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Abstract

Detection followed by projection in conventional privacy

cameras is vulnerable to software attacks that threaten to

expose image sensor data. By multiplexing the incoming

light with a coded mask, a FlatCam camera removes the

spatial correlation and captures visually protected images.

However, FlatCam imaging suffers from poor reconstruc-

tion quality and pays no attention to the privacy of visual in-

formation. In this paper, we propose a deep learning-based

compressive sensing approach to reconstruct and protect

sensitive regions from secured FlatCam measurements. We

predict sensitive regions via facial segmentation and sepa-

rate them from the captured measurements. Our deep com-

pressive sensing network was trained with simulated data,

and was tested on both simulated and real FlatCam data.

1. Introduction

Cameras have become ubiquitous these days, from

closed-circuit television (CCTV) cameras in public spaces

and those in smartphones everywhere, to cameras in

wearable devices like Google Glass and Virtual Real-

ity/Augmented Reality headsets. It has thus become re-

markably easy to capture and distribute high-quality pic-

tures/videos without the knowledge or permission of oth-

ers [10, 20]. We sacrifice our privacy in exchange for se-

curity and utilities for safety. For surveillance application,

personal identity is required only in the case of accidents

or crimes [24]. It is possible to perform computer vision

tasks without knowing the object identity. Therefore, there

are increasing concern about visual privacy, which is driven

by the conventional approaches [12, 23, 29] of (i) capturing

high-quality images, (ii) detecting thend (iii) protecting sen-

sitive visual information (by blurring, blanking, and scram-

bling). However, the conventional method suffers from the

following practical problems.

C1. Low-power encryption. Simultaneously sampling,

detecting, and protecting data consumes significant re-

sources, whereas low-power protection is desirable for ap-

plications of the Internet of Things (IoT).

C2. Camera-side protection. Outsourcing computation

to cloud severs has become a popular approach for low-

complexity end-user applications. Cameras pre-process vi-

sual signals with low-complexity operations and transmit

the related information to the cloud server for computation-

ally intensive tasks. Thus, protection at the camera is pre-

ferred as it is relatively safe from transmission attacks [29].

C3. Sensor-level protection. Verifying all software com-

ponents to avoid software attacks [12, 29] is cumbersome.

The capture first and then protect scheme is sensitive to soft-

ware attacks because attackers can still obtain high quality

visual data before privacy protection is implemented.

C4. Comprehensive protection. The entire visual privacy

system can collapse owing to a single misdetection that re-

veals sensitive data and object identity [29]. Thus, powerful

deep learning based detection technique should be used.

C5. Multi-class privacy. Advanced encryption methods

can protect visually sensitive regions but also disrupts the

viewing of the original content as different users may have

different access rights [5,12,29]. Authorized users have the

right to access the original content in case of emergency.

Compressive sensing (CS) [4, 7–9, 11] can help capture

signals in a secure format at low complexity, and can par-

tially solve C1, C2, and C3. A considerable amount of re-

search has sought to study security-based CS [5, 32] but

mostly in a simulated setting that is challenging to imple-

ment. On the contrary, some hardware is available for se-

cure cameras, such as the single-pixel camera [11] and len-

less imaging [2, 13, 18, 26] (e.g., coded aperture, FlatCam,

and diffuser.) by multiplex the incoming light to destroy the

spatial information. FlatCam can capture single-shot secure

images but suffers from poor reconstruction quality.

This paper proposes an efficient sensor-level privacy pro-

tection method that uses FlatCam imaging and a deep con-

volutional neural network. The image is simultaneously

captured and secured at the sensor level with a FlatCam

camera, thus enabling (C1) low-cost (C2, C3) sensor-level

protection. We introduce a deep privacy framework to re-

cover/detect and protect the visually sensitive region of im-

age, thereby, achieving (C4) comprehensive protection as

well as multi-class protection (C5).



2. Related Work

2.1. Software Visual Privacy Protection

TrustEYE [28] is a secure sensing unit that handles the

detection and encryption of sensitive information. Protected

visual data are delivered from the camera’s host system to

other computer vision applications, the operating system,

and software frameworks. However, the image details are

still captured and thus sensitive to software attacks.

