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Abstract

We propose an asymmetrically cyclic adversarial net-

work that performs denoising tasks to improve electron mi-

croscopy (EM) image analysis. Deep learning-based de-

noising methods have typically been trained either with

matching pairs of noise-free and noise-corrupted images

or by leveraging prior knowledge of noise distributions.

Neither of these options is feasible in high-throughput EM

imaging pipelines. Our proposed denoising method em-

ploys independently acquired noise-free, noise pattern, and

noise-corrupted images to automatically learn the under-

lying noise model and generate denoised outputs. This

method is based on three-way cyclic constraints with ad-

versarial training of a deep network to improve the quality

of acquired images without paired training data. Its util-

ity is demonstrated for cases where imaging substrates add

noise and where acquisition conditions contribute noise. We

show that our method, which builds on the concept of Cy-

cleGAN, outperforms the current state-of-the-art denoising

approaches Noise2Noise and Noise2Void, as well as other

learning-based techniques.

1. Introduction

Electron microscopy (EM) is an important imaging tech-

nique for the neuroscience field of ‘connectomics’ because

it is capable of resolving densely packed neuronal structures

that are nanometers in size [15, 26]. Such high-resolution

imaging traditionally required human interaction for sample

preparation and microscope operation, which served as bot-

tlenecks in the data acquisition process. Recent advances in

automatic tissue collection and imaging techniques, such as

the automated tape-collecting ultramicrotome (ATUM) [12]

and the transmission electron microscope camera array

(TEMCA) [1, 24, 34, 37], significantly reduce these ac-

quisition burdens to make peta-scale data collection feasi-

ble. With the benefits of these high-throughput techniques,

however, comes the introduction of various artifacts that

can make data analysis more challenging. For example, the

electron absorption properties of some electron-lucent films

used with recently developed high-throughput transmission

EM (TEM) techniques [9, 17, 10] are not spatially homo-

geneous, causing coherent background noise (Film noise).

Furthermore, charge damage artifacts are sometimes ob-

served with scanning EM (SEM), where electrons can accu-

mulate in the 30−60 nm thickness of sample tissue sections

and can cause permanent damage that results in blob-like

artifacts alongside Gaussian noise-like corruption (Charge

noise). These imaging modalities and corresponding noise

examples are illustrated in Fig. 1. Such EM image artifacts

are difficult to remove using conventional denoising filters

that were developed for specific noise models.

We present a novel semi-supervised learning-based de-

noising method that learns sources of noise (including ar-

tifacts) and removes them from unseen images. The pro-

posed method consists of a three-way asymmetrically cyclic

constraints in an adversarial deep network with two gener-

ators. One generator approximates the noise model (adding

noise to a noise-free image), while the other approximates

the inverse of the noise model (removing noise from a noisy

image). Unlike other deep learning-based noise removal

methods that use supervised training to minimize the dif-



Figure 1: Schematic of SEM (left) and TEM (right) image acquisition workflows accompanied by examples of associated

artifacts (noise pattern).

ference between the output of the network and the noise-

free image, the proposed method utilizes noise examples

from selected blank regions of EM images (that lack bi-

ological content) as a prior and constructs a network that

can learn to consume or extract that noise pattern. The net-

work is trained without paired ground truth data. This elim-

inates any need for collecting noise-free and noisy image

pairs for ground truth, which is often not practical in auto-

matic imaging workflows, while providing a more general

learning-based denoising model that can also handle vari-

ous unconventional EM imaging artifacts. The results show

that the proposed method is more effective at removing EM

artifacts than current state-of-the-art denoising methods, in-

cluding BM3D [5], dictionary-based [3], Noise2Noise [25],

and Noise2Void [22]. The proposed method is therefore

complementary to existing denoising methods, serving as a

flexible solution for end users seeking to reduce effects of

noise on their data.

2. Related work

2.1. Spatial filter-based denoising methods

Conventional techniques do not usually harness noise-

free samples as ground truth for performing image denois-

ing tasks. Instead, most rely on a common filter design,

such as Bilateral filter [35], Non-Local Mean filter [2],

BM3D [5], etc. On the other hand, noise reduction prob-

lems can also be defined using an optimization scheme,

such as that proposed in Anisotropic Diffusion (Perona-

Malik Diffusion) [28], in which Total Variation (TV) [4, 32]

either in ℓ1 or ℓ2 norms of the results are used as regulariz-

ers. Although such methods impose smaller computational

burdens by avoiding intensive data and heavy training, they

also introduce difficulties such as the need to choose param-

eters via tuning. Additionally, these methods usually work

best for random noise with known distributions.

