
Abstract

The pressure to reduce weight and improve image 

quality of the imaging devices continues to push research 

in the area of flat optics with computational image 

reconstruction. This paper presents a new end-to-end 

framework applying two convolutional neural networks

(CNNs) to reconstruct images captured with multilevel 

diffractive lenses (MDLs). We show that the patch-wise 

chromatic blur and image-wise context-aware color 

highlights, the distortions inherent to MDLs, can be 

successfully addressed with the suggested reconstruction 

pipeline. The generative adversarial network (GAN) is first 

used to remove image-wise color distortion, while a patch-

wise network is then used to apply chromatic deblur. The 

proposed approach produces better image quality 

improvement than the context-independent color correction 

with a deconvolution-based chromatic deblur. We also 

show that the proposed end-to-end reconstruction is 

equally applicable for single- and multi-aperture MDL-

based imaging systems.

1. Introduction

Miniature cameras have always been an object of 

interest for researchers and consumers [1], [5], [6], [16]. For 

conventional optics, we need a thicker lens for larger 

numerical aperture (or resolution) [1]. To compensate the 

optical aberration inherent to refractive optics, a complex 

lens system must be used [2]. To simplify construction, 

imaging systems based on a single flat lens have recently 

attracted attention of researchers and the industry. The 

metalenses are the most popular recent approach to 

designing flat optics, making it possible to create an optical 

system with sub-wavelength thickness [3]. While the 

multilevel diffractive lenses are well known as optical 

elements since the 19th century, their use for color imaging 

purposes only started in 2015 [4]. Although metalenses can 

be made thinner than an MDL, this advantage is so 

negligible that benefits of diffractive optics (easier to 

produce, better imaging quality), combined with overall 

competitive thickness, makes it ultimately a better choice.

Chromatic aberration is a major problem for both MDLs

and metalenses. Longitudinal chromatic aberration for flat 

optics is significantly higher than for conventional systems.

Detailed calculations for a typical MDL are shown in 

section 3, while more information about longitudinal 

chromatic aberration in metalenses can be found in [1]. For 

high-chromatism systems, two types of distortions occur: 

patch-wise image distortions caused by chromatic

defocusing and image-wise color distortions caused by the 

redistribution of energy between diffraction orders.

To remove these distortions and obtain images with 

acceptable quality, computational post-processing must be 

applied. In several papers, deconvolution-based approach 

to compensate chromatic aberrations is described [4], [6], 

[7]. While papers [6], [7] deal with the chromatic aberration 

only, [4] and [5] address an additional color correction 

problem – removing the color shift. Color distortions make 
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Figure 1: End-to-end deep learning-based mage reconstruction pipeline for single and dual MDL.



a significant impact on the quality of an acquired image [4], 

[5]. This paper shows that for systems with high chromatic 

aberration, the problem of color distortions is context-

sensitive.

The superiority of flat over conventional optics can be 

even more pronounced in multi-aperture systems. The use 

of these systems can reduce the dimensions of the optical 

system [8], [17]. However, for conventional optics, the 

multi-aperture configuration significantly complicates the 

structure and increases its weight. Even though theoretical 

analysis of the performance of several lenses at different 

wavelengths was performed in [8], one of the first studies

of multi-aperture systems based on diffractive optics was 

carried out later, in [10].

This paper proposes an end-to-end neural network 

approach to the reconstruction of images captured with 

systems based on diffractive optics. We propose a two-

stage neural network design and show that it successfully 

solves both the patch-wise chromatic blur problem and 

image-wise context-aware color distortions. We also show 

that our reconstruction approach can be applied to multi-

aperture systems. A binocular MDL system that we 

developed and tested showed better quality of the 

reconstructed image than the monocular one could 

generate. Figure 1 shows the proposed architecture with

two networks: the image-wise network for color correction 

and the patch-wise network for chromatic deblur.

We benchmark our image reconstruction using PSNR 

for real images in the same way as in [5], [25].

