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Abstract

We define a new multi-modal compliance problem, which

is to determine if the human activity in a given video is in

compliance with an associated text instruction. Learning

at the junction of vision and text for the compliance prob-

lem requires addressing the challenges caused by irregular-

ities in videos and ambiguities in natual language. Success-

ful solutions to the compliance problem could enable auto-

matic compliance checking and efficient feedback in many

real-world settings. To this end, we introduce the Video-

Text Compliance (VTC) dataset, which contains videos of

atomic activities, along with text instructions and compli-

ance labels. The VTC dataset is constructed by an auto-

augmentation technique, preserves privacy, and contains

over 1.2 million frames. Finally we present ComplianceNet,

a novel end-to-end trainable network to solve the video-

text compliance task. Trained on the VTC dataset, Compli-

anceNet improves the baseline accuracy by 27.5% on aver-

age. We plan to release the VTC dataset to the community

for future research.

1. Introduction

Technology advances have made video recording de-

vices pervasive. Almost every one of the 1.5 billion smart-

phones sold in 2018 [5] is capable of recording videos. Ef-

fectively utilizing the vast quantity of video data, rather than

simply storing it, can open many opportunities to improve

peoples’ lives. To address this challenge, one of the ac-

tive research directions in the computer vision community

is the joint learning of visual and textual data, with exam-

ples in action recognition [40, 10, 47], temporal action pro-
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Figure 1: We introduce a novel video-text compliance prob-

lem: a framework to learn if the given video is in compli-

ance with a given text instruction.

posal [16, 23, 27], and alignment of video frames and lan-

guage descriptions [29, 6, 23].

Here we focus on a different question: how to tell if ac-

tivities portrayed in a given video match (or comply with) a

set of natural language instructions. From children building

Lego sets, adults assembling IKEA furniture, and techni-

cians repairing machinery [1, 2, 3], to NASA astronauts op-

erating the International Space Station [4], compliance with

instructions is a quintessential human task. Traditionally,

the task of compliance verification is carried out either by

human supervisors, or by checking after-the-fact outcomes,

which are usually time consuming and costly. In this pa-

per, we introduce the “video-text compliance” problem, a

task that verifies if the human activity in a given video is in

compliance with a given text instruction (Figure 1).

After careful survey, we recognize that many existing

video-related datasets, such as UCF101 [41], Kinetics [10],

Charades [39], Something-Something [20], and Moments-



In-Time [30], are either inadequate to be used for the video-

text compliance problem, or do not have sufficient safe-

guards on data privacy. To address this issue, we created the

Video-Text Compliance (VTC) dataset. VTC contains 7920
samples, each consisting of a video-text instruction pair and

a compliance/non-compliance label. The dataset has over

1.2 million frames. We take a unique approach in data col-

lection so that the dataset can be automatically augmented

from a set of core videos. To answer growing concerns on

data privacy, we carefully followed privacy preserving safe-

guards in the generation of VTC dataset. We plan to release

VTC dataset to the community to instigate future research

in video-text compliance.

Furthermore, we propose ComplianceNet, a novel ap-

proach to learn the “video-text compliance” problem. A

key insight of our approach is that for this particular com-

pliance problem, we can cast the learning of text instruc-

tions as a relation reasoning problem [37]. Hence, instead

of a recurrent neural network [18, 13], we can use a multi-

scale relation network to learn the action-object relations

buried in the text instructions. By explicitly aligning the

video and text feature spaces, this end-to-end trainable ap-

proach achieved 27.5% accuracy performance improvement

over the baseline method.

To summarize, the main contributions of this paper in-

clude:

• A concrete definition of the video-text compliance

problem

• VTC dataset: a new dataset containing triplets of

video, text instruction and compliance label

• ComplianceNet: a novel end-to-end trainable deep

neural network for compliance verification

The rest of this paper is organized as follows: we review

related work in Section 2, followed by the task definition

in Section 3. We introduce the VTC dataset in Section 4.

In Section 5 we present ComplianceNet, a novel end-to-end

trainable compliance network, followed by results in Sec-

tion 6, before concluding the paper in Section 7.

