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Abstract 
A conventional camera performs various signal 

processing steps sequentially to reconstruct an image from 

a raw Bayer image. When performing these processing in 

multiple stages the residual error from each stage 

accumulates in the image and degrades the quality of the 

final reconstructed image. In this paper, we present a fully 

convolutional neural network (CNN) to perform defect pixel 

correction, denoising, white balancing, exposure correction, 

demosaicing, color transform, and gamma encoding. To our 

knowledge, this is the first CNN trained end-to-end to 

perform the entire image signal processing pipeline in a 

camera. Through extensive experiments, we show that the 

proposed CNN based image signal processing system 

performs better than the conventional signal processing 

pipelines that perform the processing sequentially. 

1. Introduction 

An image signal processing (ISP) pipeline is important 

when reconstructing an image from raw Bayer image for 

display applications. In a conventional camera, dedicated 

hardware is employed to perform image signal processing in 

a modular architecture. There are various processing steps 

performed in a conventional ISP pipeline to reconstruct an 

image faithfully. The main processes performed in an ISP 

include denoising, white balancing, exposure correction, 

demosaicing, color transform, and gamma encoding.  

Generally, color filters are placed on top of the silicon 

photodetectors to capture a scene at different wavelength 

ranges to reproduce its color. Bayer color filter array (CFA) 

is widely used in consumer cameras. Bayer mosaic contains 

four pixel elements with red, blue and two green filter 

elements placed in a 2X2 pixel grid. Demosaicing is 

performed to interpolate the missing red, green, or blue 

values in the Bayer color filter array. When recording a 

scene there are various sources of noise that corrupt the 

recorded signal. Example noise sources include dark signal 

nonuniformity, photon shot noise, and read out noise. Some 

of these noise sources are additive while others are 

multiplicative. The denoising step is implemented in an ISP 

to reduce the noise in the signal. As a photodetector has a 

limited charge well capacity, a scene with high dynamic 

range luminance variation will make the charge well to 

overflow or underflow. For example, the brighter regions 

will make the charge well to overflow while the darker 

regions such as shadow regions will make the charge well to 

underflow. This may lead to visible artifacts in the 

reconstructed image. To account for the extreme luminance 

variation in a scene, the charge integration time (exposure 

time) is adjusted according to the luminance level of the 

scene. The exposure correction is performed to account for 

the variation in charge integration time of an image sensor 

when capturing a scene. The human visual system exhibits a 

phenomenon known as ‘color constancy’ to discount the 

illuminant effect on the perceived color of a scene. To mimic 

the function of human color constancy, a white balancing 

step is implemented in a camera image processing pipeline. 

White balancing removes the illuminant color from the 

image sensor response and transforms the image to look as 

if it was captured under a white light such as D65 (daylight 

illuminant with correlated color temperature 6500K). Since 

the response function of a camera does not perfectly match 

the color matching functions of the human visual system, the 

image sensor responses are transformed to a standard color 

space that represents the recorded color independent of the 

characteristics of the imaging device. This is an important 

step to communicate color between devices and to correctly 

reproduce color for display applications. The color 

conversion step is implemented in an ISP to transform the 

device dependent color responses to a device independent 

color representation model such as sRGB. The human visual 

system responds nonlinearly to linear variation of scene 

luminance. However, most cameras have approximately 

linear response to luminance variation. Gamma encoding is 

performed to account for the mismatch between the 

luminance response function of the human visual system and 

that of a camera. Further, gamma encoding also helps to 

compress more data using a limited number of bits by 

compressing high luminance regions in the same way as the 

human visual system. 

Many of the processes performed in an ISP pipeline are 

ill-posed problems, so it is impossible to find a closed form 

solution. To overcome this problem, conventional modular 



 

based algorithms apply hand-crafted heurists-based 

approaches to derive a solution independent of the rest of the 

processing in an ISP pipeline. Many of the modular based 

methods independently make assumptions about the scene 

or sensor or both to derive a hand-crafted solution. However, 

these assumptions do not hold in uncontrolled outdoor and 

indoor environments. Therefore, the reconstructed image 

quality degrades with real world images. 

Sequentially performing various ISP processes using 

modular based algorithms poses another major challenge as 

the residual error from each processing module accumulates 

in the reconstructed signal. In particular, the later stages have 

to correct for the intended processing and the residual error 

left in the signal by the previous modules in the ISP pipeline. 

This degrades the quality of the reconstructed image. 

However, performing multiple processing in one-step or 

using a convolutional neural network (CNN) to perform all 

the stages in an ISP reduces artifacts (example: color moiré 

and zippering) and accumulation of error in the 

reconstructed signal compared to the conventional modular 

based ISPs. The main reason for error accumulation in the 

conventional ISP is that each module uses a task-specific 

loss function independent of the other modules. Due to the 

mismatch in the loss functions used in different processing 

modules, the accumulated error increases as we progress 

through a conventional ISP pipeline. However, a CNN based 

approach uses a single loss function to optimize the entire 

processing involved in an ISP pipeline in an end-to-end 

optimization setting. Therefore, the optimization minimizes 

the loss function that measures the reconstruction error in the 

final output image to achieve a better quality image. 

2. Related work 

In the past, many different modular based approaches 

have been proposed to perform various processing steps 

involved in an ISP [3, 8, 10, 49, 51]. These methods perform 

one of the processing in an ISP pipeline based on some 

assumptions about the scene or the image sensor. For 

example, Buchsbaum [10] proposed an algorithm for 

illuminant estimation based on the assumption that the 

arithmetic mean of a scene color is achromatic. However, 

this assumption does not always hold in real world scenes. 