2. Related works

Metalenses. Recent advances in creating imaging 

systems with flat optics [3], [1] are built as planar optical 

components with a single layer of phase shifting 

nanostructures. To demonstrate planar chromatic-

aberration-corrected lenses fabricated from metasurfaces, 

paper [9] exploits wavelength-dependent phase shift to 

overcome light dispersion. Alternative ways to create 

planar optics are reviewed in [3], and [1] contains a

comprehensive discussion comparing flat lenses based on 

diffractive optics and metalenses. Using metasurfaces, 

planar optics can potentially displace conventional

refractive optics in many applications. However, this 

approach faces multiple difficulties: from theoretical 

modeling of elements to the design of building-block 

scattering elements to scaling the fabrication [1].

Diffractive lenses. As shown in [1], a lightweight 

optical system with a diffractive lens is preferable to a 

metalens from a practical point of view. Manufacturing of 

diffractive lens and their use in imaging systems is a subject 

of several works starting from 2015. While [26] showed one 

of the first imaging applications of the binary Fresnel lens 

in a self-powered camera, paper [4] made the idea of using 

diffractive lens for high resolution imaging mainstream, 

with its multilayer Fresnel lens coupled with computational 

post-processing. Computational reconstruction is necessary 

to compensate strong chromatic aberration and other 

distortions affecting images captured by a camera equipped 

with a single diffractive lens or another similar planar 

optical element. Papers [6, 7], [25] describe different MDL 

designs and reconstruction approaches.

Image distortions and the reconstruction. The 

problem of strong image distortions must be addressed in 

any attempt to create planar optical elements. In papers 

reviewed in [3], authors used only optical solutions to 

eliminate the distortions. In the so-called computational 

approach, one combines the design of a diffractive lens with 

the computational reconstruction to compensate the image 

distortions [4-7]. The main distortion component in 

diffractive systems is the chromatic aberration, which 

makes the PSF (point spread function) of the sharpest color 

channel in the captured image narrower than for two other 

channels [4], [6]. Typically, the sharpest channel is green

and most of reconstruction approaches use this cross-

channel prior [5, 6]. The second distortion source is the 

energy redistribution between diffraction orders. In the next 

section, we show that this redistribution leads to context-

aware distortions in image colors.

Deep learning-based image reconstruction. The first 

use of DL networks for solving the single image super 

resolution (SISR) involved the SRCNN [11] network. 

Then, the VDSR [12] and DRNN [13] networks showed 

higher image quality. The CNN multi-frame super 

resolution can significantly improve the quality of the

reconstructed image [14]. In [5], it is shown that VDSR, a 

variation of SISR CNN, can result in a higher quality that

exceeds the capabilities of deconvolution-based methods 

described in papers [4], [6], [7]. However, an end-to-end 

neural network - based solution was not obtained in [5],

[28]; instead, a combination of CNN with deconvolution 

and color correction based on 3D LUT was used. While this 

CNN-based approach for removing chromatic blur resulted 

in better quality than the approach based on the 

deconvolution, [5] still used a transitional approach that 

combined neural network with classical correction 

methods, stopping short of creating a complete end-to-end 

technique based on neural networks.

In this paper, we present an end-to-end deep learning -

based solution for image reconstruction. This end-to-end 

CNN chain addresses both the local patch-wise chromatic 

blur and image-wise context-aware color distortions.

Multi-aperture systems. For imaging optical systems, 

there is a trade-off between viewing angle and linear resolution 

of the system. Wide-angle systems provide low linear 

resolution, and long-focus high-resolution systems have a 

small viewing angle. Recently, a number of multi-sensor and 

multi-lens systems have emerged, designed to address this 

tradeoff. Examples of these systems include Dallmeyer 

Panomera multifocal matrix camera for the video surveillance 



market, the patented Nikon four-lens camera [15], and the 

Light L16 camera [16]. According to the published 

specifications, Light L16 provides 50-megapixel resolution in 

combination with a great light sensitivity due to the fact, that it 

uses 16 sensors. Multi-aperture configurations are used to 

increase the viewing angle while keeping the spatial 

resolution. This approach results in super-resolution across 

several images [17], [18], as well as help with building 

different-focus systems and post-focusing systems [18]. 