With a random projection, CS measurements are equally

important. CS thus ensures computational security but pays

no attention to visual privacy. Cambareri et al. [5] proposed

multi-level encryption based on CS to protect sensitive text

information. Sensitive regions are detected from a recov-

ered high-resolution [5] or low-resolution image [6], and

thus are still vulnerable to software attacks. Researchers

have also applied computer vision directly from CS mea-

surements with or without the reconstructed image signals

[15, 16, 27]. Beside, learning from CS is possible with low

complexity without requiring complex reconstruction [4] .

2.2. Hardware Privacy Protection

To provide stronger level of protection, Pittaluga et al.

[22] extracted features for computer vision applications di-

rectly from the thermal image and defocused images [21].

Because it does not capture an RGB image, their solution

prevents attackers from stealing the original content, and is

resilient to software attacks, but fails to deliver the original

content in case of emergency.

Another approach to protecting visual data is lensless

imaging, such as single-pixel coded imaging [2, 11]. Flat-

Cam [2] is a simple approach that involves placing a printed

mask very close to the image sensor plane. Each pixel gath-

ers multiplexed light with a unique pattern to destroy the

spatial information in conventional imaging. FlatCam mea-

surements are used to protect visual content, such as in face

detection/recognition in [25] that requires reconstruction,

and action recognition without reconstruction as proposed

in [26]. However, these studies are not concerned with

protecting sensitive visual information. Moreover, surveil-

lance applications also demand the availability of the origi-

nal content at high quality, which they cannot provide.

2.3. Deep Compressive Sensing

Recently, advanced deep learning method has been ap-

plied to compressive sensing (DCS) to provide non-iterative

and fast reconstruction as well as learned sampling matrix.

The DCS reduces complexity via convolution [17, 31], or

separable sampling with Kronecker layers [7] in the single-

scale sampling. DCS was extended to multi-scale scheme

in [8, 9] utilizing image decomposition. This work focused

on deep learning for FlatCam imaging and followed single-

scale, separable compressive sensing.

Figure 1. FlatCam processing pipeline [25].

3. FlatCam Imaging

FlatCam [2] places a coded mask very close to the image

sensor for a thin camera design. Each pixel is a combination

of multiple light rays similar to that in the frame-based CS,

and this is computationally expensive. Sampling matrices

are required to perform the reconstruction. Therefore, given

a coded mask and FlatCam settings (sensor, distance, etc.),

the authors [2] estimated the captured measurement by a

separable sampling scheme via calibration. A color image

X = [XR, XG, XB ] with four Bayer measurements Y =
[YR, YGr, YGb, YB ] is modeled as

YR = PR ·XR ·QT
R +NR,

YGr = PGr ·XG ·QT
Gr +NGr,

YGb = PGb ·XG ·QT
Gb +NGb,

YB = PB ·XB ·QT
B +NB ,

(1)

where Ni is Gaussian noise and Pi/Qi are the verti-

cal/horizontal sampling matrices for each channel. As in

Fig. 1, FlatCam uses a color Bayer sensor at 1024 × 1280
equivalent to four channels of size 512 × 640. Bayer data

are normalized, rotated, and cropped to 500×620 to reduce

the boundary effect. Each channel is independently recon-

structed at a resolution of 256 × 256 to improve light effi-

ciency. Pi ∈ R
256×500 and Qi ∈ R

256×620 are estimated

through calibration. A color channel is recovered by

argmin
Xi

∥∥Pi ·Xi ·Q
T
i − Yi

∥∥2
2
+ λR(Xi), (2)

where Xi, Pi, Qi, and Yi denote the parameters for each

Bayer channel, i ∈ {R,Gr,Gb,B}. R(·) represents a regu-

larization term such as the least squares ‖X‖2
2
. Finally, four

Bayer channels are converted into RGB.

FlatCam imaging suffers from poor reconstruction qual-

ity. First, the closer the distance is between the image sen-

sor and the printed mask, the more the number of light rays

multiplexed, and thus the more challenge recovery is. Sec-

ond, there is limited light rays near the image boundary that

leads to the vignetting effect. Third, determining the mea-

surement matrices Pi, Qi highly accurately is challenging,

and a high correlation between channel measurements (as

Table 1) suggests joint channel reconstruction.



Figure 2. Depth-wise (D-KConv) and Group Kronecker convolution (G-KConv). G-KConv utilizes information across channels with more

flexible parameters (Cm and Co represent the numbers of intermediate and output features, respectively) than D-KConv.