2.2. Learning-based denoising methods

Modeling images as sparse linear combinations of

atoms, as with patch-based dictionary learning K-SVD [6],

filter-based dictionary learning, or convolutional sparse

coding (CSC) [3], is a denoising approach based on unsu-

pervised learning. Here, a group of atoms, i.e. dictionary,

is trained offline (with noise-free data) or blindly online,

then used to estimate the noisy image in which the noise

model cannot be captured via a sparsity regularizer and re-

sults in the noise-free approximation. These methods pose

a high computational cost in both training and in estimating

the denoised images in which many iterative minimization

steps are required for solving pre-defined energy functions.

Deep learning [8, 23] approaches emerged recently with

advances in various image processing and computer vision

tasks such as classification [14, 18, 21], segmentation [27,

31], localization [7, 13], translation [19, 38], reconstruc-

tion [11, 29], denoising [25, 33, 36], and many more. A

recent comprehensive overview of EM image restoration

techniques can be found in [30]. Among these, randomly

augmenting noise-free images with artifacts drawn from



a known distribution (Noise2Noise [25]) makes it possi-

ble to cancel out the noise energy without targeting to the

noise-free data as long as the input and output are altered

by different samples of the same noise type, even though

the convergence of training such a deep model cannot be

achieved. Alternatively, single blind-spot identity recon-

struction (Noise2Void [22]) effectively performs an approx-

imation of the patch image center pixel.

2.3. Difference from the proposed and related work

The key difference that sets the proposed method apart

from related deep learning methods that do not require

ground truth data is that others assume knowledge of a

mathematical model that describes the noise patterns (c.f.

prior distribution in Monte-Carlo based Steins Unbiased

Risk Estimator (MC-SURE) [33] and Noise2Noise [25] and

complementary distribution in learning the approximated

identity of a blind-spot pixel in Noise2Void [22]). Instead,

we exploit the attributes of blank areas in real EM images,

which are similarly corrupted by noise and where signal

predominantly arises from noise sources, and leverage them

as conditions for performing denoising. To the best of our

knowledge, this work presents the first denoiser that can re-

construct noise-free images while simultaneously recover-

ing the input noise.

3. Method

3.1. Data preparation

Data for two example cases were prepared for our experi-

ments: one is applied to Film noise and is intra-EM type

(i.e. TEM for both noise-free and noise-corrupted images),

while the other is applied to Charge noise and is inter-EM

type (i.e. TEM for noise-free image and SEM for noise-

corrupted image).

Selection of intra-type Film noise samples: Thousands

of thin sections of chemically fixed and stained mouse cor-

tex tissue were collected onto two different support film

substrates compatible with TEM: pioloform or LUXfilm�.

The TEMDR5 dataset was acquired from mouse visual cor-

tex tissue sections collected onto pioloform support film.

The TEMPPC dataset was acquired from mouse posterior

parietal cortex tissue sections collected onto LUXfilm�

support film (Luxel Corporation). Pioloform support films

are thinner and more fragile, but contribute little noise to the

images. LUXfilm� support films are more robust and bet-

ter suited for automatic TEM workflows [9, 17, 10], but can

add substantial noise to the images. TEM images were ac-

quired at 4.3×4.3× ∼ 40 nm3vx−1 resolution using a mod-

ified JEOL 1200CX system. To model the Film noise, we

also captured images of LUXfilm� support films lacking

tissue sections. By superimposing Film noise onto noise-

free images (from TEMDR5) via pixel-wise multiplication,

we created synthetic noise-corrupted images for validating

the trained network. These synthetic noise-corrupted im-

ages were not used for training the proposed model.