Despite promising capabilities of these systems, high lens 

mass of multi-aperture systems remains their significant 

limitation. Flat diffractive optics - based imaging systems, on 

the other hand, do not suffer from a weight issue [10]. Flat

optics can significantly reduce the weight and the cost of a 

long-focal distance optical system [5]. Combined with the 

multi-frame super-resolution [14] approach, image quality can 

be significantly higher.

3. Optical schematics and image acquisition

This section describes monocular and binocular 

diffractive-optical systems we built. Figure 2 shows an 

example of a diffractive lens with a micro-relief on the 

surface that can replace a set of refractive lenses.

3.1. Single MDL imaging system

For a pure diffractive lens, the focal length shifts almost 

linearly across the wavelengths and the longitudinal 

chromatism is comparable to the focal length itself. Using this 

lens is challenging because only one wavelength is in focus. A

more promising approach is the use of so-called harmonic 

lenses [24], the microrelief height of which is several times 

higher than the height of the diffraction lens microrelief. With 

this approach, several wavelengths emerge for which a sharp 

image can appear in the focal plane.

Let us consider the way the images are formed with a

single harmonic lens. A focal length of this lens varies with 

the wavelength according to the following equation [24]:

0 0,
m f

f k
k

, (1)

where m is the multiple of the microrelief height, λ0 is the 

base wavelength, λ is the wavelength we estimate the focal 

length for, k is the number of the current harmonic (for the 

wavelength λ), f0 is the focal length for the base wavelength 

λ0. The diffraction efficiency of the lens for a given 

wavelength is described by the equation [24]:

2 0 0( , ) sinc
m f

e k k . (2)

According to these harmonic lens properties, we can 

always choose several wavelengths that have exactly the 

same focal length. Figure 3a shows the dependency graphs 

of intensity in focus on the z-axis (along the lens optical 

axis) for a harmonic lens with the following parameters: 

m = 10, λ0 = 0.65 μm, f0 = 100 mm. The calculation was 

performed in the interval between λmin = 0.38 μm and

λmax = 0.74 μm. According to the calculation results, three 

wavelengths have the same focal length. Figure 3 shows the 

graphs for λ1 = 0.406 μm – blue, λ2 = 0.500 μm – green, 

λ3 = 0.650 μm – black. For all these wavelengths, the focal 

length was f = 100.15 mm.

However, for other wavelengths of the visible spectrum,

the focal point will shift rather widely. The relative change 

in the optical power D of the harmonic lens will 

approximately correspond to the equation:

1D

D m
. (3)

The change in focal length will also decrease 

approximately in proportion to f / m. The maximum width 

of the PSF, W in this case could be determined as follows:

2

f
W

k
. (4)

For the lens described above with k = 10, we obtain PSF

width W = 0.5mm. But at this width the intensity is very low 

largely creating only background illumination highlight.

Consider the examples of the position and the intensity

of focus for different wavelengths. Figure 4a shows the 

calculated results for a relatively narrow wavelength range. 

The smooth blue and red curves are envelopes for the 

intensity level in focus for the 10th and 9th harmonics, 

respectively. Figure 4b presents experimentally measured 

results for a 500 nm wavelength.

Figure 2: Scheme of an MDL flat lens.