Table 1. Average correlation between color channels of real

(upper-right) and simulated (lower-left) data

❍
❍
❍
❍❍

S

R
YR YGr YGb YB

YR

❍
❍
❍
❍❍

0.857 0.860 0.702

YGr 0.835
❍
❍
❍
❍❍

0.893 0.814

YGb 0.834 0.849
❍
❍
❍
❍❍

0.7907

YB 0.801 0.805 0.805
❍
❍
❍
❍❍

4. FlatCam Restoration with Deep Learning

It is straightforward to improve the quality of reconstruc-

tion of FlatCam with deep image enhancement given pairs

of the ground truth and the simulated initial reconstruction.

This naive approach can be used to recover image details,

but linear processing in the initial reconstruction (i.e., nor-

malization and rotation) introduces and/or propagates dis-

tortions. The literature has shown that directly recovering

images from sensor measurements is better than multiple

image processing pipelines [30]. We, therefore, propose re-

constructing FlatCam with deep learning by modeling the

initial and the reconstruction networks.

4.1. Sampling

Even though we can learn the capturing matrices by

modeling separable sampling [7] as a Kronecker convo-

lution (called KConv) [7, 33], FlatCam imaging uses cal-

ibration to deliver fixed sampling matrices with a given

coded pattern and camera settings. It is difficult to match

the learned separable sampling matrix with the coded pat-

tern because of the nonlinearity of the calibration process.

Therefore, to simulate FlatCam imaging, we follow Eq. (1)

and add Gaussian noise to achieve a signal-to-noise ratio

(SNR) of 10 (see Table 1). We do not perform the calibra-

tion and reuse the calibrated matrices from [25].

4.2. Multi-Phase Reconstruction

Similar to previous work [7–9, 17], we build network to

mimic the process of FlatCam reconstruction. However,

our previous work [7] proposed only for gray scale imag-

ing. We propose a multiple-phase reconstruction for multi-

channel images with (i) initial reconstruction (Phase 1–no

bias, activation) with depth-wise and group Kronecker re-

construction; (ii) enhancement of the quality of reconstruc-

tion (Phase 2–complex layers) with multi-level wavelet con-

volution (MWCNN) [14].

4.2.1 Depth-wise Kronecker Initial Reconstruction

To obtain the initial reconstruction, it is straight forward to

implement simple matrix inversion at for each channel as

X̂i = W i
P · Yi ·W

i
Q, i ∈ {R,Gr,Gb,B}. (3)

which is modeled as a KConv layer with learned convolu-

tion W i
P and W i

Q. We apply KConv independently for both

horizontal and vertical convolutions; thus the name Depth-

wise KConv (D-KConv). It is shown in Fig. 2. Each of

the three KConv has 256 convolutions of size 1 × 500 × 1
and 256 convolutions of size 1× 1× 620 for W i

P and W i
Q,

followed by a reshape function.

4.2.2 Group Kronecker Initial Reconstruction

As there was a high correlation between the simulated and

sensor data measurements (see Table 1), it is better to use

information across multiple channels. We therefore pro-

pose using group Kronecker convolution (G-KConv). As

in Fig. 2, G-KConv performs horizontal and vertical con-

volutions on all channel measurements and jointly recovers

all channels. By doing so, G-KConv requires four times

the number of convolution parameters as D-KConv. For in-

stance, G-KConv requires 4× (4× 500× 1) horizontal and

4×(4×1×620) vertical convolution parameters, compared

with the 4× (1× 500× 1) horizontal and 4× (1× 1× 620)
vertical convolutions required by D-KConv.



Figure 3. Our deep visual privacy protection network. The facial region in reconstructed image of normal user is protected (it was converted

to white for better visualization).

Figure 4. Our FlatCam reconstruction network with and without

(including dashed-line block) residual learning.

4.2.3 Enhancing Reconstruction

Because of the difficulty of recovering high-quality im-

ages through few convolution layers in Phase 1, we en-

hance the quality of reconstruction by taking advantage of

multi-level wavelet reconstruction (MWCNN) [14] in Phase

2. MWCNN replaces the up-/down-sampling layer in the

U-Net architecture by wavelet decomposition and achieves

high performance on image restoration tasks.

