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Abstract

Regularization by denoising (RED) is a powerful frame-

work for solving imaging inverse problems. Most RED al-

gorithms are iterative batch procedures, which limits their

applicability to very large datasets. In this paper, we address

this limitation by introducing a novel online RED (On-RED)

algorithm, which processes a small subset of the data at a

time. We establish the theoretical convergence of On-RED

in convex settings and empirically discuss its effectiveness

in non-convex ones by illustrating its applicability to phase

retrieval. Our results suggest that On-RED is an effective

alternative to the traditional RED algorithms when dealing

with large datasets.1

1. Introduction

The recovery of an unknown image x ∈ R
n from a set of

noisy measurement is crucial in many applications, including

computational microscopy [44], astronomical imaging [38],

and phase retrieval [11]. The problem is usually formulated

as a regularized optimization

x̂ = argmin
x∈RN

{f(x)} with f(x) = g(x) + h(x), (1)

where g is the data-fidelity term that ensures the consistency

with the measurements, and h is the regularizer that imposes

the prior knowledge on the unknown image. Popular meth-

ods for solving such optimization problems include the fam-

ily of proximal methods, such as proximal gradient method

(PGM) [3, 4, 14, 19] and alternating direction method of mul-

tipliers (ADMM) [1, 7, 16, 30], due to their compatibility

with non-differentiable regularizers [17, 18, 35].

Recent work has demonstrated the benefit of using de-

noisers as priors for solving imaging inverse problems

[8, 12, 23, 26, 27, 37, 40, 41, 43, 49]. One popular frame-

work, known as plug-and-play priors (PnP) [46], extends
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Figure 1. Conceptual illustration of online regularization by denois-

ing (On-RED). The proposed algorithm uses a random subset of

noisy measurements at every iteration to reconstruct a high-quality

image using a convolutional neural network (CNN) denoser.

traditional proximal methods by replacing the proximal op-

erator with a general denoising function. This grants PnP a

remarkable flexibility in choosing image priors, but also com-

plicates its analysis due to the lack of an explicit objective

function.

An alternative strategy for leveraging denoisers is the

regularization by denoising (RED) framework [34], which

formulates an explicit regularizer h for certain classes of de-

noisers [33, 34]. Recent work has shown the effectiveness of

RED under sophisticated denoisers for many different image

reconstruction tasks [27, 33, 34, 39]. For example, Metzler

et al. [27] demonstrated the state-of-the-art performance of

RED for phase retrieval by using the DnCNN denoiser [48].

Typical PnP and RED algorithms are iterative batch pro-

cedures, which means that they processes the entire set of

measurements at every iteration. This type of batch process-

ing of data is known to be inefficient when dealing with large

datasets [6, 24]. Recently, an online variant of PnP [40] has

been proposed to address this problem, yet such an algorithm

is still missing for the RED framework.

In order to address this gap, we propose an online ex-

tension of RED, called online regularization by denoising

(On-RED). Unlike its batch counterparts, On-RED adopts

online processing of data by using only a random subset

of measurements at a time (see Figure 1 for a conceptual



illustration). This empowers the proposed method to effec-

tively scale to datasets that are too large for batch processing.

Moreover, On-RED can fully leverage the flexibility offered

by deep learning by using convolutional neural network

(CNN) denoisers.

The key contributions of this paper are as follows:

• We propose a novel On-RED algorithm for online pro-

cessing of measurements. We provide the theoretical

convergence analysis of the algorithm under several

transparent assumptions. In particular, given a convex g
and nonexpansive denoiser, which does not necessarily

correspond to any explicit h, our analysis shows that

On-RED converges to a fixed point at the worst-case

rate of O(1/
√
t).

• We validate the effectiveness of On-RED for phase

retrieval from Coded Diffraction Patterns (CDP) [11]

under a CNN denoiser. Numerical results demonstrate

the empirical fixed-point convergence of On-RED in

this non-convex setting and show its potential for pro-

cessing large datasets under nonconvex g.

2. Background

In this section, we first review the problem of regularized

image reconstruction and then introduce some related work.

2.1. Inverse Problems in Imaging

Consider the inverse problem of recovering x ∈ R
n from

measurements y ∈ R
m specified by the linear system

y = Hx+ e, (2)

where the measurement matrix H ∈ R
m×n characterizes

the response of the system, and e is usually assumed to be

additive white Gaussian noise (AWGN). When the inverse

problem is nonlinear, the measurement operator can be gen-

eralized to a mapping H : Rn → R
m. A common example

is the problem of phase retrieval (PR), which corresponds

the following nonlinear system

y = H(x) + e, with H(x) = |Ax| (3)

where | · | denotes an element-wise absolute value, and

A ∈ C
m×n is the measurement matrix.