Figure 3: (a) – Focusing intensity plot on the z-axis for a

harmonic lens with m = 10, λ0 = 0.65 μm, f0 = 100 mm,

λ1 = 0.406 μm – blue, λ2 = 0.500 μm – green, λ3 = 0.650 μm –

black. (b) – MDL PSF for white light calculated by the (4) and 

experimentally estimated

(b) – MDL PSF for white light calculated by the (4) and 

experimentally estimated

a b



As can be seen from Figure 4a, the positions of the foci 

for a single harmonic lens do vary quite significantly in the 

range from 90 to 110 mm. Moreover, some wavelengths are 

represented by two foci. The wavelength of 0.65μm falls on 

the envelope for k = 10 (blue line). Wavelengths falling on 

the envelope for k = 9 (red line) have a lower intensity. The 

magnitude of the longitudinal chromatic aberration for such 

a lens is about 10 mm. For lens diameter 10mm f of 

10mm leads to PSF width of about 1mm, or 200 pixels for 

a 5mkm pitch. However, this large spot will have very low 

intensity, and will produce only background highlight.

Figure 3b shows the calculated PSF for diffractive lens with 

a diameter of 10 mm and a focal length of 100 mm, and an 

experimentally measured PSF for the same lens. Figure 3b

shows, that a wide highlight spot is present, while PSF 

width at half maximum is about 30 μm. The color of the 

described highlights depends on the image context, 

representing context-aware color distortions, included in 

general image acquisition model, described in section 3.3.

3.2. A multi-aperture system

While described above single-lens system significantly 

outperforms classical optics in terms of its weight, it is

significantly inferior in image quality due to distortions.

The use of multi-lens configurations can improve the image 

quality. In [2], a method is shown to improve the image 

quality by using MDLs with different base wavelengths and 

focusing in the red, green and blue parts of the spectrum. In 

this paper, we show that the use of several lenses of the 

same spectral range can also significantly increase the 

resolution of the system.

Figure 5 shows an optical system with two harmonic 

lenses combined into one system, with each forming its own 

image on each individual photosensitive matrix. The 

presence of several images taken from different points will 

increase final image resolution. There is also an opportunity 

to produce a multispectral camera using the same principle,

if it is formed from harmonic lenses that focus different 

base wavelengths.

Technical simplicity of manufacturing of an array of 

harmonic lenses allows to significantly increase the number 

of simultaneously capturing matrices in the system and 

significantly improve the resolution without increasing the 

focal length.

3.3. Image acquisition by diffractive lens

Images taken with harmonic lenses suffer from special 

types of image distortions because its PSF strongly depends 

on the wavelength, leading to strong chromatic aberration. 

As shown in 3.1, for some wavelengths the problem 

manifests itself as chromatic blur, applied locally in each 

pixel. For other wavelengths it may lead to color highlights,

applied to a large part of the image. The area of the 

distortion is determined by the PSF width (4), and its 

intensity is determined by the efficiency expression (2). 

These distortions are inherent to various optical systems 

with a strong longitudinal chromatic aberration. Thus, 

image acquisition could be formulated as follows:
0 0 0( ) ( ) ( , ( ), )RGB RGB RGB RGB RGBp p H p px B x x x ,(5)

where ( )RGBp x is one of the red, green, or blue color 

channels of the image acquired with a diffractive lens, 
0 ( )RGBp x is original image, RGBB is the PSF for each color 

channel; 
0 0( , ( ), )RGB RGBH p p x x is the context-aware color 

distortion, and is additive noise. As shown in Section 3.1,

the context-aware color distortion 
0 0( , ( ), )RGB RGBH p p x x is 

specific for MDL and depends not only on image color in 

given point 
0 ( )RGBp x , but on the entire image 

0
RGBp , so an 

overall image context affects the additional color distortion 

in any given point, which is like light color flare slightly 

changing over the entire image.

(a)

(b)( )
Figure 4: (a) The dependency graphs of intensity in focus on the z 

coordinate for a harmonic lens with the following calculation

parameters: m = 10, λ0 = 0.65 μm, f0 = 100 mm, λ1 = 0.65 μm –

black, λ2 = 0.675 μm – green, λ3 = 0.685 μm – blue,

λ4 = 0.695 μm – orange, λ5 = 0.715 μm – purple;

(b) experimental intensity distributions along the z axis (solid line) 

versus calculated (dashed line) for a wavelength of 500 nm.