For example, the algorithm fails when there is dominant 

color present in a scene or a single colored object occupies a 

large region of a scene. Land and McCann [44] proposed a 

well-known algorithm called the ‘Retinex’ for white 

balancing.  This algorithm considers the highest value in 

each color channel (RGB) as the white representation in an 

image to estimate the illuminant color of the scene. 

However, using a single or a few pixels in a scene may not 

give reliable estimate for the illuminant color due to noise.  

Cheng et al. [14] proposed an algorithm for illuminant 

correction in an image by applying principal component 

analysis on the color distribution of a scene. Finlayson and 

Trezzi [24] proposed an algorithm for illumination 

estimation based on the color statistics of the scene. In this 

algorithm, the authors used Minkowski norm to estimate the 

illuminant. Based on the grey-edge hypothesis, Weijer et al. 

[69] proposed an algorithm for illuminant estimation. In this 

algorithm, the authors assumed that the average color 

difference between pixels in a scene is achromatic. Recently, 

convolutional neural network based solutions have been 

proposed for illumination correction and shown to be 

successful compared to conventional methods [4, 5, 48, 58]. 

Demosaicing has been widely researched in the past and 

various methods have been proposed including edge-

preserving interpolation schemes [46], nonlinear filter-banks 

[21], channel correlations based approach [12], median 

filtering [32], luminance channel interpolation [70], and 

methods that utilize self-similarity and redundancy 

properties in natural images [9, 54]. A number of different 

approaches has been proposed using conventional methods 

and neural network based methods [2, 8, 47, 57, 70]. There 

are recent works that propose convolutional neural network 

based solutions for denoising [11, 36, 45, 59, 63, 72, 73], 

demosaicing [42, 66], debluring [61], and image 

enhancement [1, 6, 19, 39]. These authors showed that the 

convolutional neural network based methods to provide 

better results than the conventional methods. 

Although, there are modular based solutions for various 

processing involved in an ISP pipeline there is no clear order 

identified to perform these modular processing. Kalevo and 

Rantanen [16], investigated in which order demosaicing and 

denoising should be performed in an ISP pipeline. Based on 

their empirical evidence they concluded that denoising is to 

be performed before demosaicing. Zhang et al. [70] argued 

that performing demosaicing before denoising will generate 

noise-caused color artifacts in the demosaiced image. 

However, there are effective methods that perform 

demosaicing before denoising [70]. To overcome this 

ordering confusion of which process to perform first, recent 

methods propose to perform demosaicing and denoising 

both together in a single step or in a single algorithm and are 

shown to perform better than performing in separate 

modules [26, 41, 62]. Recently, a CNN has been proposed 

for joint denoising and demosaicing by Gharbi et al. [26]. 

Their network takes a Bayer image and noise level in the 

image as inputs to jointly perform denoising and 



 

demosaicing. To train the network, the authors mined 

millions of Internet images to collect the hard image regions 

and used these image regions to train their network. 

Although the network performs denoising and demosaicing 

together, it requires calculating the noise level in the input 

image in advance and adding it to the input image as an 

additional layer. With real world image sensors, it is not 

possible to model the noise accurately. Schwartz et al. [62] 

proposed a CNN to perform demosaicing, denoising and 

image enhancement together. Though the authors claimed 

that the neural network learned how to perform this 

processing, the input to the network was already demosaiced 

using bilinear interpolation. Therefore, the network operates 

not on the raw sensor data but on already demosaiced data.  

A space-varying filter based approach has been proposed 

for joint denoising and demosaicing by Menon and Calvagno 

[53]. The authors formulate the demosaicing problem as a 

linear system and performed denoising on the color and 

luminance components separately. Zhang et al [70] proposed 

a joint denoising and demosaicing algorithm based on 

spatially adaptive principal component analysis on the raw 

image sensor data. Their method exploits the spatial and 

spectral correlations in a CFA image to remove the noise 

while maintaining the high frequency color edges in the 

image. However, the spatial and spectral correlations do not 

hold for both natural and artificial scenes [23]. Heide et al. 

[30] developed a framework to perform common image 

processing steps in an ISP based on the natural-image priors. 

We would like to note that the natural-image priors do not 

hold for all the scenes, and therefore, leads to degradation in 

image quality. The authors formulated the image 

reconstruction as a linear least-squares problem with non-

linear regularizers. They applied nonlinear optimization 

algorithms to find an optimal solution using proximal 

operators. Recently, a generative adversarial network has 

been proposed to perform joint demosaicing and denoising 

using perceptual optimization [20]. Zhou et al. [75] proposed 

a residual neural network for joint demosaicing and super 

resolution by performing an end-to-end mapping between 

Bayer images and high-resolution RGB images. They 

showed that performing multiple processing in a single step 

reduces errors and artifacts that are common when 

performed separately. Zhao al. [74] investigated various loss 

functions for image restoration. Other methods perform joint 

demosaicing and denoising include methods described in 

[13, 17, 18, 22, 28, 31, 33, 34, 38, 41, 53, 55, 56, 75]. 

The above described classical and CNN based solutions 

perform either individual process or a combination of two 

processes at most in an ISP pipeline. However, there is no 

deep CNN based method proposed to replace the entire ISP 

pipeline yet. Motivated by the prior works that perform more 

than one ISP processing in a single module, we propose a 

fully convolutional deep neural network to perform several 

image signal processing steps, including defect pixel 

correction, denoising, white balancing, exposure correction, 

demosaicing, color transform, and gamma encoding by 

feeding raw Bayer image sensor data as an input to the 

network and training the network end-to-end using a single 

loss function. We demonstrate qualitatively and 

quantitatively that our neural network based ISP performs 

better than the existing methods.  