Due to the ill-posedness, inverse problems are often for-

mulated as (1). A widely-used data-fidelity term is the least-

square loss

g(x) =
1

2
‖y −H(x)‖22, (4)

which penalizes the mismatch to the measurements in terms

of ℓ2-norm. In particular, for the PR problem, the data-

fidelity becomes 1
2‖y − |Ax|‖22, which is known to be non-

convex. Two common choices for the regularizer include

the sparsity-enhancing ℓ1 penalty h(x) = τ‖x‖1 and the

total variation (TV) penalty h(x) = τ‖Dx‖1, where τ > 0
controls the strength of regularization and D denotes the

discrete gradient operator [10, 15, 22, 35, 45].

Two popular methods for solving (1) are PGM and

ADMM. They circumvent the differentiation of non-smooth

regularizers by using a mathematical concept called proximal

map [29]

proxτh(z) := argmin
x∈Rn

{
1

2
‖x− z‖22 + τh(x)

}
. (5)

A close inspection of (5) reveals that the proximal map actu-

ally corresponds to an image denoiser based on regularized

optimization. This mathematical equivalence led to the de-

velopment of PnP and RED.

2.2. Plug-and-play algorithms

Consider the ADMM iteration

zk ← proxτg(x
k−1 − sk−1)

xk ← proxτh(z
k + sk−1) (6)

sk ← sk−1 + (zk − xk),

where k ≥ 1 denotes the iteration number. In (6), the regu-

larization is imposed by proxτh : Rn → R
n, which denotes

the proximal map of h.

Inspired by the equivalence that the proximal map is a

denoiser, Venkatakrishnan et al. [46] introduced the PnP

framework based on ADMM by replacing proxτh in (6) with

a general denoising function Dσ : Rn → R
n

xk ← Dσ(z
k + sk−1)

where σ > 0 controls the strength of denoising. This

simple replacement enables PnP to regularize the prob-

lem by using advanced denoisers, such as BM3D [13] and

DnCNN. Numerical experiments show that PnP achieves

the state-of-the-art performance in many applications. Sim-

ilar PnP algorithms have been developed using PGM [23],

primal-dual splitting [31], and approximate message passing

(AMP) [20, 28].

Considerable effort has been made to understand the the-

oretical convergence of the PnP algorithms [9, 12, 26, 36, 37,

40, 42]. Recently, Sun et al. [40] proposed an online PnP

algorithm based on PGM, named PnP-SPGM, and analyzed

its fixed-point convergence using the monotone operator

theory [2]. This paper extends their results to the RED

framework by introducing a new algorithm and analyzing its

theoretical convergence.

2.3. Regularization by Denoising

The RED framework, proposed by Romano et al. [34],

is an alternative way to leverage image denoisers. RED has



Algorithm 1 GM-RED

1: input: x0 ∈ R
n, τ > 0, and σ > 0

2: for k = 1, 2, . . . do

3: ∇g(xk−1) ← fullGradient(xk−1)
4: G(xk−1) ← ∇g(xk−1) + τ(xk−1 − Dσ(x

k−1))
5: xk ← xk−1 − γG(xk−1)
6: end for

Algorithm 2 On-RED

1: input: x0 ∈ R
n, τ > 0, σ > 0, and B ≥ 1

2: for k = 1, 2, . . . do

3: ∇̂g(xk−1) ← minibatchGradient(xk−1, B)

4: Ĝ(xk−1) ← ∇̂g(xk−1) + τ(xk−1 − Dσ(x
k−1))

5: xk ← xk−1 − γĜ(xk−1)
6: end for

been shown successful in many regularized reconstruction

tasks, including image deblurring [34], super-resolution [25],

and phase retrieval [27]. The framework aims to find a fixed

point x∗ that satisfies

G(x∗) = ∇g(x∗) + τ(x∗ − Dσ(x
∗)) = 0, (7)

where τ > 0 and ∇g denotes the gradient of g. Equivalently,

x∗ lies in the zero set of G : Rn → R
n

x∗ ∈ zer(G) := {x ∈ R
n | G(x) = 0}. (8)

Romano et al. discussed several RED algorithms for finding

such x∗. One popular algorithm is the gradient descent

(summarized in Algorithm 1)

xk ← xk−1 − γ(∇g(xk−1) + H(xk−1))

with H(x) := τ(x− Dσ(x)), (9)

where γ > 0 is the step-size. They have justified H(·) as a

gradient of some explicit function under some conditions. In

particular, when denoiser Dσ is locally homogeneous and

has a symmetric Jacobian [33, 34], H corresponds to the

gradient of the following regularizer

h(x) =
τ

2
xT(x− Dσ(x)). (10)

By having a closed-form objective function, one can use the

classical optimization theory to analyze the convergence of

RED algorithms [34]. On the other hand, fixed-point conver-

gence has also been established without having an explicit

objective function [33, 39]. Reehorst et al. [33] have shown

that RED proximal gradient methods (RED-PG) converge to

a fixed point by utilizing the montone operator theory. Sun et

al. [39] have established the worst-case convergence for the

block coordinate variant of RED algorithm (BC-RED) under

a nonexpansive Dσ . In this paper, we extend the analysis of

BC-RED in [39] to the randomized processing of measure-

ments instead of image blocks, which opens up applications

requiring the processing of a large number of measurements.