4.3. Proposed Network Architecture

Even though we can recover images with learned con-

volutions, we should utilize information in the calibrated

sampling matrices Pi, Qi. We thus propose a residual learn-

ing scheme that learns the residual output to compensate for

simple reconstruction by the matrix inversion of

X̂i = W i
P · Yi ·W

i
Q + PT

i · Yi ×Qi, (4)

where W i
P ,W

i
Q are learnable parameters for the corre-

sponding channel i ∈ {R,Gr,Gb,B}. The generalized

framework is shown in Fig. 4 for both normal and residual

learnings. We used the L2 norm as the image restoration

loss [9, 14] as

min
1

N

N∑

i=1

||F(Y, θ)−X||2
2
, (5)

where N denotes the total number of samples and F is net-

work function with input Y and parameter θ.

We use DIV2K dataset [1] to generate 32×32, 000 color

images of size 256×256 for training. The batch size was set

to 16. The learning rate was set to 5 × 10−4 and gradually

reduced by half every 50 epochs for a total of 200 epochs.

Adam was used as optimizer.

5. Deep Visual Privacy Protection

Even though the FlatCam measurements revealed no

spatial information of the image, they did not attend to the

privacy of visual data. This section introduces a deep neural

network to predict and protect sensitive information among

FlatCam measurements. We define the facial region from

the chin to the forehead as sensitive information

We define the problem of detecting sensitive regions as

a semantic segmentation problem with a binary label S (0

for background and 1 for the facial region). A straightfor-

ward approach is to use reconstructed image by employing

existed segmentation frameworks. We can protect sensitive

regions by random scrambling, blurring, whitening, and en-

cryption. However, standard encryption is difficult to apply

to models as a deep layer, and blurring is not secure owing

to advanced deblurring techniques. In this work, we define

the reconstructed image X̂ as a combination of a secure X̂s

and a protected image X̂p as

X̂ = X̂p + X̂s, s.t. X̂s = S ⊙ X̂, (6)

where ⊙ represents pixel-wise multiplication. Sensitive im-

ages are resampled using calibrated sampling matrices as

Ys = P · X̂s ·Q
T ,

⇒ Yp = P · (X̂ − X̂s) ·Q
T = Y − Ys.

(7)



Table 2. Reconstruction performance (PSNR[dB]/SSIM) of various algorithms

Test

Set

Flat

Cam

[25]

Phase 1 - Initial Reconstruction Phase 2 - Enhance Reconstruction

Standard Residual Standard Residual

D-KConv G-KConv D-KConv G-KConv D-KConv G-KConv D-KConv G-KConv

Set5
14.43 21.83 22.53 21.83 22.63 24.01 24.09 24.17 24.04

0.654 0.624 0.699 0.624 0.712 0.778 0.786 0.786 0.785

Set14
13.89 21.37 21.95 21.36 22.05 23.44 23.46 23.55 23.41

0.555 0.624 0.683 0.621 0.691 0.752 0.758 0.759 0.757

Kodak
14.39 21.98 22.69 21.97 22.81 24.11 24.20 24.28 24.17

0.567 0.623 0.698 0.622 0.710 0.771 0.779 0.779 0.777

Table 3. Prediction accuracy of Face Segmentation [19] in spatial domain. Org - labels are predicted from clean images

Quality

Index
Org

Flat

Cam

[25]

Phase 1 - Initial Reconstruction Phase 2 - Enhance Reconstruction

Standard Residual Standard Residual

D-KConv G-KConv D-KConv G-KConv D-KConv G-KConv D-KConv G-KConv

FPA 0.9340 0.6429 0.4090 0.9417 0.4082 0.9427 0.9386 0.9631 0.9608 0.9646

IoU 0.8765 0.5798 0.3854 0.8521 0.3847 0.8527 0.8483 0.8678 0.8678 0.8766

Figure 5. Refining the FaceHair image dataset [3] by removing the

hair class and resizing it to 256× 256.

5.1. Proposed Privacy Protection Network

As shown in Fig. 3, we propose a unified deep network

with multiple sub-networks. First, image X is captured by

a FlatCam sensor in the secured form of Y . Second, re-

construction is performed X̂ and the sensitive region S is

predicted via a facial segmentation network. The sensitive

image X̂s is extracted by element-wise multiplication and

resampled to deliver the visually sensitive measurement Yp.

Third, we subtract the captured measurements Y from Ys to

obtain the protected measurements Yp.

Measurements Ys and Yp are sent through a private and a

public channel, respectively. Depending on user type, they

receive corresponding FlatCam data. Normal users receive

protected data from the public channel that can be recovered

the protected image (i.e., the sensitive region is removed).