3. CNN for image signal processing 

Traditionally ISP pipelines have been implemented as 

sequential processing steps using a bank of linear or 

nonlinear filters based on some assumptions about the 

statistical distribution of color in an image. This sequential 

processing has been shown to accumulate error as the image 

progresses through the pipeline and leads to poor image 

quality [75]. Recently, CNN has been shown to be successful 

in performing various computer vision and image processing 

tasks [26, 29, 43, 64, 67]. The advantage of using a CNN to 

implement the entire ISP pipeline is that the parameters of 

the CNN can be optimized in an end-to-end manner by 

minimizing a single loss function that carefully measures the 

accuracy of the reconstructed image. 

3.1. Network Architecture 

Figure 1 illustrates the neural network architecture that we 

used to implement ISP pipeline.  Our neural network 

configurations are quite different from the conventional 

neural networks. In particular, we pass the short connections 

through a convolutional layer. This helped our network to 

learn the entire processing (defect pixel correction, 

denoising, white balancing, exposure correction, 

demosaicing, color transform, and gamma encoding) 

involved in an ISP pipeline with relatively a small network. 

In the Microsoft ResNet [29] architecture, the residual 

learning block performs identical mapping of the input to the 

output of the block. This simple residual block did not give 

us satisfactory performance; since the residual blocks make 

an identical copy of the input to the output, the network did 

not learn to generalize the complex ISP pipeline. However, 

the authors of ResNet were able to achieve better 

performance for object detection/recognition by naively 

stacking many residual blocks to the network. Compared to 

ResNet we are using a significantly less number of layers. 

Further, performing the entire ISP processing using a fewer 

number of convolutional layers is challenging and we cannot 



 

afford to have residual blocks that perform identical copy of 

the input. Empirically, we found that feeding the parallel 

connections (short connections) through a convolutional 

layer improved the performance of the neural network. The 

network consists of four parallel connections with one main 

path and three short connections. To match the dimensions 

of the layer to which the short connection is concatenated, 

two of the short connections were first processed with 2X2 

average pooling (stride=2). However, the main path was 

processed with 2X2 max pooling (stride=2). This was 

performed to get the advantage of both pooling methods 

when reconstructing an image. Max pooling has been widely 

used for object recognition applications [64]. However, max 

pooling may not be the best for reconstruction applications. 

Therefore, we used average pooling for the short 

connections to capture the first order statistics of the 

activation from each activation region. Based on Schwartz et 

al. [62] we used tanh nonlinearity in all three short 

connections after performing batch normalization. Each 

parallel connection is concatenated to the main path 

followed by a 1X1 convolution to reduce the depth of the 

concatenated layer to 64. Except 1X1 convolutional layers, 

all the other convolutional layers were performed with 3X3 

kernels with stride of 1. The convolutional layers were 

created by convolving with 64 filter kernels (however, 

output layer used only 3 kernels to produce RGB image). 

Input to convolution layers were padded to maintain the 

output to have the same dimensions as the input. 

Motivated by the VGGnet [64] and U-net [60] 

architectures, we perform 2X2 max pooling with stride of 2 

to reduce the input size in the main path. However, we do 

not increase the depth of the layers as the spatial dimension 

is reduced. This was performed to force the network to find 

a compact latent representation of the raw sensor data while 

preserving the important information about the scene to 

correctly reconstruct the image at the output layer. We 

performed up sampling to bring the dimensions of the hidden 

representation back to the input dimensions. All the 3X3 

convolutional layers in the main path were followed by a 

batch normalization and a LeakyReLu nonlinear activation 

function except the output layer. The output layer has no 

batch normalization but, uses a sigmoid function to ensure 

the reconstructed image is bounded between 0 and 1.  

3.2. Loss function 

To obtain the best performance, it is not enough to have 

the best network architecture but also important to have the 

appropriate loss function that accurately measures the 

perceptual quality of an image. Reconstruction of a raw 

sensor image into an RGB image can be formulated as 

follows: 

                                                                   (1) 

where  denotes the reconstructed RGB image, 

 denotes the observed raw Bayer image, and  denotes 

the noise. The function  is the degradation function that 

models the quantum efficiency of the silicon, response of the 

readout circuit, and the CFA transfer function. To make this 

problem simple,  is generally assumed to be a linear 

function and replaced with an N dimensional square matrix 

or a diagonal matrix [42]. Other than the responses of photo 

detector, CFA pattern, and read-out circuit; the measured 

response is also corrupted by noise from various sources 

including dark response of the photo detectors, fixed pattern 

noise from the readout circuit and photo detector 

irregularities in the sensor array, and photon shot noise. Shot 

noise is generally modelled as Poisson distribution. Given 

that there are many unknowns, finding a closed form 

solution to  is an ill-posed problem. In the past, a number 

of algorithms have been proposed by assuming simple linear 

models or assumptions about the statistical color distribution 

of an image. Here, we treat the problem as a nonlinear 

inverse estimation problem and use a carefully designed 

CNN to find an optimal estimate for x. A well-known 

method to formulate this problem is to apply Bayes rule and 

maximize the posterior probability as follows: 

                                           (2) 

where  is the likelihood term,  is the prior 

probability on x. To obtain the best estimate for , we need 

to maximize the posterior probability . Taking 

logarithm to both sides of equation (2) results, 

        (3) 

More formally, the MAP estimation in equation (3) can be 

expressed as an optimization problem as follows: 

      (4)  

here,  is the reconstructed image. The negative log-

likelihood term can be written as  and the 

negative log-prior term (regularizer term) can be written as 

. In this expression  denotes 

difference of Gaussian of the reconstructed image. Through 

experimentation, we found that modeling the regularizer 

term as a weighted L1 norm worked better for preserving the 

high frequency edges in an image. We weighted the 



 

likelihood term and the regularizer term using a weighting 

term . We used  in our optimization. 