Selection of inter-type Charge noise samples: Images

were acquired from 5−7 days post-fertilization larval ze-

brafish brain tissue with both TEM and SEM methods. The

TEMZB images were captured at a resolution of 4.0 ×

4.0× ∼ 40 nm3vx−1 using a modified JEOL 1200CX sys-

tem. The SEMZB images were captured at a resolution of

4.0 × 4.0 × ∼ 60 nm3vx−1 using a FEI Magellan XHR

400L system [16].

3.2. Overview of the proposed method

Fig. 2 presents an overview of the architecture for the pro-

posed denoising method. The input is a collection of three

types of images: noise-free EM images (such as TEMZB or

TEMDR5), pure noise patterns from blank regions cut out

of noise-corrupted EM images (Film or Charge noise pat-

terns), and noise-corrupted EM images (such as SEMZB or

TEMPPC). Note that these three input images are acquired

independently and we do not use paired training data.

The generator G in the proposed model consists of two

end-to-end convolutional-autoencoder networks: G1 syn-

thesizes a fake noise-corrupted image If from a 2-channel

image, i.e. a merge between the noise-free image Ct and

the noise pattern Nt patches, which were sampled randomly

from larger tiles in the corresponding noise-free image and

noise pattern training datasets; G2 decomposes the input

image It, sampled randomly from real noise-corrupted EM

training images, into a 2-channel image that is a concate-

nation of the fake noise-free image Cf and the fake noise

pattern Nf . Mathematically, the above descriptions can be

informally defined as follows, in which G1 and G2 are con-

sidered being universal approximate functions:

If = G1(Ct, Nt)

Cf , Nf = G2(It)
(1)

Cr, Nr = G2(If )

Ir = G1(Cf , Nf )
(2)

There are two different paths for training. The ’upward’

direction encourages the reconstruction of input noise-free

image and noise pattern after going through G1 and G2.

The ’downward’ path acts similarly but in reverse order, as

it attempts to reassemble the input noise-corrupted image by

subsequently proceeding over G2 and G1. These serve as

strong constraints for three independently generated input

images.



Figure 2: The architecture of the proposed model.

The discriminators D include DI, DC, DN for recog-

nizing noise-free images C, noise patterns N , and noise-

corrupted images I , respectively, and attempt to differ-

entiate between the real instances from the acquired data

and the fake results generated by G. It is worth not-

ing that although G1 and G2 share the architecture of a

convolutional-autoencoder and the same binary classifier

structure is used to construct DC, DN, DI, each has its

own variable scope and will therefore be updated differently

during the training. The inner configurations, such as num-

ber of filters, residual bottlenecks, etc., were set identical to

those of CycleGAN [38]. The entire system involves train-

ing G and D adversarially until a balance is reached at the

convergence stage.

3.3. Loss definition

We sought to train D so as to maximize the probabil-

ity of assigning the correct true or false label to noise-free,

noise pattern, and noise-corrupted images. The objective

function for D can be interpreted as maximizing the log-

likelihood for estimating the conditional probability, where

the image comes from: DI (It) = DI (G1 (Ct, Nt)) =
0 (fake) and DI (I) = 1 (real). Simultaneously, gen-

erator G1 is trained to minimize [log(1−DI (It))], or

[log(1−DI (G1 (Ct, Nt)))]. This can be addressed by for-

mally defining an adversarial loss Ladv and solving its min-

imax problem:

Ladv = [log(1−DC (Cf ))] + [logDC(Ct)]

+ [log(1−DN (Nf ))] + [logDN(Nt)]

+ [log(1−DI (If ))] + [logDI(It)]

(3)

In extreme cases with large enough resources and data,

Cf features could be omitted from the network weights in-

stead of generating from the input. To prevent this, we

introduced an additional data consistency loss constraint,

Lcyc, which is a combination of each input image Lclean,

Lnoise, Lnoisy in a cyclic fashion, such that the noise-free

image can be added to or multiplied by the noise pattern to

yield the noise-corrupted image and, inversely, the noise-

corrupted image can be separated into a noise-free image

and noise pattern. In practice, distance metrics such as mean

square error (MSE), mean absolute error (MAE), and oth-

ers can be used to implement Lcyc. In our experiments, we

employed MAE (ℓ1 distance). Note that the cyclic loss in-

fluences only the generator G, not the discriminator D.