The authorized user combines the visually sensitive and the

protected measurements to reconstruct the original content.

Both users can use the same reconstruction. Note that the

availability of calibrated sampling matrices in the residual

scheme is vulnerable to software attacks.

At the decoder side, attackers can access the public chan-

nel for the protected images. They can gain access to the

private channel, but without knowing the sampling matrix

they have to solve blind image restoration which is an NP-

hard problem. At the encoder side, we assume that the

attacker can perform plain attacks (i.e., manipulate the in-

put/output of the encoder) but cannot extract the interme-

diate deep features. This is a reasonable assumption as the

deep learning framework calculates layer by layer in a sin-

gle chip and discards intermediate features for memory ef-

ficiency. As long as the input and output are secured, so is

the deep encoder network. Thus, our framework is resilient

to transmission and attacks from the encoder side.

6. Experimental Results

6.1. Reconstruction Performance

We trained our networks D-KConv-P1 and G-KConv-P1

in the initial reconstruction (Phase 1), and for enhanced re-

constructions D-KConv-P2 and G-KConv-P2 (Phase 2) un-

der the standard and residual schemes, as shown in Fig. 4.

We removed activation and bias in Phase 1. Test images

Set5, Set14, and Kodak were cropped to a square shape and

resized to 256 × 256 to simulate FlatCam data. Moreover,

noise was added to simulate FlatCam data at an SNR of 10.

For real FlatCam data, we used face measurements in [25].

Table 2 shows the superior performance of G-KConv-P1

to D-KConv-P1 on both the standard and the residual net-

works, with approximate gains of 0.8–1 dB, 0.4–0.6 dB,

and 0.7–0.8 dB for Set5, Set14, and Kodak, respectively.

The residual scheme, however, slightly favored joint chan-

nel reconstruction with G-KConv-P1, with a gain of 0.1 dB



Figure 6. Quality of visual reconstruction for simulated Baby FlatCam data. First row - ground truth and reconstructed images from

standard network. Second row - conventional FlatCam [25] and reconstructed images from residual network

Figure 7. Quality of visual reconstruction for simulated Zebra FlatCam data. First row - ground truth and reconstructed images from

standard network. Second row - conventional FlatCam [25] and reconstructed images from residual network

over D-KConv-P1. As in Fig. 6, 7, there was a strong color

artifact in both the conventional and the residual schemes

of D-KConv-P1. On the contrary, from the perspective of

visual quality, both learned reconstruction with D-KConv-

P1 and G-KConv-P1 to eliminate the vignetting effect (i.e.,

pixels darkened at the boundary pixels), and thus signifi-

cantly gained in PSNR (with a 7-dB gain on average over

the conventional FlatCam [25]). They smoothed the corners

as a way of compensation.

In Phase 2, the MWCNN yielded a gain of 2.20 dB and

generated better visual quality than in Phase 1. G-KConv

performed similarly to D-KConv in terms of PSNR but

was better on the SSIM index. Again, residual reconstruc-

tion outperformed the conventional scheme with a gain of

0.11 0.18 dB in D-KConv-P2 but a slight loss in G-KConv-

P2. As shown in Fig. 7, the residual scheme tended to pre-

serve edges better than the conventional one. The poor SNR

led to an oversmoothed image and generated fake edges.



Figure 8. Quality of visual reconstruction quality of real FlatCam data (Girl 75-13). First row - conventional FlatCam [25] and reconstructed

image from standard network. Second row - real FlatCam data and reconstructed image from residual network.

There was a mismatch between the simulated and real

FlatCam data. First, despite the calibration process, esti-

mating high-quality sampling matrices was still challeng-

ing. Second, additional noise (i.e., quantization noise and

sensor noise) was present. The FlatCam data [25] were cap-

tured when the frontal face images were weakly lit while the

simulated training data were at a high resolution. Therefore,

the proposed methods improved the visual quality of the im-

ages but also introduce fake edges. The test images were

taken indoor, and featured smooth objects. Therefore, they

did not highlight the edge-preserving quality of deep learn-

ing. As a result, instead of G-KConv-P2, the D-KConv-P2

produced the most visually pleasing images as shown in Fig.

8.