3.3. Data set 

It has been shown that the Kodak data set [46] and 

McMaster data set [71] do not represent the real world image 

statistics [20, 66]. In addition, these two data sets have only 

24 and 18 images respectively. In this paper, we used a much 

larger data set of 11347 images with ground truth illuminants 

[16]. As our CNN performs the entire ISP pipeline including 

white balance correction, Ciurea and Funt [16] data set is 

more appropriate as we can test our CNN for illumination 

correction. However, this is not possible with the Kodak or 

McMaster data sets. 

3.4. Noise modeling 

Recorded image sensor response is corrupted by various 

sources of noise. Due to random variation of detected 

photons in an image sensor, the image sensor response is 

corrupted by photon shot noise. In modern cameras, the pixel 

size is reduced to increase the resolution of the camera. 

However, photon noise increases as the pixel size is reduced 

[7]. Currently, photon noise is the most significant type of 

noise in an image sensor system that degrades the image 

quality [7]. This noise component is signal dependent and 

very different from additive white Gaussian noise widely 

used in the literature when evaluating demosaicing and 

denoising algorithms [25]. In our evaluations, we modelled 

the photon noise as a signal dependent noise component and 

modelled it separately from other sources of noise for 

realistic evaluation of our CNN and competing methods. 

The read-out noise arises due to electronic inefficiencies in 

reading the accumulated charge and converting the electrical 

charge into a digital pixel value. Image sensor response is 

affected by both additive noise and multiplicative noise [50]. 

For example, Photo Response Non Uniformity (PRNU) 

noise is a multiplicative noise whereas fixed pattern noise is 

additive noise [50]. However, in the past, many of the 

demosaicing and denoising algorithms were evaluated with 

additive noise only [26, 30, 42]. For a more realistic 

investigation of our CNN-based ISP and the competing 

methods, we modelled both additive noise and multiplicative 

noise in an image capturing system and incorporated them 

into our reverse imaging pipeline.  

3.5. Generation of Bayer image data 

The raw Bayer CFA images were generated from a 

database of images [16]. This image set contains RGB 

images and the ground truth illuminant. We used our in-

house inverse ISP pipeline built based on one of our CMOS 

image sensor models to create the Bayer data from the RGB 

images. First, the inverse pipeline linearizes the RGB image 

by removing the gamma encoding and represents the 

linearized image with a higher precision than the input RGB 

image. Then we convert the sRGB to device dependent space 

using a transformation matrix obtained from one of our 

sensors. The device dependent RGB responses were then 

rendered using our inverse pipeline to simulate three 

different exposure conditions (long, medium, and short) and 

the out of range pixels were clipped. Shot noise was 

modelled as multiplicative noise with two different SNR 

levels 25dB and 30dB. Fixed pattern noise from various 

sources was modelled as additive Gaussian noise. However 

to simulate the irregularities along the rows and columns in 

an image sensor response, we used 2D sinusoidal waves in 

row and column directions with zero mean Gaussian noise 

overlaid on the 2D sinusoidal patterns. This approximately 

models the fixed-pattern noise variation due to irregularities 

in the silicon photoreceptors, and read-out noise along the 

column and row pixel elements. Finally, the image was run 

through a Bayer mosaic simulator to generate a Bayer CFA 

image. With two different noise levels and three different 

integration times, we were able to generate 6 images from 

each of the original RGB images. In each image, a gray ball 

was placed (the ball was fitted on the camera) to obtain the 

ground truth illuminant. We cropped the images to remove 

the gray ball to avoid the neural network learning to perform 

white balance correction and exposure correction based on 

the gray ball. In particular, we took four different crops of 

240X220 pixels image. This created 272000 raw images of 

different noise levels and different exposure conditions (low 

light and high light images). We split the images by 

randomly assigning the images to training (240000), test 

(16000) and validation (16000) sets. 

To generate ground truth images for each of the 

corresponding raw Bayer images, we took the linearized 

images and performed illumination correction using the 

ground truth illuminant obtained from the gray ball 

measurements. This image was gamma encoded to obtain 

the ground truth image to train our CNN. 

3.6. Training 

We trained our neural network end-to-end using the raw 

CFA image responses as input and the corresponding ground 

truth images as the target output. The network was 

implemented in Keras with Tensorflow backend [15]. We 

used the Adam optimizer with a starting learning rate 0.001 

with other parameters kept as default. The Adam optimizer 



 

is a flavor of a stochastic gradient descent algorithm that also 

takes advantage of the Root Mean Square Propagation 

(RMSProp) and Adaptive Gradient (AdaGrad) algorithms 

[40]. We used a batch size of 32 and minimum learning rate 

to 0.000001. During the training process, we halve the 

learning rate if the loss calculated on the validation set did 

not improve for 100 epochs. This was required to reach the 

optimum point in the space spanned by the loss function. In 

our training and testing, we kept the image size to 240X220 

pixels. The filter weights were initialized using random 

uniform distribution. Training was performed on a NVIDIA 

quadro P5000 GPU and Intel® Xeon® w2175 CPU. 

4. Performance evaluation 

In this section, we compare the performance of our CNN-

based ISP to other existing modular based approaches. As 

there is no single algorithm proposed to perform the entire 

ISP pipeline, we compare our CNN with existing methods 

that perform single processing or multiple processing, such 

as joint demosaicing and denoising. For a fair comparison, 

we used the ground truth estimates to perform the missing 

processes of the competing methods. For example, if a 

competing method performs only denoising and 

demosaicing, we performed the rest of the processing, such 

as white balance correction, and gamma encoding, using the 

ground truth values. 