Previous works on image reconstruction in MDL use the 

simplification of (5). Works [7], [8] consider only first 

blurring term of (5). Color correction of color highlights is 

considered in [4], [5]. However, these papers use constant 

model of color distortions and use context-independent 3D 

LUT color correction [5]. Here, we propose two CNNs: one 

for context-aware color correction and another one for local 

correction of chromatic blur.

4. Deep learning-based image reconstruction 

for diffractive optical systems

In this work, we use a generative adversarial network

(GAN) to address image-wise context-aware color distortion,

the second term in (5). After applying an image-wise CNN, 

we use a patch-wise modified single image super-resolution 

CNN, which removes the chromatic blur, the first term in (5).

Our image reconstruction pipeline of two sequentially 

connected neural networks is shown in Figure 1.

4.1. Image-wise color correction

It is imperative to address context-aware distortion (5) in 

all optical systems that have a high level of chromatic 

aberrations. In early works, the conventional, context-

independent, techniques of the color correction were used. 

However, the experiments described in section 6 show that 

conventional methods are not good enough for color 

correction of images captured by MDL. We use GAN to

address the context-aware distortions. GAN CNNs have

been shown to successfully solve problems similar to the

considered image reconstruction: a solution of removing 

distortions for underwater photography is proposed in [19].

Paper [20] describes successful cases of applying GAN to 

the white point estimation, which is close to our problem of 

context-aware color correction. As an adaptive filter for 

removing of context-aware distortions inherent to MDL, we 

use the GAN image-to-image translation with adaptive loss 

function, implemented by the GAN’s discriminator part.

The GAN architecture consists of a generator G and a 

discriminator D. Figure 6 illustrates GAN architecture, built 

to remove context-aware color distortions. The generator 

takes a captured three-channel RGB image with the color 

distortion as input and generates a color corrected image Y.

Then, the discriminator D classifies whether Y is a ground-

truth image, or it was generated by G. Finally, an output of 

D is passed to G to learn to the desired color correction.

In this work, we use Pix2Pix [21] architecture of GAN 

for image-wise color correction task. This architecture is 

based on U-Net [22] as the generator and PatchGAN [27]

as the discriminator.

4.2. Patch-wise chromatic deblur

In this paper, we considered two patch-wise networks to 

remove chromatic blur for images captured by a single-lens 

optical system: the 3-channel modification of VDSR [12]

and DRRN [13]. In [5], a VDSR-inspired CNN with grey-

edge penalty was successfully applied to solving the same 

task, but it took only one channel as an input. The 3-channel 

modification of VDSR takes an entire distorted RGB image 

as an input and outputs an RGB deblurred image.

In contrast to VDSR, DRRN has both residual and 

recursive blocks. We utilize DRRN architecture with 9

residual units and 1 recursive block, creating a 20 layers-deep 

DRRN. The mean squared error loss function is used for 

DRRN training. For both VDSR and DRRN we use a 

parametric rectified linear unit (PReLU) activation function.

For both CNNs we used the loss function with cross-

channel prior:

0 0 ( ) 0( )

1

0( ) ( ) ( ) 0( )

22
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1
ˆ ˆ( , , , )
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N
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N
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where N is the number of images in one training minibatch, 

j is the index of an image in the minibatch, 0( )jp is the 

ground truth RGB image, ( )
ˆ

jp is the reconstructed RGB 

image, 
0( )j
Gp is the green channel of the reference image, 

w is weights of CNN. The first term of the loss function 

minimizes the distance (6) between the ground truth image 

and the network output image. The second term implements  

Figure 5: Multi-aperture optical scheme.

Figure 6: GAN-based correction of context-aware color highlight



the penalty for deviation of the gradient from the green 

channel of the ground truth image. The last term applies 

constraints on the network weights, following the weight 

decay rule.

4.3. Image reconstruction for dual-lens system

For a dual-lens system, we use a combination of the 

Pix2Pix GAN for color correction and a 6-channel 

modification of VDSR, which takes two blurred RGB 

images and outputs a reconstructed RGB image. Figure 7

illustrates the architecture of our 6-channel VDSR.