Lnoise−free = d(Ct, Cr)

Lnoise = d(Nt, Nr)

Limage = d(It, Ir)

(4)

Lcyc = Lnoise−free + Lnoise + Limage (5)

In summary, the proposed system involves two sub-

networks which are trained adversarially to minimize the

following loss:

Ltotal = Ladv + λLcyc (6)

where λ was used as a weighting factor between loss con-

straints and set to λ = 10 for all experiments described here.

The entire framework was implemented using the Tensor-

Pack 1 system-oriented programming wrapper for the Ten-

sorFlow 2 library.

3.4. Training and Testing specifications

Training phase: The proposed model accepts a spe-

cific Field of View (FoV) size of 512×512, but the ac-

quired EM images are larger. Therefore, we randomly sam-

pled an image patch with size 512×512 for each kind of

dataset (noise-free, noise pattern, and noise-corrupted) to

train the proposed GAN method. This strategy helps avoid

overfitting issues because the training instances are renewed

for each iteration. For training, we used the Adam op-

timizer [20] with an initial learning rate of 1e−4 that de-

creased monotonically over 500 epochs.

Testing phase: To obtain denoised result images, we

deployed the trained model on subdivided noise-corrupted

test images in the form of overlapping 512×512 patches

with a step stride of 256. The prediction of each patch

was then multiplied with a Gaussian weight and the final

result obtained by dividing the weighted estimate by the

total per-pixel weight. This resulted in Gaussian blending

between patches, effectively avoiding windowing artifacts

with a naive subdivision approach.

4. Results

4.1. Experiment setup

Table 1 summarizes the experiments we conducted to as-

sess the performance of the proposed method. There are

three types of noise that we considered: Gaussian noise,

Charge noise, and Film noise. Even though Gaussian noise

is not the main target of the proposed denoising method,

it serves as a standard with which to compare other exist-

ing denoising methods specifically designed for that noise

model.

1https://github.com/tensorpack/
2http://www.tensorflow.org/

Table 1: Specifications for our experiment cases.

Noise-Free

Images

Noise Type Noisy Images (Types)

1 TEMZB Gaussian TEMZB + Gaussian (Synthetic)

2 TEMZB Charge TEMZB + Charge (Synthetic)

3 N/A Charge SEMZB (Real)

4 TEMDR5 Film TEMDR5 × Film (Synthetic)

5 N/A Film TEMPPC (Real)

We conducted both quantitative and qualitative evalu-

ations. For quantitative evaluations (cases 1, 2, and 4),

we generated synthetic noise-corrupted images by adding

or multiplying either synthetic Gaussian noise (µ = 0.0,

σ = 0.05) or real Charge and Film noise patterns to clean

TEM images (TEMZB and TEMDR5), applied denoising

methods (proposed, BM3D [5], CSC [3], Noise2Noise [25],

and CycleGAN [38]), and compared the results with the

ground truth noise-free images using the Peak-Signal-to-

Noise-Ratio (PSNR) (Fig. 3). For cases 3 and 5, ground

truth noise-free images were not available, so denoised re-

sults were visually compared. Each experiment included

128 test images.

4.2. Quantitative and qualitative evaluations

Case 1 (TEMZB and Gaussian noise): In this case

involving Gaussian additive noise (Fig. 3a), the pro-

posed approach outperformed Noise2Noise [25] and Cycle-

GAN [38] by small margins because it inherited both ben-

efits from a prior distribution (noise model assumed Gaus-

sian) and a hard complementary distribution (input noise

reconstruction). CSC [3] was less able to recover the noise-

free inputs. Therefore, the resulting reconstructed and the

ground truth images were more similar with the proposed

method than with other approaches (Fig. 4). Hence, we

conclude that training a denoiser with a hard constraint to

recover the input noise delivers competitive output image

quality in situations with either incoherent noise or additive

Gaussian noise.

Case 2 (TEMZB and Charge noise): Switching from

Gaussian to Charge noise (case 2, Fig. 3b) maintained an

additive artifact-interference strategy similar to that in case

1. Here, however, the proposed method was the only ap-

proach capable of consistently achieving PSNRs > 22 dB.