2. Related Work

Human-Object Interactions (HOI). These meth-

ods [11, 19] detect the human, the object and the relation-

ship between the two in a given image. Though this task is

similar in flavor to video-text compliance in that it focuses

on the person, action and object in the input, HOI does not

handle the complexity of text instructions and videos, or

verifying compliance.

Visual Question Answering (VQA). VQA is a chal-

lenging problem which has received significant attention

from the natural language processing and computer vision

communities. There are a plethora of proposed methods to

infer a correct answer for given questions based on the im-

ages [46]. Methods such as [12, 7, 28] utilize attention and

RNNs to learn the embeddings from images and text sen-

tences in a common feature space. Most VQA methods in-

volve images, which do not have rich temporal information

as videos. They also do not directly address the compliance

verification problem.

Action Recognition. Action recognition in videos is a

core computer vision problem. Many approaches have been

proposed, including two-stream approach [40], inflated 3D

convolution (I3D) [10], and approaches combining CNN

with LSTM to integrate CNN features over time [15]. More

recently, the temporal relation network [47] uses multi-

scale relation networks and stochastic sampling across var-

ious frames to learn the temporal relations among different

frames. In [44] appearance and relation networks are com-

bined to learn actions. Although this area of research is

closely related to video-text compliance, it learns only on

videos and does not verify compliance with any other input.

Video-text compliance learns with natural language instruc-

tions, and the instructions could even be unseen at test time,

whereas action recognition methods assume a pre-defined

set of labels that are seen during training.

Action recognition datasets are the closest usable

datasets for video compliance. Numerous datasets are pub-

licly available, such as UCF101 [41], ActivityNet [17],

Sports1M [25], Kinetics [10], Charades [39], Moments-In-

Time [30] and Something-Something [20]. Many of them

are annotated snippets from YouTube and Flickr videos.

With increasing public concerns and regulations on data pri-

vacy [43], their future usability can be severely constrained.

In addition, none of these datasets utilize the automatic aug-

mentation techniques we deploy.

Temporal Alignment of Text with Video. Given a

video and a set of written or oral instructions, the task is

to map the instructions to relevant sections of the video [9,

29, 16, 23, 6, 31]. Some of these methods do not learn on

text, but use them as features. These approaches also as-

sume that the tasks in the videos are carried out correctly.

Hence, they differ from the video-text compliance problem

in the sense that these approaches do not resolve whether or

not the video is compliant with the text instructions.

Application Specific Video Compliance. In [22], the

authors address hand washing compliance in a hospital set-

ting. Vision is used to distinguish specific people from the

crowd and classify action as disinfectant hand rubbing or

not. In [42], the authors propose a computer vision pipeline

to recognize products on shelves and verify compliance to

the planned layout. However, these papers focus on a sin-

gle, specific compliance task. Also, neither approach uses a

natural language description for verification.



3. Task Definition

Compliance can be defined as the act of obeying a given

command. The goal of the “video-text compliance” task

is to predict whether the activity shown in an input video

complies with an input text instruction. Formally, the input

data has two modalities: video V and text instruction T .

The output is the compliance label defined on the Boolean

set:

V × T → {0, 1} (1)

We discuss some issues that arise when learning at the

intersection of vision and text for the compliance problem.

These discussions are needed to define a workable “video-

text compliance” task.

Ambiguities in Language. The instructions T are in text

modality. When we rely on natural language to describe a

procedure, inevitably we have to deal with the ambiguity of

the language itself. As an example, the following sentence

represents the typical ambiguous pronoun reference in En-

glish grammar [36]: “Albert tells Bob to place his hat on the

table”. If this instruction is accompanied by a video show-

ing two males each with a hat in his hand, without further

contextual information, it is impossible to reason whether

the video is in compliance with the instruction because of

the ambiguity of the pronoun “his”.

Homonyms or Heteronyms. Some common English

verbs that are essential to describe instructions have

homonyms or heteronyms. An example is putting. It is

commonly used to describe an action that causes a change

(e.g., putting on shoes), but it is also commonly used to

describe moving a golf club. Training data that doesn’t cor-

rectly distinguish these actions could confuse the learning

system.