4.1. Results for white balancing 

Algorithm Angular error 

White patch [44] 6.7 

Gray world [10] 3.6 

Gray edge [69] 4.3 

Weighted gray edge [27] 6.5 

PCA based [14] 10.9 

Shades of gray [24] 4.4 

Bianco et al [5] 3.1 

Our CNN 2.8 

Table 1: Experimental results for our CNN and other methods for 

color constancy. Left hand column lists the methods used in the 

evaluation and the right hand column lists the angular error 

(degrees) calculated on the 16000 test images. 

We compared the performance of our neural network 

based ISP for color constancy with well-known color 

constancy algorithms. The results are listed in Table 1. 

Angular error has been widely used to measure the 

performance of color constancy algorithms [35]. Therefore, 

we calculated the mean angular error between the ground 

truth illuminant and the illuminant estimated by each of the 

algorithms in the RGB space. We perform quantitative and 

qualitative comparison of our neural network with the 

following algorithms: white patch [44], gray world [10], 

gray edge [69], weighted gray edge [27], PCA [14], shades 

of gray [24] and Bianco et al [5]. As we have discussed in the 

previous section, each of these algorithms makes 

assumptions about the color variation in a scene to estimate 

the illuminant. However, these assumptions do not hold for 

all the natural and artificial scenes. From the results reported 

in Table 1, we can see that our CNN-based ISP performs 

 

Figure 1: Proposed neural network to perform image signal 

processing to reconstruct the RGB image from Bayer sensor data. 



 

better than the rest of the methods and the PCA-based 

algorithm provides the least performance. It can also be seen 

that gray world, shades of gray and gray edge algorithms 

provide a comparable performance. This is because these 

three algorithms estimate the illumination based on the 

Minkoviski norm given by:  where p is 

the order of the norm. For  the equation becomes gray 

world assumption, for , it becomes the shades of gray 

and with L1 norm it becomes gray edge hypothesis [24]. 

4.2. Results for image reconstruction 

In this section we compare the performance of our CNN-

based ISP with existing demosaicing and denoising 

algorithms. In particular, we compare the performance of our 

CNN with the following algorithms: bilinear interpolation, 

FlexISP by Heide et al. [30], Tan et al. [68], Malvar et al. 

[51], Lu et al. [49], Zhang et al. [70], Menon et al. [52], Su 

[65], and Jeon and Dubois [37]. Example images from each 

of these methods are shown in Figure 2. Peak signal to noise 

ratio (PSNR) and mean signal to noise ratio (SNR) for each 

of these algorithms tested on the 16000 test images are listed 

in Table 2. From these results, it can be seen that our CNN-

based approach performs better than other methods. Bilinear 

interpolation gives the least performance. 

Algorithm PSNR Mean SNR 

FlexISP [30] 21.31 14.45 

ADMM [68] 20.92 13.91 

Malvar et al. [51] 21.52 14.66 

Lu et al. [49] 28.64 21.78 

Zhang et al. [70] 25.57 18.72 

Menon et al. [52] 29.72 22.88 

Su [65] 29.76 22.91 

Jeon and Dubois [37] 26.91 20.06 

Bilinear interpolation 18.02 11.17 

Our CNN 30.71 24.58 

Table 2: Results for our CNN-based ISP and other existing 

methods. The second column lists the PSNR and the third column 

lists the mean SNR calculated on the 16000 test images. 

4.3. Results for defective pixel correction 

In imaging devices, defective pixels are pixels that do not 

sense light levels correctly. A defective pixel could be a dead 

pixel or a pixel that has light sensitivity that is significantly 

high or low compared to the rest of the pixel array (stuck 

pixels). Defective pixels in an image sensor can occur due to 

various reasons including short circuit, dark current leakage, 

and damage or debris in the optical path. To simulate defect 

pixels in an image sensor array, we randomly made 0.01% 
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of the pixel responses to either 0 or 255. We trained our CNN 

to learn to identify and correct the response of the defective 

pixels. Results for defect pixel correction are shown in 

Figure 3. From these results, we can see that our CNN-based 

ISP pipeline can effectively perform defect pixel correction. 

    
(a) Bayer image showing the location of defective pixel 

    
(b) Reconstructed image using our CNN 

    
(c) Ground truth image 

Figure 3: Test results for defect pixel correction: (a) shows the 

location of the defective pixel with a white dot inside the white 

rectangle. A zoomed in view of the defect pixel region is shown in 

the top left hand corner in (a), (b) and (c).   

4.4. Results for other color filter mosaics 

To investigate how our CNN-based ISP pipeline performs 

with other color filter mosaics, we trained our CNN using X-

Trans color filter mosaic by Fujifilm. The X-Trans color 

filter mosaic has 6X6 pattern of photosites. In a 6X6 cell 

array, X-Trans has more green filter elements compared to 

the standard Bayer filter mosaic. Test results are shown in 

Figure 4. From these results, it can be seen that our CNN-

based ISP pipeline can be easily adapted to other 

nonstandard color filter mosaics as well. 

    
(a) Our CNN results for X-Trans color filter mosaic 

    
(b) Ground truth image 

Figure 4: Reconstruction results for X-Trans CFA by Fujifilm. 

4.5. Network configuration 

We have experimented with different network 

configurations including plain encoder-decoder pair, 

identical copy in the short connections like ResNet [29] or 

U-net [60] and found that passing the short connections 

through a convolutional layer provided better reconstruction 

results than the other configurations we tested. All the results 

reported in this paper are based on the network shown in 

Figure 1. We also experimented with different depth for the 

hidden layers and found that reducing the depth from 64 to 

32 or smaller value increases the PSNR of the reconstructed 

image. The network shown in Figure 1 requires 438k 

weights and takes 215ms to reconstruct an image (240X220 

pixels) on our system with Intel® Xeon® w2175 CPU. 