3. Online Regularization by Denoising

We now introduce the proposed online RED (On-RED),

which processes the measurements in an online fashion. The

online processing of measurements is especially beneficial

for problems with the following data-fidelity

g(x) = E[gi(x)] =
1

I

I∑

i=1

gi(x), (11)

which is composed of I component functions gi(x), each

evaluated only on the subset yi of the measurements y. The

computation of the gradient

∇g(x) = E[∇gi(x)] =
1

I

I∑

i=1

∇gi(x), (12)

is proportional to the total number I . Note that the expecta-

tion in (11) and (12) is taken over a uniformly distributed ran-

dom variable i ∈ {1, . . . , I}. Large I effectively precludes

the usage of batch GM-RED algorithms because of large

memory requirements or impractical computation times. The

key idea of On-RED is to approximate the gradient at every

iteration by averaging B ≪ I component gradients

∇̂g(x) =
1

B

B∑

b=1

∇gib(x), (13)

where i1, . . . , iB are independent random indices that are

distributed uniformly over {1, . . . , I}. The minibatch size

parameter B ≥ 1 controls the number of gradient compo-

nents used at every iteration.

Algorithm 2 summarizes the algorithmic details of On-

RED, where the operation minibatchGradient computes the

averaged gradients with respect to the selected minibatch

components. Note that at each iteration, the minibatch is

randomly sampled from the entire set of measurements. In

the next section, we will present the theoretical convergence

analysis of On-RED.

4. Convergence Analysis under Convexity

A fixed-point convergence of averaged operators is well

known as Krasnosel’skii-Mann theorem [2], which was ap-

plied to the aforementioned analysis of PnP [40] and RED

algorithms [33, 39]. Here, our analysis extends these re-

sults to the online processing of measurements and provides



explicit worst-case convergence rates for On-RED. Note

that our analysis does not assume that H corresponds to any

explicit regularizer h. We first introduce the assumptions

necessary for our analysis and then present the main results.

Assumption 1. We make the following assumptions on the

data-fidelity term g:

(a) The component functions gi are all convex and differen-

tiable with the same Lipschitz constant L > 0.

(b) At every iteration, the gradient estimate is unbiased and

has a bounded variance:

E[∇̂g(x)] = ∇g(x), E[‖∇g(x)− ∇̂g(x)‖22] ≤
ν2

B
,

for some constant ν > 0.

Assumption 1(a) implies that the overall data-fidelity g is

also convex and has Lipschitz continuous gradient with con-

stant L. Assumption 1(b) assumes that the minibatch gradi-

ent is an unbiased estimate of the full gradient. The bounded

variance assumption is a standard assumption used in the

analysis of online and stochastic algorithms [5, 21, 40, 47]

Assumption 2. Let operator G have a nonempty zero set

zer(G) �= ∅. The distance between the the farthest point

in zer(G) and the sequence {xk}k=0,1,··· generated by On-

RED is bounded by constant R0

max
x∗∈zer(G)

‖xk − x∗‖2 ≤ R0, k ≥ 0

This assumption indicates that the iterates of On-RED lie

within a Euclidean ball of a bounded radius from zer(G).

Assumption 3. Given σ > 0, the denoiser Dσ is a nonex-

pansive operator such that

‖Dσ(x)− Dσ(y)‖2 ≤ ‖x− y‖2 x,y ∈ R
n,

Since the proximal operator is nonexpansive [32], it au-

tomatically satisfies this assumption. Nonexpansive CNN

denoisers can also be trained by using spectral normaliza-

tion techniques [39]. Under the above assumptions, we now

establish the convergence theorem for On-RED.

Theorem 1. Run On-RED for t ≥ 1 iterations under As-

sumptions 1-3 using a fixed step-size γ ∈ (0, 1/(L + 2τ)]
and a fixed minibatch size B ≥ 1. Then, we have

E

[
min

k∈{1,...,t}
‖G(xk−1)‖22

]

≤ E

[
1

t

t∑

k=1

‖G(xk−1)‖22

]

≤ (L+ 2τ)

γ

[
ν2γ2

B
+

2γν√
B
R0 +

R2
0

t

]
.

Proof. See Section 7.