In the last layer of the VDSR (the addition layer), we add 

the output of the previous layer to a linear combination of 

input images:

,

1 ,

prev in

in left right

Addition Y X

X X X
(7)

where Yprev is the output of the previous layer, Xleft is the 

RGB image produced by the left lens, Xright is the RGB 

image produced by the right lens, is the training 

parameter.

5. Implementation and training

5.1. Optical setup and image capturing

We have designed two optical systems. The first one is 

a single-lens MDL with a focal length of 150 mm and a lens 

diameter of 50 mm. The fabrication technique is based on 

direct laser writing [29] and is similar to the one described 

in [5]. The second one is a multi-aperture system that has 

two identical lenses. These two lenses were fixed at 40 cm 

distance between them and captured the same scene. In both 

cases, the lens focusing is adjusted manually. In both cases, 

for training and validation we captured images projected on 

the screen by 3LCD Epson projector at a distance of 6

meters.

The images acquired by the camera with diffractive lens

have projective distortions. To measure the quality of the 

implemented reconstruction, we have to align the captured

images with the corresponding originals. First, we add 

cross-like markers on the corners of original image before 

capturing it by a diffractive lens. After threshold 

processing, the center points of these markers are calculated

both in original and captured images using contour analysis

and template matching. Applying inverse projective 

transform, we obtain matched captured images. To make 

this transformation more accurate, we use iteration 

matching with PSNR minimization between matched 

images following the approach described in [25].

5.2. The dataset

We assembled two datasets using single-lens and dual-

lens MDL systems. The first single-lens dataset has 350 

pairs of diffraction and ground truth images of the size 

1024×1024 pixels. The second dual-lens dataset includes 

148 1024×1024 diffraction images captured by the left and 

the right lenses and corresponding ground truth images. 

The datasets were then randomly divided into training 

and testing samples. For single-lens and dual-lens datasets, 

the training samples include 321 and 119 images 

respectively, and 29 images were used for testing in both 

cases. To train the image-wise network, we combined left 

and right training images for a dual-lens system. In this 

case, the training dataset includes 642 images. The datasets 

are available online at:
https://1drv.ms/f/s!AiQGcNBKHALepTCPCRlEasXf92cO

5.3. Data preparation

To train patch-wise networks, training images are split 

into 51×51 patches with the stride of 51. In addition, data 

augmentation is performed on the training images. In 

particular, we rotate the original images by 90°, 180°, 360°,

flip them and add Gaussian noise, creating 15 additional 

augmented versions for each original patch.

For a dual-lens system, we perform image matching and 

perspective distortion correction during preprocessing. We 

use the left image as base and transform the right one to 

match it. We combined two RGB images into a 6-channel 

image before training and testing stages, as shown in 

Figure 7.

5.4. Training the networks

Pix2pix GAN training is performed with full-size 

training images using minibatch stochastic gradient descent 

and the Adam solver [23], with a learning rate of 0.0002, 

and Adam momentum parameters set to 0.5 and 0.999.

Figure 7: 6-channel patch-wise CNN for multi-aperture imaging



To train DRRN, we used the Adam optimizer and set the 

mini-batch size to 32, learning rate to 410 , weight decay to 
610 . The gradients are clipped to , , where is 

the current learning rate and θ = 0.01 is the gradient clipping 

parameter. 

For VDSR training, we also utilized the Adam optimizer 

and set the mini-batch size to 64. The network depth, initial 

learning rate, weight decay, and edge penalty are set to 18, 
410 , 410 , and 210 , respectively. The learning rate is 

halved every 10 epochs.

6. Results

In this section, we compare the results of our

reconstruction pipeline with the deconvolution-based 

reconstruction [25]. In previous papers authors used 

synthesized images [7] or cropped the central part of an 

image to estimate the reconstruction quality [5]. This 

simplification was done due to complex nature of image-

wise distortions, generating too low PSNR values for entire 

images. Proposed in this paper end-to-end approach 

correctly processes image-wise distortions, finally allowing 

us to estimate PSNR values for the entire RGB image. 