Synonyms. There are multiple verbs to explain the same

activity. For instance, “open the sliding-door” and “slide

the sliding-door” are essentially the same motion, and both

verbs “open” and “slide” are legitimate use of language to

describe that activity.

Different Motion Patterns. The same verb can have dif-

ferent motion patterns, depending on the agent or objects

involved. For instance, “pushing a button” has a very dif-

ferent motion than “pushing a cart”. To learn these different

motion patterns based on the same text input is a non-trivial

problem.

Temporal Complexity. Many daily activities can be

temporally decomposed into multiple atomic actions. For

example, the activity of “placing a mug into a microwave”

can be broken into the following list of atomic actions: 1)

opening the microwave door, 2) lifting the mug, 3) plac-

ing the item inside the microwave, and 4) closing the mi-

crowave door. In this paper, we focus on atomic actions,

similar to the Moments-in-Time [30] and AVA [21] datasets.

Quantitative Measures. Instructions may have quanti-

tative measures, such as “turn the wrench clockwise 270◦.”

In many applications, whether or not the action meets the

quantitative measures is as crucial as performing the action

itself. Detecting quantitative movement of objects in videos

is yet another non-trivial problem. Although we recognize

that this type of quantitative compliance tasks are of great

value, they require carefully collected data with great detail.

Noisy Video Data. Video data can be noisy. It could

have motion blur, occlusion of the key action steps and ob-

jects, and excessive background clutter.

In summary, the utilization of natural language to de-

scribe instructions along with video analysis itself brings

unique challenges to the “video-text compliance” task. Be-

cause of the conciseness of the instructions, there may not

be sufficient contextual information to fully resolve the is-

sues raised above. In this paper, we enforce the follow-

ing restrictions to define a feasible “video-text compliance”

problem: 1) activities must be atomic, no temporally com-

plex actions are allowed; 2) the video should contain only

one person clearly performing one action on one object,

i.e. that action or object cannot be implied; 3) no quan-

titative measures of actions are allowed in the instruction;

and 4) the text instruction should clearly specify the action

and object.

4. The VTC Dataset

The video-text compliance task requires datasets with

synchronized triplets of activity videos, text instructions

and compliance labels. One possible approach is to add the

required labels to existing video datasets, such as Moments-

in-Time [30] or Something-Something [20]. However upon

careful evaluation, we discovered that this approach is prob-

lematic: 1) a large percentage of the videos in these datasets

do not meet our criteria outlined in Section 3, i.e. showing

one person performing an atomic action on a single object;

2) most of the existing video datasets are crowd-sourced.

Therefore, quality control of these datasets do not necessar-

ily meet our constraints; and finally 3) these video datasets

have unclear privacy safeguards, which may prevent their

future usage [43]. To address these issues, we created the

VTC dataset, which we describe in detail here. An overview

of the dataset is illustrated in Figure 2.

4.1. Collecting Source Videos

We take a constructive approach to start the data collec-

tion by first developing a vocabulary of actions and objects

for the videos. 10 distinct actions that overlap between ev-

eryday human activities and tasks that appear in repair man-

uals [4, 3] were chosen. Then, 15 ubiquitous objects used

with the chosen actions were selected. The developed list

of actions contains antonyms such as push/pull, open/close,

but does not have any synonyms. The objects are of vary-



Figure 2: VTC Dataset: Each row in the figure is an example instance from the dataset. Each instance contains a natural

language sentence, a video showing human activity, and the corresponding compliance label. Rows 2 − 4 are examples

representing each type of non-compliance as described in Section 4.3.

ing typical sizes and presentations. Each video contains a

person performing only one action, and that action interacts

with only one object from the vocabulary. Figure 3 illus-

trates the histograms of the actions and objects present in

our dataset. Although the outer product of the actions and

objects, which is the support of video-text compliance task,

composes a large space, the real-life occurrences lie in a

lower dimensional manifold [20]. We collect videos only

from frequently occurring action–object relationships. In

addition, to ensure diversity among the action–object pairs,

each of the chosen actions appears in combination with at

least two or more objects. The same rule also applies to the

objects. This requirement has the additional benefit of pre-

venting any trained models from memorizing a particular

action–object pair.