Fig. 5 shows that the Charge noise caused by electron beam

damage was effectively removed through the presence of

cyclic loss in the proposed model. This type of noise has

blob-like artifacts on top of a Gaussian noise pattern scat-

tered across acquired images. It is not easily defined by

mathematical formulas, making it very difficult to design

hand-crafted filters to account for it. Therefore, the pro-



(a) Case 1

(b) Case 2

(c) Case 4

Figure 3: PSNRs (in dB) of related methods compared to

the ground truth images.

posed approach’s approximation of the forward and inverse

noise models by neural networks conveys certain benefits,

such as the inclusion of electron beam charge damage loca-

tion and size information as conditions that can be incorpo-

rated by the learning process.

Case 3 (SEMZB and Charge noise): The model trained

with TEMZB data and Charge noise in case 2 was blindly

deployed on unseen SEMZB images. Fig. 6 shows a side-

by-side comparison of the results for one representative ex-

ample across all tested methods. By visual inspection alone,

we determined that the proposed method was able to ef-

fectively remove blob-like Charge noise and increase ap-

parent signal-to-noise in the acquired SEM images because

its discriminators were trained using noise-free TEM im-

ages. Subtle differences between the proposed method and

Noise2Noise are also visible. The proposed method recon-

structed an output image with sharper edges and clearer

background, which could be due to its separate discrimi-

nators for noise-free and noise pattern images.

Case 4 (TEMDR5 and Film noise): Multiplicative noise

was used to assess reconstruction performance in case 4. As

shown in Fig. 3c, the proposed method substantially outper-

formed other approaches. Fig. 7 reinforces this impression

in a visual example, which shows that the proposed method

produces results that deviate less from the ground truth than

the others. This case differed from previous cases in that,

despite still having variable image content and noise behav-

iors (i.e. TEMDR5 and TEMPPC and Film noise), all its in-

put images arose from same modality (TEM). The relative

success of the proposed model suggests that the noise-like

electron-absorption artifacts included in Film noise are not

easily estimated by the noise assumptions underlying the

other models. However, cyclically reconstructing the noise-

altered and noise-free images apparently maintains the DC

components (i.e. low frequency intensities) of the data as

long as enough training samples are available.

Case 5 (TEMPPC and Film noise): The model trained

with TEMDR5 and Film noise in case 4 was blindly de-

ployed on unseen TEMPPC images. Fig. 8 shows the

results of the proposed method and others. Here, the

TEMPPC image data is noticeably darker due to suppres-

sion of image contrast by Film noise. By visual inspec-

tion only, our method appeared to improve the contrast

closer to that of noise-free TEM images while maintaining

high-frequency information better than other tested meth-

ods. This production of less blurred results is particularly

important for EM applications, in which identification of

fine structures such as synaptic vesicles and clefts is a key

goal.

5. Conclusion

In this paper, an asymmetrically cyclic adversarial

network was proposed for performing denoising tasks with



Figure 4: Comparison across methods for a TEMZB dataset example in case 1. Color bar indicates absolute pixel intensity

deviation from ground truth (Clean).

Figure 5: Comparison across methods for a TEMZB dataset example in case 2. Color bar indicates absolute pixel intensity

deviation from ground truth (Clean).

a focus on EM image analysis. Unlike other common

deep learning methods that have been trained with paired

data in which the target instances are typically noise-free

images, our work focused on empirical observations. We

showed that the proposed method effectively estimates

noise patterns (associated with films or charge damage)

from selected regions of acquired image data for use

as priors alongside generative adversarial loss, thereby

making it possible to create noise-corrupted images,

reconstruct original noise patterns, and produce nearly

noise-free denoised outputs. We demonstrated that the

proposed solution outperforms other state-of-the-art deep

learning-based approaches in denoising unseen images that

are corrupted by a variety of noise patterns irrespective

of how well the noise can be modeled with with a prior

mathematical description. Thanks to the nature of one-time

feedforward deployment on trained neural networks, the

proposed method has the potential to be applied rapidly

to the massive numbers of images generated by high-

throughput EM imaging workflows.
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Figure 6: Comparison across methods for a SEMZB dataset example in case 3.

Figure 7: Comparison across methods for a TEMDR5 dataset example in case 4. Color bar indicates absolute pixel intensity

deviation from ground truth (Clean).

Figure 8: Comparison across methods for a TEMPPC dataset example in case 5.
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