4.6. Limitations and future work 

As we used supervised learning to train our CNN-based 

ISP, it relies on the training data to learn the processing 

involved in an ISP pipeline. However, if the data is not 

representative of a given problem or if the ground truth data 

is corrupted with noise and/or artifacts, the network will 

learn to produce the noise and artifacts that are in the training 

data. Therefore, the success of a data driven method depends 

on the training data. An alternative way to train a network is 

to use a partially supervised method or unsupervised method 

such as a generator-discriminator pair (example: generative 

adversarial network). Another possible future direction is 

that expanding the functions of the network to other 

processing such as motion blur, super resolution, and high 

dynamic range imaging. A more interesting direction would 

be to develop a neural network that learns to restore an image 

corrupted by an unknown degradation function 

5. Conclusions 

We developed a CNN based image signal processing 

pipeline for performing defect pixel correction, denoising, 

white balancing, exposure correction, demosaicing, color 

transform, and gamma encoding. We demonstrated that 

performing the entire image processing steps using a CNN 

performs better than the conventional modular based 

approaches including methods that jointly perform 

demosaicing and denoising. We have illustrated quantitative 

and qualitative results for our CNN and other existing 

methods and shown that our CNN-based ISP performs better 

under challenging conditions. 

References 
[1] N. Ahn, B. Kang, and K.-A. Sohn, “Fast, accurate, and 

lightweight super-resolution with cascading residual network,” 



 

in Proceedings of the European Conference on Computer 

Vision, pp. 252–268, 2018. 

[2] H. Akiyama, M. Tanaka, and M. Okutomi. September. Pseudo 

four-channel image denoising for noisy CFA raw data. In IEEE 

International Conference on Image Processing (ICIP) (pp. 

4778-4782), 2015. 

[3] D. Alleysson, S, Susstrunk, and J. Hérault. Linear demosaicing 

inspired by the human visual system. IEEE Transactions on 

Image Processing, 14(4), pp.439-449, 2005. 

[4] J. T. Barron. Convolutional color constancy. In the IEEE 

International Conference on Computer Vision, 379-387), 2015. 

[5] S. Bianco, C. Cusano, and R. Schettini. Color constancy using 

CNNs. In Proceedings of the IEEE Conference on Computer 

Vision and Pattern Recognition Workshops (pp. 81-89), 2015. 

[6] S. A. Bigdeli, M. Zwicker, P. Favaro, and M.  Jin, M. Deep 

mean-shift priors for image restoration. In Advances in Neural 

Information Processing Systems (pp. 763-772), 2017. 

[7] A. J. Blanksby, M. J. Loinaz, D. A. Inglis, and B. D. Ackland. 

Noise performance of a color CMOS photogate image sensor. 

In International Electron Devices Meeting. IEDM Technical 

Digest (pp. 205-208), 1997.  

[8] A. Buades, B. Coll, and J. M. Morel. A non-local algorithm for 

image denoising. In IEEE Computer Society Conference on 

Computer Vision and Pattern Recognition (CVPR) (Vol. 2, pp. 

60-65), 2005. 

[9] A. Buades, B. Coll, J. M. Morel, and C. Sbert. Self-similarity 

driven color demosaicking. IEEE Transactions on Image 

Processing, 18(6), pp.1192-1202, 2009. 

[10] G. Buchsbaum. A spatial processor model for object colour 

perception. Journal of the Franklin institute, 310(1), pp.1-26, 

1980. 

[11] H. C. Burger, C. J. Schuler, and S. Harmeling. Image 

denoising: Can plain neural networks compete with BM3D?. 

In 2012 IEEE conference on computer vision and pattern 

recognition (pp. 2392-2399), 2012. 

[12] K. Chang, P.L. K. Ding, and B. Li. Color image demosaicking 

using inter-channel correlation and nonlocal self-similarity. 

Signal Processing: Image Communication, 39, pp.264-279, 

2015. 

[13] C. Chen, Q. Chen, J. Xu, and V. Koltun. Learning to see in the 

dark. In Proceedings of the IEEE Conference on Computer 

Vision and Pattern Recognition (pp. 3291-3300), 2018.  

[14] D. Cheng, D. K. Prasad, and M. S. Brown. Illuminant 

estimation for color constancy: why spatial-domain methods 

work and the role of the color distribution. JOSA A, 31(5), 

pp.1049-1058, 2014. 

[15] Chollet, F 2015. https://keras.io  

[16] F. Ciurea, and B. Funt. January. A large image database for 

color constancy research. In Color and Imaging Conference 

(Vol. 2003, No. 1, pp. 160-164). Society for Imaging Science 

and Technology, 2003. 

[17] L. Condat. A simple, fast and efficient approach to 

denoisaicking: Joint demosaicking and denoising. In 2010 

IEEE International Conference on Image Processing (pp. 905-

908), 2010. 

[18] L. Condat, and S. Mosaddegh. Joint demosaicking and 

denoising by total variation minimization. In 2012 19th IEEE 

International Conference on Image Processing (pp. 2781-

2784), 2012. 

[19] C. Dong, C. C. Loy, K. He, and X. Tang. Image super-

resolution using deep convolutional networks. IEEE 

transactions on pattern analysis and machine intelligence, 

38(2), pp.295-307, 2016. 

[20] W. Dong, M. Yuan, X. Li, and G. Shi. Joint Demosaicing and 

Denoising with Perceptual Optimization on a Generative 

Adversarial Network. arXiv preprint arXiv:1802.04723, 2018. 

[21] E. Dubois. Filter design for adaptive frequency-domain Bayer 

demosaicking. In International Conference on Image 

Processing (pp. 2705-2708), 2006. 

[22] L. Fang, O. C. Au, Y. Chen, A. K. Katsaggelos, H. Wang, and 

X. Wen. Joint demosaicing and subpixel-based down-sampling 

for Bayer images: A fast frequency-domain analysis approach. 