A successful method to perform the video-text compli-

ance task should concentrate on the foreground content.

Instead of collecting videos in a natural setting, we con-

structed a filming environment shown in Figure 4a, with

professional quality green screens, lighting systems, and

a set of video recorders (2 different DSLRs and 2 mobile

phone cameras). The filming is carried out by following the

protocol: each actor was given an action–object pair such as

“open drawer”, “carry bag”, and instructed to perform the

action with the object within 5 − 10 seconds. The videos

in the VTC dataset are on average 6.5 seconds. Each activ-

ity was typically recorded with 2 cameras set up at different

heights and angles. In order to preserve privacy, our actors

were filmed neck down. As an added precaution, we did

not film any identifiable features of the actors such as tat-

toos, badges, etc. Over a period of time, we collected 792
source videos with green screen on 75 action–object pairs.

The action–object tag of each video also serves as the seeds

for the semi-automatic generation of text instructions and

ground-truth compliance labels, as described in Section 4.4

and Section 4.3 respectively.

(a) (b)

Figure 3: Histogram of (a) actions (b) objects in the VTC

dataset.

(a) (b)

Figure 4: (a) An example green screen source video frame.

(b) Post-processed video frame.

4.2. Dataset Construction by Auto-Augmentation

The green background of the collected videos provides

us great flexibility to scale the dataset by replacing the



green-screen with different background images as post-

processing steps (Figure 4b). To achieve this goal, we col-

lected approximately 500 background images. They are

in landscape orientation and include natural landscapes,

cityscapes, and indoor and outdoor scenes from everyday

office and home environments.

To proceed with data augmentation, we first segment

the foreground from the source videos using color-based

masks. Then each source video is multiplied into 10 videos

by super-imposing the foreground activity with 10 distinct

background images randomly chosen from the available

pool of background images. Furthermore, three indepen-

dent augmentation techniques were applied to each video:

adjustment of brightness, adjustment of contrast, and hor-

izontal flipping. The contrast varies randomly by a ratio

within [−25%,+25%], while the brightness varies within

[−50,+50] (out of a maximum of 255). The horizontal flip-

ping has a probability of 50%.

From the same source videos, we generated two batches

of augmented sets, named Batch A and Batch B. The pur-

pose is to provide a utility to test the sensitivity of the devel-

oped methods, since both batches have identical foreground

content (albeit of different brightness and contrast). Batch

A has 69% outdoor background images with the rest be-

ing indoor backgrounds, while Batch B has 28% outdoor

backgrounds of mostly man-made structures and 72% in-

door backgrounds. There is also no overlap between train

and test splits within each batch, i.e, the same foreground

video does not appear in the training and testing sets. Other

than the background images, both batches are identical in

terms of text instructions and compliance labeling.

4.3. Labeling

For each of the 7920 videos in each batch, we maintain

a record of the ground truth action–object pair. The ground

truth action–object pair for each video is the known action

and object the actor used when creating the source video. To

train and test a model for the compliance task, we need both

“compliant” instances of video-text instruction pairs (those

where the instruction and video contain the same action–

object pair) and “non-compliant” instances of video-text in-

struction pairs (those where the instruction and video con-

tain a different action-object pairs). In each case, we auto-

matically create an instruction from the action–object pair

assigned to the video using the method described in Sec-

tion 4.4. Next we describe how we assign the action–object

pair from which to generate the instruction for each video.

For compliant video-text instruction instances, we use

the ground truth action–object pair for the video. For

non-compliant video-text instruction instances, we choose

an action–object pair that shares with the video’s ground-

truth action–object pair 1) just the action, 2) just the ob-

ject or 3) neither the action nor the object. The non-ground

truth action or object is selected randomly from a limited

set such that all action–object pairs assigned to video in-

stances appear in the overall set of ground truth action–

object pairs. For example, the action–object pair selected

for a non-compliant instance whose ground truth is “open

bottle” might be “open box” (which appears in the set of

ground-truth labels for VTC videos), but would not be

“open flower” (which does not appear in ground-truth la-

bels for any VTC videos).

