as specific as possible. In

this work, we revisit the problem but we propose a learning

instead of an optimization approach to find trade-offs be-

tween accuracy and specificity. To this end, we propose a

Level Selector network that selects an appropriate level of

the class hierarchy given an image or video. We first use

an off-the-shelf network for image classification or action

recognition which is trained to predict the class probabil-

ities for the leaf nodes in a directed acyclic graph, which

represents the semantic hierarchy. The Level Selector net-

work then takes these probabilities as input and selects the

level of the hierarchy. From the selected level, the class with

the highest probability is taken. In order to train the Level

Selector network for an accuracy-specificity trade-off, we

use a combination of a cross-entropy and ranking loss. In

the experimental evaluation, we show that the proposed ap-

proach outperforms DARTS [8].

2. Related Work

Our work is related to hierarchical classification or multi-

class classification [5, 10, 14, 18, 9, 4, 1, 11, 17, 12]. In [12]

authors proposed a method of generating generic descrip-

tions of videos based on semantic hierarchies of subjects,

objects and verbs. In [5] the authors combine the ideas of

large margin kernel methods and Bayesian analysis to do

hierarchical classification. The authors of [14] proposed a

method to do visual concept learning, where concepts are

arranged in a hierarchy. The authors of [4] proposed a hier-

archical loss to learn the paths in the class hierarchy. Accu-
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Figure 1: Examples of class hierarchies. (a) Subset of classes from ILSVRC65 arranged in a tree. (b) Subset of classes from

Kinetics arranged in a directed acyclic graph.

racy vs. efficiency in multi-class classification is addressed

in [1, 9, 11]. They formulated hierarchical classification as

a multi-class classification problem. These methods, how-

ever, do not address the issue of automatically selecting an

appropriate level in the class hierarchy given an image or

video. The approaches [6, 16] deal with the problem when

the training samples are not always annotated at the finest

granularity as it is required for testing. Instead, they inves-

tigate how training samples that are annotated at a coarser

level can be used for training as well.

The method proposed in Deng et al. [8] is closely related

to our approach, as it addresses the same problem of finding

trade-offs between accuracy and specificity. They proposed

a Dual Accuracy Reward Trade-off Search (DARTS) algo-

rithm. The DARTS expects the probability distribution at

the leaf level, an accuracy guarantee and the taxonomy as

an input, and automatically selects an appropriate level in

the taxonomy for a given input by optimizing the accuracy

vs. specificity trade-off. In contrast to DART, we do not use

an optimization approach to find the trade-offs, but we pro-

pose a network that selects the level in the hierarchy for a

given image or video.

3. Accuracy vs. Specificity

We propose an approach that classifies a given video or

image x, but the specificity of the predicted label varies de-

pending on the uncertainty. We assume that a class taxon-

omy is given in form of a tree or directed acyclic graph as in

Figure 1. The goal is then to predict the label as specific as

possible while being constrained on a correct classification.

The trade-off can be formulated as in [8]. We assume

that the class hierarchy is arranged in a directed acyclic

graph G = (V,E), with a unique root node, as in Figure 1.

Each node v ∈ V represents a semantic class and a directed

edge (P,C) ∈ E represents a parent-child relationship be-

tween parent P and child C. The leaf nodes Y ⊂ V are

mutually exclusive. Given such a hierarchy, it is then cor-

rect to label the input either by its ground truth leaf node or

any of the ancestors of the ground truth leaf node. Hence,

the accuracy of such a classifier for N images or videos can

be defined as

φ(f) =
1

N

N
∑

i=1

[f(xi) ∈ π(yi)] (1)

where [x] is an indicator function, which is 1 if x is true

and 0 otherwise. For each image xi, f(xi) ∈ V denotes the

predicted node by the classifier, yi ∈ Y is the ground truth

class at the leaf level and π(yi) is the set of correct labels

for input xi, i.e. the ground truth leaf node and its ancestors

in the class hierarchy.

As the goal of a classifier is to achieve high accuracy,

always predicting the root node will result in 100% accu-

racy, which results in an uninformative solution. Hence, it

is preferred for a classifier to be as specific as possible. This

preference can be encoded by the information gain. The in-

formation gain is defined as the expected reduction in the

entropy from the prior distribution. Hence, the information

gain for predicting a node v is

IG(f) = log(|Y |)−
1

N

N
∑

i=1

log

⎛

⎝

∑

y∈Y

[f(xi) ∈ π(y)]

⎞

⎠

(2)

where Y represents the set of leaf nodes in the class hier-

archy. The information gain will be zero if f(xi) is always

the root node since the root node is an ancestor of all leaf

nodes, and it will be maximized if always leaf nodes are pre-

dicted. In the latter case, IG(f) = log(|Y |). We therefore

normalise the information gain

IGN(f) =
IG(f)

log(|Y |)
. (3)



such that IGN(f) ∈ [0, 1].
Since the optimal trade-off between accuracy and speci-

ficity depends on the application, we will measure the

performance by learning the network, which will be de-

scribed next, for different trade-offs. As in [8], we plot the

normalised information gain (3) with respect to the accu-

racy (1).