IEEE transactions on multimedia, 14(4), pp.1359-1369, 2012. 

[23] G. M. Farinella, S. Battiato, G. Gallo, and R. Cipolla. Natural 

versus artificial scene classification by ordering discrete fourier 

power spectra. In Joint IAPR International Workshops on 

Statistical Techniques in Pattern Recognition (SPR) and 

Structural and Syntactic Pattern Recognition (SSPR) (pp. 137-

146). Springer, Berlin, Heidelberg, 2008.  

[24] G. D. Finlayson, and E. Trezzi. Shades of gray and colour 

constancy. In Color and Imaging Conference (Vol. 2004, No. 

1, pp. 37-41). Society for Imaging Science and Technology, 

2004. 

[25] A. Foi, M. Trimeche, V. Katkovnik, and K. Egiazarian. 

Practical Poissonian-Gaussian noise modeling and fitting for 

single-image raw-data. IEEE Transactions on Image 

Processing, 17(10), pp.1737-1754, 2008. 

[26] M. Gharbi, G. Chaurasia, S. Paris, and F. Durand. Deep joint 

demosaicking and denoising. ACM Transactions on Graphics 

(TOG), 35(6), p.191, 2016. 

[27] A. Gijsenij, T. Gevers, and J. Van De Weijer. Improving color 

constancy by photometric edge weighting. IEEE Transactions 

on Pattern Analysis and Machine Intelligence, 34(5), pp.918-

929, 2012. 

[28] B. Goossens, J. Aelterman, H. Luong, A. Pižurica, and W. 

Philips. Complex wavelet joint denoising and demosaicing 

using Gaussian scale mixtures. In 2013 IEEE International 

Conference on Image Processing (pp. 445-448), 2013. 

[29] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning 

for image recognition. In Proceedings of the IEEE conference 

on computer vision and pattern recognition, 770-778, 2016. 

[30] F. Heide, M. Steinberger, Y. T. Tsai, M. Rouf, D. Paj k, D. 

Reddy, O. Gallo, J. Liu, W. Heidrich, K. Egiazarian, and J. 

Kautz. FlexISP: A flexible camera image processing 

framework. ACM Transactions on Graphics (TOG), 33(6), 

p.231, 2014.  

[31] B. Henz, E. S. Gastal, and M. M. Oliveira. Deep joint design 

of color filter arrays and demosaicing. In Computer Graphics 

Forum (Vol. 37, No. 2, pp. 389-399), 2018. 

[32] K. Hirakawa, and T. W. Parks. Adaptive homogeneity-

directed demosaicing algorithm. IEEE Transactions on Image 

Processing, 14(3), pp.360-369, 2005. 

[33] K. Hirakawa, and T. W. Parks. Joint demosaicing and 

denoising. IEEE Transactions on Image Processing, 15(8), 

pp.2146-2157, 2006. 

[34] K. Hirakawa. Color filter array image analysis for joint 

denoising and demosaicking, 2008. 

[35] S. D. Hordley, and G. D. Finlayson. Re-evaluating colour 

constancy algorithms. In Proceedings of the 17th International 

Conference on Pattern Recognition, 2004. ICPR 2004. (Vol. 1, 

pp. 76-79), 2004. 



 

[36] V. Jain, and S. Seung. Natural image denoising with 

convolutional networks. In Advances in neural information 

processing systems (pp. 769-776), 2009. 

[37] G. Jeon, and E. Dubois. Demosaicking of noisy Bayer-

sampled color images with least-squares luma-chroma 

demultiplexing and noise level estimation. IEEE Transactions 

on Image Processing, 22(1), pp.146-156, 2013. 

[38] D. Khashabi, S. Nowozin, J. Jancsary, and A. W. Fitzgibbon. 

Joint demosaicing and denoising via learned nonparametric 

random fields. IEEE Transactions on Image Processing, 

23(12), pp.4968-4981, 2014. 

[39] J. Kim, J. Kwon Lee, and K. Mu Lee. Accurate image super-

resolution using very deep convolutional networks. In 

Proceedings of the IEEE conference on computer vision and 

pattern recognition (pp. 1646-1654), 2016. 

[40] D. P. Kingma, and J. Ba. Adam: A method for stochastic 

optimization. arXiv preprint arXiv:1412.6980, 2014. 

[41] T. Klatzer, K. Hammernik, P. Knobelreiter, and T. Pock. 

Learning joint demosaicing and denoising based on sequential 

energy minimization. In 2016 IEEE International Conference 

on Computational Photography (ICCP) (pp. 1-11). IEEE, 2016. 

[42] F. Kokkinos, and S. Lefkimmiatis. Deep image demosaicking 

using a cascade of convolutional residual denoising networks. 

In Proceedings of the European Conference on Computer 

Vision (ECCV) (pp. 303-319), 2018.  

[43] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet 

classification with deep convolutional neural networks. 

Advances in neural information processing systems. 1097-

1105, 2012. 

[44] E. H. Land, and J. J. McCann. Lightness and retinex theory. 

Josa, 61(1), pp.1-11, 1971. 

[45] S. Lefkimmiatis. Universal denoising networks: a novel CNN 

architecture for image denoising. In Proceedings of the IEEE 

Conference on Computer Vision and Pattern Recognition (pp. 

3204-3213), 2018. 

[46] X. Li, B. Gunturk, and L. Zhang. Image demosaicing: A 

systematic survey. In Visual Communications and Image 

Processing 2008 (Vol. 6822, p. 68221J). International Society 

for Optics and Photonics, 2008. 

[47] X. Liu, M. Tanaka, and M. Okutomi. Single-image noise level 

estimation for blind denoising. IEEE transactions on image 

processing, 22(12), pp.5226-5237, 2013. 