Each source video with green screen background is used

to generate 10 video-text instruction pair instances. Each

instance has a different background. 5 become compliant

video-instruction instances, while 5 become non-compliant

instances. The non-compliant instances are generated using

the following protocol: 1) two instances of random objects

with the ground-truth action; 2) two instances of random ac-

tions with the ground-truth object, and 3) one instance with

a random action–object pair chosen from the set of VTC

ground-truth action–object pairs. Note that all 10 instances

created from any source video appear either in the test set

or training set with no crossover between sets.

4.4. Generating Text Instructions

To enrich the text instructions, we developed a frame-

work to automatically generate natural language instruc-

tions from the action–object pairs. Each instruction is an

imperative sentence randomly generated from the following

template with 7 fields: head, pre-modifier, action, article,

adjective, object and post-modifier.

The inclusion of the fields other than action and object

follows a pre-determined probabilty for that field where the

probability is less than 1. The exact word use for that field

is randomly chosen from a pre-determined pool. Examples

from the pool of head include “please”, “next”, and “then”.

The pre-modifier and post-modifier are chosen from the

same pool and have a mutual-exclusive probability (i.e., an

instruction cannot have both pre- and post-modifier). Each

instruction has a maximum of 7 words. As an example, sup-

pose a video is tagged with action–object pair open–box, the

automatic generator may generate an instruction as: “open

the chosen box deliberately”. In this case, only the fields of

action, article, adjective, object and post-modifier were

chosen by the generator.

5. The ComplianceNet

We designed ComplianceNet, a novel end-to-end train-

able deep neural network to solve the multi-modal video-

text compliance problem. Given video and text instructions

as input data, the key design considerations for the network

structure are: representation, alignment and fusion. We ad-

dress each consideration in subsequent sections.
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Figure 5: Structure of the ComplianceNet. Two relation networks [47] are used to extract text and video features. These

features are aligned and fused to output the probability of compliance. Note that only 2−−, 3−− and 4−−way relations

are shown due to space limitation.

5.1. Representation of the Visual Branch

The visual branch of the ComplianceNet translates a

multi-frame video into a feature space. We extract relation

features from multiple input video frames using a temporal

relation network (TRN) [47]. The details of TRN can be

found in [47]. Here we give a brief description, since, it’s

also related to the text branch of ComplianceNet.

The key concept in TRN is relation reasoning [37]. The

relation between the representations of two frames, fi and

fj is defined as:

TR2(V ) = hφ(
∑

i<j

gθ(fi, fj)) (2)

where both hφ(·) and gθ(·) are trainable multi-layer percep-

trons (MLPs). V is the input video with N frames such that

V = {f1, f2, ..., fn}.

TRN also introduced multi-scale relations, in which

multiple relations among N frames are considered as given

in Equation 3.

MTN (V ) = TR2(V ) + TR3(V ) + ·+ TRN (V ) (3)

In TRN, only eight frames are used. Furthermore, only

up to 3 pairs of each relation are considered in training,

which are randomly chosen among all possible k-way com-

binations. Another level of stochasticity in TRN is on the

choice of 8 frames. Instead of selecting them in a deter-

ministic method during training, these 8 frames are ran-

domly selected from all available frames. We hypothe-

size that these two levels of stochasticity serve as regu-

larization, thus prevent the model from over-fitting. The

8 frames chosen for TRN should sufficiently sample crit-

ical frames in a given video. For short videos, such as 3
second videos in Moments-in-Time [30] dataset, randomly

sampling 8 frames from 90 frames (3 × 30 frames per sec-

ond) may be sufficient. However, the VTC dataset has about

160 frames per video on average. Therefore randomly sam-

pling 8 frames may not capture the entropy in the input

video. To address this issue, we propose an adaptive sam-

pling method, outlined in Algorithm 1, to select a subset

of the frames. Instead of sampling frames at a given inter-

val, which could lead to oversampling of slow-moving parts

of the video, while leaving parts with real actions under-

sampled, we developed a solution based on the similarity of

the adjacent frames [26]. For a given frame j, we construct

a cone of similarity of the subsequent frames by comparing

the similarity scores of frames j and k. We skip all the in-

termediate frames as long as the radius of the cone is within

a threshold ǫ that is computed automatically for each video.