4. Level Selector Network

In order to obtain various accuracy and specificity trade-

offs, we propose a Level Selector network which selects an

appropriate level in the semantic hierarchy for a given im-

age or video. In a directed acyclic graph, the level of a node

is defined by the minimum number of nodes that need to be

passed to reach the root node, i.e. the level is zero for the

root node itself, one for the children of the root node, and

so on.

The Level Selector network expects a probability distri-

bution for each level of the class hierarchy as input and out-

puts the probability of selecting each level. In order to train

the Level Selector network, a flat classifier trained for all

leaf level classes is converted into a hierarchical one. The

leaf node probabilities are obtained by the flat classifier, and

the probability for each internal node v can be computed by

summing up the probabilities of its children by

Pv =
∑

y∈Y

[v ∈ π(y)]Py (4)

where Y is the set of all leaf nodes. Once we have prob-

abilities at each node in the class hierarchy, we train the

Level Selector network to select a level in the class hierar-

chy given an input x.

The Level selector network is trained using self-

supervision to maximize the information gain objective.

The Level Selector takes the probability distribution at each

level of the class hierarchy as input. It has H neurons in its

output layer, where H is the height of the class hierarchy

or the number of levels in the class hierarchy. The output

of the ith neuron will be the probability of selecting the ith

level in the class hierarchy for a given input. Figure 2 shows

an example of a level selector network for a class hierarchy

of 2 levels and a root node.

4.1. Training Strategy

The Level Selector network is trained using self-

supervision. Given a training image or video xi, we first

determine the target level hi that should be selected by the

Level Selector network. To this end, we first use an off-

the-shelf classifier to obtain the class probabilities for the

classes at the leaf nodes. The probabilities for all nodes V

are then computed as in (4). As described in Algorithm 1,

we start at the leaves, i.e. h = H , and move to a lower level

Algorithm 1 Target Calculator

1: Given xi compute Pv using (4)

2: h ← H

3: hi ← 0
4: for h ≥ 0 do

5: v = argmaxv∈Vh
Pv

6: if v ∈ π(yi) then

7: hi ← h

8: break

9: h ← h− 1

10: return hi

until the prediction is correct. A prediction at a level h is

given by v = argmaxv∈Vh
Pv , where Vh denotes all nodes

at the level h, and the prediction is correct if v ∈ π(yi),
where yi is the ground-truth label for the training sample xi

at the leaf level. Note that there can be more than one cor-

rect label at a particular level h in a directed acyclic graph.

We train the Level Selector network using the cross en-

tropy loss

CE(xi, yi) = − log (f(xi)hi
) (5)

where f(xi)hi
denotes the predicted probability of the net-

work for the target level hi. In order to encode the trade-off

between accuracy and information gain, we add a ranking

loss [2]:

RL(xi) = −
H
∑

h=1

λ log (rh(xi)) + (1− λ) log (1− rh(xi))

(6)

where rh(xi) is defined by

rh(xi) =
1

1 + exp (f(xi)h−1 − f(xi)h)
. (7)

If rh(xi) is larger than 0.5, it means that f(xi)h is larger

than f(xi)h−1 and therefore layer h is preferred to layer

h − 1. If rh(xi) is smaller than 0.5, it is the other way

around.

By combining the two loss functions, we obtain

L(xi, yi) = CE(xi, yi) +RL(xi), (8)

where the parameter λ (6) steers the trade-off between accu-

racy and specificity. If λ = 1, the specificity is preferred to

accuracy during training since we minimise −rh(xi) for all

h. If λ is decreased the trade-off shifts towards the accuracy.

5. Experiments

For empirical evaluation, we use three large scale

datasets namely ILSVRC65, ILSVRC1K and Kinetics [15].
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Figure 2: Level Selector Neural Network for a class hierarchy of height 3, {P2i}
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are probability distributions

at level 2 and level 1, obtained from an off-the-shelf classifier trained for the classes at the leaf nodes.

Dataset Leaf Nodes Internal Nodes Height

ILSVRC65 57 8 4

ILSVRC1K 1000 860 19

Kinetics 400 40 3

Table 1: Dataset statistics

While ILSVRC65 and ILSVRC1K are subsets of Ima-

geNet [7], which is a large scale image classification dataset

where the classes are arranged by the WorldNet hierarchy,

Kinetics is a large scale action recognition dataset, where

the classes are arranged by a directed acyclic graph as illus-

trated in Figure 1. The videos in Kinetics are 10 seconds

long and cut from YouTube videos. Table 1 list the class

statistics of the datasets.