6.2. Visual Privacy Protection

To evaluate the quality of the proposed method at pro-

tection of visual images, we example the accuracy of sensi-

tive region prediction instead. We used two popular quality

indices—Facial Pixel Accuracy (FPA) and Intersection over

Union (IoU). The FPA index is defined as

FPA =

∑N

i=0
ni
f,f∑N

i=0
ni
f

, (8)

where ni
f,f denotes the number of face pixels which is clas-

sified correctly and ni
f represents the total number of pixels

in class face of a given image index i th. The second quality

index of the Intersection over Union (IoU) is represented by

IoU =

∑N

i=0
ni
f,f∑N

i=0
(ni

f + ni
b,f − ni

f,f )
, (9)

which defines the overlapped ratio between the ground truth

and the predicted facial region.

Dataset. While semantic segmentation is an active sub-

ject of research, limited work has been published on facial

segmentation owing to the limited number of datasets avail-

able. The closest dataset to the one used here was reported

in [19]. However, it is not yet available to the public, and

thus we used FaceSeg [19] without fine tuning. To evaluate

quality, we used the CelebHair [3] dataset with some cor-

rections (i.e., fixed or removed incorrectly classified labels

of images, and removed the hair label). We also resized the

images (by bicubic) and label masks (by nearest neighbor)

to 256×256 to match with the resolution of FlatCam imag-

ing as shown in Fig. 5. We selected 100 images from the [3]

dataset to measure prediction accuracy.

The results of the segmentation of the FPA and IOU in-

dices with the ground truth, conventional FlatCam recon-

struction [2, 25], initial (D-KConv-P1, G-KConv-P2, and

their residual), and enhanced reconstructions (D-KConv-

P2, G-KConv-P2, and their residual) as input. We used

FaceSeg [19] without further fine tuning. Table 3 shows that

the conventional FlatCam reconstruction was poor in qual-

ity [25], and heavily degraded the accuracy of facial seg-

mentation with an approximate 30% reduction in the FPA.

As suffering color artifacts that impacted the facial skin

quality, D-KConv yielded poor FPA and IoU. Not fine-

tuning the FaceSeg was another reason for poor segmen-



Figure 9. Results of facial segmentation with FPA/IoU indexes. First row — (left to right) original RGB image, protected image detected

by [19] with the original RGB and reconstructed images from standard networks. Second row — (left to right) protected image with ground

truth face label and protected image detected by [19] from reconstructed image of FlatCam [25] and residual networks.

tation. Interestingly, even with the initial G-KConv-P1, we

obtained slightly better FPA and a 2.5% IoU reduction com-

pared to the original. As G-KConv-P1 preserved edges well

and FaceSeg was resilient against noise, both D-KConv-P2

and G-KConv-P2 had slightly better values of the FPA than

the predictions of the original image. This might have been

obtained because FaceSeg upscaled images multiple times

(from 178 × 218 to 256 × 256, and then to 500 × 500)

before segmentation. Owing to deep learning, D-KConv-

P2 and G-KConv-P2 maintained sharp edges and led to a

higher FPA index. The results from residual networks ex-

hibited better values of the IoU than the standard scheme,

with the best performance delivered by G-KConv-P2.

The results of the visualization segmentation in Fig. 9

show similar conclusions to the above. FaceSeg could not

predict face regions using the D-KConv-P1 and FlatCam re-

constructions very accurately. The loss of high frequency in

the original images also led to poor prediction in the face

boundary. With fewer color artifacts, G-KConv-P1 pre-

dicted face labels more accurately. Visually, we observed

that the residual learning scheme returned better segmented

results than the standard learning scheme as in Fig. 9.

While it is possible to recognize identities from FlatCam

and D-KConv-P1 prediction results, it is nearly impossible

form other schemes. While G-KConv-P1 cover only 80%

of the faces, it still reveal no identity of the person. The vi-

sualization in Fig. 9 also reveals that both FPA and IoU are

effective quality index reflects the order of visual protection

quality.

7. Conclusion

This paper proposed a deep learning framework to pro-

tect visual data using secured FlatCam lensless measure-

ments. To reconstruct the FlatCam measurements, we pro-

posed a multi-phase deep network based on depth-wise or

group Kronecker convolutions with or without residual con-

nections. To protect sensitive information, we used a se-

mantic segmentation network to detect and protect face re-

gions in the reconstructed image. Our network protects vi-

sual data and supports the recovery of the original content,

which is critical for surveillance applications.
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