Algorithm 1 Adaptive Sampling Method

1: procedure ADAPTIVESAMPLING(N,M) ⊲ N : num. of frames in

input video, M : desired num. of frames

2: for i = 1 to N − 1 do

3: Convert frame i and i+ 1 to gray scale

4: Compute similarity score between frame i and i+ 1 as Si

5: end for

6: Compute threshold ǫ ← 1

M
(maxj {Sj} −minj {Sj})

7: Select frame 1
8: k ← 1
9: for i = 2 to N − 1 do

10: if ‖Sk − Si‖ < ǫ then

11: Select frame i

12: k ← i

13: end if

14: end for

15: return Selected frames

16: end procedure

5.2. Representation of the Text Branch

The text stream of the ComplianceNet is designed to

understand natural language instructions. As discussed in

Section 4, the text instructions are imperative sentences an-

chored by an action - object pair. Consider the instruction:

close the identified door deliberately. The atomic action

(close) and object (door) are highlighted. The goal of this

branch of ComplianceNet is to learn the presence and or-

dering of the action-object pair. For an arbitrarily long sen-

tence, it may be necessary to deploy an RNN [18, 13] to

learn the representation. However for imperative sentences

of fixed maximum length, we show that a relation network

can be used to learn the feature representation of the sen-

tence.

Specifically, we tokenize each sentence using

GloVe [34], which was pretrained on the corpus of

wikipedia2014 and Gigaword 5 [32], with a vocabulary of

400k words, 6 billion tokens, and embedding dimension

of 300. The details of the text relation network are depicted

on the right side of Figure 5.

5.3. Alignment and Fusion of Features

The features representations extracted from the visual,

rv , and text, rt, branches are 200 dimensional vectors. An

explicit alignment layer is used to force the network to learn

video and text features in a common feature space. A square

difference computation, z = (rv−rt)
2, is used to minimize

the difference between the video and text features, thereby

aligning them in feature space. This is similar to the align-

ment proposed by [45], but encodes relations among mul-

tiple frames of video rather than images. The features are

finally fused using a fully connected layer with 128 neu-

rons. Finally, the ComplianceNet outputs the probability of

compliance, which could be thresholded to obtain a binary

outcome. The complete structure of our end-to-end train-

able ComplianceNet is shown in Figure 5.

6. Results and Discussion

We implemented ComplianceNet in PyTorch [33] using

a publicly available implementation of TRN [47]. All train-

ing and inference experiments were conducted on a 36-core

x86 server with Xeon E5-2697 CPUs and 4 NVIDIA V100

GPUs.

We first demonstrate the effectiveness of our adaptive

sampling method outlined in Algorithm 1. Figure 6a plots

the similarity scores of the 180 frames in a video. Figure 6b

shows the indices of the 47 selected frames and their cor-

responding similarity scores. Notice that only a few frames

are selected in the flat portion (the first 120 frames) of the

video, while almost all later frames are selected. Observe

that the envelopes of the two plots are similar, indicating

that the adaptive sampling method captures all significant

frames in the video. For the VTC dataset, the average num-

ber of selected frames per video is 79.8.

(a) (b)

Figure 6: Similarity scores of the (a) original and (b) se-

lected video frames. Similarity scores of the selected frames

follow the same trend as the original set of frames.

The visual relation network of the ComplianceNet uses

BNInception [24] to extract features from each video frame,

as this CNN architecture provides good accuracy and ef-

ficiency [47]. We initialize the visual branch of Com-

plianceNet with weights pre-trained on the Something-

Something dataset [20], because similar to VTC, the

Something-Something dataset contains many human activ-

ity videos. The text branch was trained separately for 20
epochs using the text instructions in the VTC dataset, so that

both branches start end-to-end training with non-random

weights. The ComplianceNet was trained end-to-end using

stochastic gradient descent (SGD) with hyper-parameters

as follows: batch size 64, initial learning rate 0.003, mo-

mentum 0.9, and weight decay 1. × 10−4. After the first

50 epochs, the learning rate was scaled by a factor of 10.