[48]Z. Lou, T. Gevers, N. Hu, and M. P. Lucassen. Color 

Constancy by Deep Learning. In BMVC (pp. 76-1), 2015. 

[49] Y. M. Lu, M. Karzand, and M. Vetterli. Demosaicking by 

alternating projections: theory and fast one-step 

implementation. IEEE Transactions on Image Processing, 

19(8), pp.2085-2098, 2010. 

[50] J. Lukáš, J. Fridrich, and M. Goljan. Digital camera 

identification from sensor pattern noise. IEEE Transactions on 

Information Forensics and Security, 1(2), pp.205-214, 2006.  

[51] H. S. Malvar, L. W. He, and R. Cutler. High-quality linear 

interpolation for demosaicing of Bayer-patterned color images. 

In 2004 IEEE International Conference on Acoustics, Speech, 

and Signal Processing (Vol. 3, pp. iii-485), 2004. 

[52] D. Menon, S. Andriani, and G. Calvagno. Demosaicing with 

directional filtering and a posteriori decision. IEEE 

Transactions on Image Processing, 16(1), pp.132-141, 2007. 

[53] D. Menon, and G. Calvagno. Joint demosaicking and 

denoisingwith space-varying filters. In 16th IEEE International 

Conference on Image Processing (ICIP), 477-480, 2009. 

[54] D. Menon, and G. Calvagno. Color image demosaicking: An 

overview. Signal Processing: Image Communication, 26(8-9), 

pp.518-533, 2011. 

 [55] D. Paliy, A. Foi, R. Bilcu, and V. Katkovnik. Denoising and 

interpolation of noisy Bayer data with adaptive cross-color 

filters. In Visual Communications and Image Processing (Vol. 

6822, p. 68221K), 2008. 

[56] D. Paliy, A. Foi, . Bilcu, V. Katkovnik, and K. Egiazarian. 

Joint deblurring and demosaicing of Poissonian Bayer-data 

based on local adaptivity. In 2008 16th European Signal 

Processing Conference (pp. 1-5), 2008. 

[57] S. Patil, and A. Rajwade. Poisson Noise Removal for Image 

Demosaicing. In BMVC, 2016. 

[58] Y. Qian, K. Chen, J. Nikkanen, J. K. Kamarainen, and J. 

Matas. Recurrent color constancy. In Proceedings of the IEEE 

International Conference on Computer Vision (pp. 5458-

5466), 2017. 

[59] Y. Romano, M. Elad, and P. Milanfar. The little engine that 

could: Regularization by denoising (RED). SIAM Journal on 

Imaging Sciences, 10(4), pp.1804-1844, 2017.  

[60] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional 

networks for biomedical image segmentation. In International 

Conference on Medical image computing and computer-

assisted intervention (pp. 234-241). Springer, Cham, 2015. 

[61] C. J. Schuler, M. Hirsch, S. Harmeling, and B. Schölkopf. 

Learning to deblur. IEEE transactions on pattern analysis and 

machine intelligence, 38(7), pp.1439-1451, 2016. 

[62] E. Schwartz, R. Giryes, and A. M. Bronstein. DeepISP: 

learning end-to-end image processing pipeline. arXiv preprint 

arXiv:1801.06724, 2018. 

[63] H. R. Shahdoosti, and Z. Rahemi. Edge-preserving image 

denoising using a deep convolutional neural network. Signal 

Processing, 159, pp.20-32, 2019. 

[64] K. Simonyan, and A. Zisserman. Very deep convolutional 

networks for large-scale image recognition. arXiv preprint 

arXiv:1409.1556, 2014. 

[65] C. Y, Su. Highly effective iterative demosaicing using 

weighted-edge and color-difference interpolations. IEEE 

Transactions on Consumer Electronics, 52(2), pp.639-645, 

2006. 

[66] N. S. Syu, Y. S. Chen, and Y. Y. Chuang. Learning deep 

convolutional networks for demosaicing. arXiv preprint 

arXiv:1802.03769, 2018. 

[67] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. 

Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going 

deeper with convolutions. In Proceedings of the IEEE 

conference on computer vision and pattern recognition (pp. 1-

9), 2015. 

[68] H. Tan, X. Zeng, S. Lai, Y. Liu, and M. Zhang. Joint 

demosaicing and denoising of noisy Bayer images with 

ADMM. In 2017 IEEE International Conference on Image 

Processing (ICIP) (pp. 2951-2955), 2017. 

[69] J. Van De Weijer, T. Gevers, and A. Gijsenij. Edge-based color 

constancy. IEEE Transactions on image processing, 16(9), 

pp.2207-2214, 2007. 

[70] L. Zhang, R. Lukac, X. Wu, and D. Zhang. PCA-based 

spatially adaptive denoising of CFA images for single-sensor 

digital cameras. IEEE transactions on image processing, 18(4), 

pp.797-812, 2009. 



 

[71] L. Zhang, X. Wu, A. Buades, and X. Li. Color demosaicking 

by local directional interpolation and nonlocal adaptive 

thresholding. Journal of Electronic imaging, 20, 02-30, 2011. 

[73] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang. Beyond 

a gaussian denoiser: Residual learning of deep cnn for image 

denoising. IEEE Transactions on Image Processing, 26(7), 

pp.3142-3155, 2017. 

[74] H. Zhao, O. Gallo, I. Frosio, and J. Kautz. Loss functions for 

image restoration with neural networks. IEEE Transactions on 

Computational Imaging, 3(1), pp.47-57, 2017. 

[75] R. Zhou, R. Achanta, and S. Süsstrunk. November. Deep 

residual network for joint demosaicing and super-resolution. In 

Color and Imaging Conference (Vol. 2018, No. 1, pp. 75-80). 

Society for Imaging Science and Technology, 2018. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 