ILSVRC65:

We first report the results on ILSVRC65 since the dataset

has been used by Deng et al. [8] for evaluation, which is the

only approach that addressed the problem of finding trade-

offs between accuracy and specificity so far. For a fair com-

parison, we use the class probabilities for each node in the

semantic hierarchy, which are provided by Deng et al. [8].

Figure 3 (a) compares the proposed Level Selector with

DARTS [8]. As discussed in Section 3, the plot shows the

curves for different accuracy-specificity trade-offs where

specificity is measured by the normalised information gain.

It can be observed that the proposed approach achieves bet-

ter trade-offs. The proposed approach also achieves the full

range for information gain, while DARTS gets stuck at a

normalised information gain of about 0.4.

Since the classifier that has been used in [8] to obtain the

class probabilities is based on SVMs, we also report the re-

sults of a more recent approach, a convolutional neural net-

work is used for predicting the class probabilities. To this

end, we use a ResNet152 [13] as off-the-shelf image clas-

sifier. The plot in Figure 3 (b) shows that ResNet improves

the accuracy-specificity trade-offs. While in Figure 3 (a)

the maximum information gain is achieved at an accuracy

of around 0.4, the maximum information gain is already

achieved at an accuracy of around 0.9 for ResNet.

We also include the results for using only a flat classifier

without level selection and the Level Selector network with-

out the ranking loss. Note that both approaches do not offer

the possibility to adjust the trade-off between accuracy and

specificity.

Figure 4 shows for a few examples the predictions of

the proposed approach and DART. For the comparison, we

used a trade-off where both approaches achieve nearly the

same accuracy. The qualitative results show that the pro-

posed method tends to be more specific. As it is an is-

sue with most large scale datasets, ImageNet [7] contains

also several annotations errors. In particular, species are not

always correctly annotated. For instance, the second bird

in the third row in Figure 4 is wrongly annotated as black

grouse. While DARTS classifies the bird wrongly as prairie

chicken, the proposed predicts correctly that it is an animal,

but labeling it as bird would be more specific.



(a) Comparison of the proposed approach with DARTS [8] on

ILSVRC65 using the class probabilities from [8].

(b) Accuracy vs. information gain using ResNet as off-the-

shelf classifier on ILSVRC65.

(c) Accuracy vs. information gain using ResNet as off-the-

shelf classifier on ILSVRC1K

(d) Accuracy vs. information gain using I3D as off-the-shelf

classifier on Kinetics

Figure 3: Accuracy vs. information gain trade-offs

ILSVRC1K:

We also evaluate the approach on the larger subset

ILSVRC1K. In contrast to ILSVRC65, the semantic hier-

archy is not represented by a tree but by a directed acyclic

graph. Hence, a node can have more than one parent. As

off-the-shelf classifier, we use ResNet152 as before. The

accuracy-specificity plot is shown in Figure 3 (c). In con-

trast to ILSVRC65, the proposed network does not achieve

the full information gain, but it gets stuck slightly below

0.6. This can be explained by the large number of levels in

the semantic hierarchy as reported in Table 1 and the noisy

annotations at the leaf nodes.

Kinetics:

We finally evaluate the approach on Kinetics, which is a

dataset for action recognition. As off-the-shelf classifier, we

use the I3D network [3], which takes the RGB frames and

optical flow as input. Since the semantic hierarchy of Ki-

netics has only three layers, we can compare the approach

with a baseline that uses a threshold to steer the accuracy-

specificity trade-off. Given the class probabilities for the

leaf nodes, we take the class with highest probability if it

is above a threshold. If it is below the threshold, we take

the class with highest probability at the second level. If this

probability is also below the threshold, we select the root.

Figure 3 (d) shows that the proposed approach provides bet-

ter trade-offs than the thresholding baseline. In particular

for an accuracy between 0.7 and 0.9, the information gain

is very high, which shows the high specificity for this accu-

racy range.

6. Conclusion

We revisited the problem of finding accuracy-specificity

trade-offs for image classification or action recognition.

Instead of an optimization based approach, we proposed

a network that learns to select the right granularity based

on the class probabilities of an off-the-shelf classifier. We

showed that the network learns various trade-offs ranging

from 100% accuracy but low specificity to high specificity

but moderate accuracy and that it achieves better trade-offs

than previous work.
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Figure 4: Qualitative results on ILSVRC65. For nearly the same recognition accuracy, the proposed Level Selector is more

specific than DARTS.
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Figure 5: Qualitative results on Kinetics.
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