We implemented early stopping by terminating the training

when the validation loss stopped decreasing for 3 consec-

utive periods, which is defined as 5 epochs. The valida-

tion loss within each period was averaged to smooth out

the inherent noise of SGD. We evaluate the performance of

ComplianceNet against two methods. The first is a naive

Bernoulli process with parameter p = 0.5, which is equiva-



lent to a fair coin toss. The second baseline method pre-

dicts the action and object in a given video using TRN

and ResNet-152 respectively, and independently predicts

the action and object in the text instructions using the Nat-

ural Language Toolkit (NLTK) [8]. The baseline model is

trained by utilizing the ground truth action and object la-

bels of the VTC dataset. For object classification, we fine-

tune ResNet-152 weights pre-trained on ImageNet. For ac-

tion recognition, the TRN with BNInception front-end is

trained on the VTC dataset starting from random initializa-

tion. NLTK was used to parse each instruction. The verb

and noun tags in each sentence are interpreted as action and

object. A video is inferred as compliant only when the ac-

tion label from TRN and the object label from ResNet-152

match the output of NLTK.

Method
Accuracy AUC

Batch A Batch B Batch A Batch B

Coin-toss 0.481 0.515 0.488 0.491

Baseline 0.644 0.627 0.644 0.627

ComplianceNet 0.801 0.819 0.856 0.869

Table 1: Testing results of models trained on Batch A and

tested on Batch A and Batch B. Compared to the baseline

trained on TRN + ResNet-152 + NLTK, ComplianceNet im-

proves test accuracy by 27.5% on average.

We trained ComplianceNet with Batch A and tested with

Batch A and Batch B of the VTC dataset. Note that the

only difference between Batch A and Batch B is that a dif-

ferent set of background images were used for data aug-

mentation. The accuracy and the area under the receiver

operating characteristic curve (AUC) on the respective test

batches are reported in Table 1. ComplianceNet outputs the

probability of compliance. The baseline method outputs 1
when TRN, ResNet-152 and NLTK outputs match, and oth-

erwise outputs 0. Since the output is binary, the baseline

method has identical accuracy and AUC values. Compli-

anceNet improves the baseline results by 27.5% on average

between Batches A and B. ComplianceNet’s performance

on both batches of data are similar even though the batches

have different backgrounds. This is an indication that the

trained model attends to activity in the foreground of the

video, rather than using contextual information in the back-

ground. The receiver operating characteristic (ROC) curves

of the model for Batch A and Batch B are shown in Figure 7.

We study the sensitivity of the trained model to pertur-

bations in text instructions by changing the action in each

instruction to its present continuous form. For example, the

instruction “close the proper drawer” becomes “closing the

proper drawer”. From Table 2, we observe that accuracy de-

graded by 7.1 percentage points. This accuracy loss could

be potentially minimized by using a state-of-the-art word

(a) (b)

Figure 7: ROC curve of test results on (a) Batch A and (b)

Batch B.

Dataset Acc. AUC

Batch A with perturbed instructions 0.748 0.807

Batch B with perturbed instructions 0.730 0.806

Table 2: Testing results when actions in instructions are

converted to present continuous form.

Dataset Acc. AUC

Batch A with text reversed 0.587 0.648

Batch B with text reversed 0.576 0.648

Table 3: Test results when the inputs of text instructions are

reversed.

embedding [35, 14] that would provide similar language

representation for related words.

Since all BNInception layers of the visual relation net-

work are frozen during training, the weights of the convolu-

tional layers are same as TRN weights. As result, we do not

visualize the visual relation network using GradCam [38].

Instead, we test the efficacy of ComplianceNet by revers-

ing the order of the text instructions. That is, the sentence

“please open the door” becomes “door the open please”.

The results of this experiment are given in Table 3. We ob-

serve significant accuracy degradation, to slightly above the

accuracy of coin toss. This illustrates that relation networks

learn ordering in relations. So, when the ordering is broken,

as in this experiment, the performance deteriorates.

7. Conclusion

In this paper we propose a new type of multi-modal

learning problem: “video-text compliance”. We presented a

constrained video-text compliance problem and constructed

the VTC dataset. We also proposed a novel end-to-end

trainable network, ComplianceNet, which achieved 27.5%
accuracy improvement over the baseline method.
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