Table 1 shows PSNR values for our reconstruction 

technique against the values obtained with deconvolution-

based reconstruction from [6], [25]. More details and 

comparison of deconvolution-based reconstruction are 

provided in [5] and [25]. We included mean values for input 

distorted images, color corrected images, and reconstructed 

images after removing chromatic blur. For validation, we 

averaged mean values across a diverse set of 29 images,

which includes natural scenes and remote sensing images,

as shown in Figure 9.

For a single-lens system, the combination of Pix2Pix and 3-

channel VDSR cannot adequately deblur the image. Therefore, 

we propose to use DRNN, which achieved the best 

performance after 96 training epochs. Figure 8 illustrates the 

validation process for our DRRN and a 6-channel VDSR. In 

contract to a 3-channel VDSR, a 6-channel VDSR achieves

almost the same reconstruction quality at epoch 12 as DRRN 

at epoch 96, showing much better convergence.

Reconstructed images in Figure 9, shows good visual 

quality. Line c shows that the patch-wise CNN makes a color-

corrected by GAN image sharper. Our CNNs were trained 

using a dataset of images captured indoor on fixed distance, 

but this pipeline is also applicable for outdoor scenes, captured 

from different distances, two examples are shown in line d. 

Line d in Figure 9 also shows the processing artifacts produced 

by the image-wise CNN. The artifacts sometimes occur when 

our pipeline is applied to real scene images. A possible cause 

of these artifacts is illumination irregularity.

As we showed, our approach reconstructs an image 

obtained by a diffractive single- or dual-lens optical system 

outperforming other methods. Our method can also be 

applied to images taken with a multi-aperture MDLs setup, 

showing additional quality gains.

7. Conclusion

We propose an end-to-end deep learning-based approach 

to image reconstruction and applied it to images captured 

by single and dual MDLs imaging systems. The 

reconstruction quality was estimated as an average PSNR 

value applied to a wide image dataset, and it reached 26 dB. 

In contrast to previous works [5] and [25], where PSNR was

estimated for synthetic tests or for the central part of an 

image only, we estimate the quality for the entire RGB 

image. Not only we now use an improved, more realistic 

PSNR measurement, but we were also able to achieve a 

higher measured quality according to this stricter metric.

The proposed approach relies on the general model of 

patch-wise and image-wise distortions, inherent to the 

optical systems with high longitudinal chromatic 

aberration. We conjecture that our reconstruction approach 

will also be useful for other flat optical systems, based on 

Table 1 – Mean PSNR values for different reconstruction 

algorithms (dB)

Pipeline Captured Color 

corrected 

image

Deblurred 

image

Deconvolution 

[6], [25] (single-

aperture)

17.21 17.32 18.41

Pix2pix+ 3-

channel VDSR 

(single-aperture)

17.21 25.51 25.59

Pix2Pix + DRRN 

(single-aperture)

17.21 25.51 25.96

Pix2Pix + 6-

channel VDSR 

(multi-aperture)

17.21 (left), 

17.19 

(right)

25.41 (left),

25.08 

(right)

26.07

Figure 8: Validation for patch-wise CNN.



MDLs or metalenses. The reconstruction pipeline was 

trained using an indoor imaging setup, but it shows good 

results when applied to outdoor images too. Nevertheless, 

the spatial and depth-dependence of distortions, and

illumination variations need to be further investigated.

Finally, we publicly released a set of images captured by 

our single and dual MDL imaging systems to allow 

researchers to train and validate image reconstruction

methods for flat lens imaging –

https://1drv.ms/f/s!AiQGcNBKHALepTCPCRlEasXf92cO.
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Figure 9: (a)(b)(c) Test image examples; (d) Examples of images with reconstruction artifacts.
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