When t goes to infinity, this theorem shows that the accuracy

of the expected convergence of On-RED to an element of

zer(G) improves with smaller γ and larger B. For example,

we can have the convergence rate of O(1/
√
t) by setting

γ = 1/(L+ 2τ) and B = t

E

[
1

t

t∑

k=1

‖G(xk−1)‖22

]
≤ C√

t
,

where C > 0 is a constant and we use the bound 1
t
≤ 1√

t

that is valid for t ≥ 1.

5. Numerical Simulation for Phase Retrieval

In this section, we test the performance of On-RED on a

nonconvex phase retrieval problem from coded diffraction

patterns (CDP). The state-of-the-art performance of RED

for this problem was shown by Metzler et al. [27]. Here,

we investigate the convergence of On-RED and show its

effectiveness for reducing the per-iteration complexity of the

traditional batch GM-RED. Our results show the potential

of On-RED to scale to a large member of measurements

under powerful denoisers that do not correspond to explicit

regularizers.

5.1. Experiment Setup

In CDP, the object x ∈ R
n is illuminated by a coherent

light source. A random known phase mask modulates the

light and the modulation code is denoted as Mi for the ith
measurement. In this work, each entry of Mi is drawn

uniformly from the unit circle in the complex plane. The

light goes through the far-field Fraunhofer diffraction and a

camera measures its intensity yi ∈ R+. Since Fraunhofer

diffraction can be modeled by 2D Fourier Transform, the ith
data-fidelity term of this phase reconstruction problem can

be formulated as follows:

gi(x) =
1

2
‖yi − |FMix|‖22

where F denotes 2D discrete Fast Fourier Transform (FFT).

The total data-fidelity term for all the measurements then

becomes

g(x) = E[gi(x)] =
1

I

I∑

i=1

gi(x).

Noticeably, this problem is well suited for On-RED because

it has the same formulation as (11).

In the experiments, we reconstruct six 256×256 standard

grayscale natural images, displayed in Figure 2. The simu-

lated measurements are corrupted by AWGN corresponding



Figure 2. Test images used in the experiments. From left to right: Barbara, Boat, Lenna, Monarch, Parrot, Pepper.
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Figure 3. Illustration of the influence of γ and B on the convergence of On-RED for phase retrieval under DnCNN∗. The left plot shows the

convergence results of On-RED for three different step sizes with a fixed minibatch size B = 10 and the right plot shows the results of

On-RED for three different minibatch sizes with a fixed step size γ =
1

L+2τ
. Both experiments draw random samples from a total of I = 40

measurements. The plots validate that smaller γ and larger B improve the convergence accuracy in this nonconvex setting.

to 25 dB of input signal-to-noise ratio (SNR), defined as

follows

SNR(ŷ,y) = 20log10
‖y‖

‖y − ŷ‖
where ŷ represents the noisy vector and y denotes the ground

truth. We also use SNR as a quantitative measure for the

quality of reconstructions.

We used DnCNN∗ as our CNN denoiser for the experi-

ments. The architecture of DnCNN∗ is illustrated in Figure

1 and was adopted from the popular DnCNN. We gener-

ated training examples by adding AWGN to images from

BSD400 and applying standard data augmentation strategy

including flipping, rotating, and rescaling. We used the resid-

ual learning technique where DnCNN∗ predicts the noise

image from the input. The network was trained to minimize

the following loss

Lθ =
1

n

n∑

i=1

{
‖fθ(xi)− yi‖22 + ‖fθ(xi)− yi‖1

}
, (14)

where xi is the noisy input, yi is the noise, and fθ represents

DnCNN∗.

The hyperparameters for experiments in 5.2 and 5.3 are

listed in Table 1. All algorithms start from x0 = 0, where

0 ∈ R
n is all zeros. The value of τ for each image was

optimized for the best SNR performance with respect to

ground truth test images. In this paper, the values of B and

Table 1. List of algorithmic hyperparameters

Hyperparameters 5.2 5.3

x
0 initial point of reconstructions 0 0

σ input noise level for denoisers 5 5
τ level of regularization in RED 0.2 optimized

γ step size 1
L+2τ ·{1, 1

3 ,
1
9} 1

L+2τ

B minibatch size at every iteration {10, 20, 30} 1
I batch size 40 6

Table 2. Convergence accuracy averaged over the test images

Denoiser Step-size (γ) Mini-batch size (B)

1
L+2τ

1
3(L+2τ)

1
9(L+2τ)

10 20 30

TV 8.65e-5 2.36e-5 9.43e-6 8.65e-5 2.81e-5 9.81e-6

BM3D 8.01e-5 1.59e-5 9.10e-6 8.01e-6 2.72e-5 8.93e-6

DnCNN∗ 7.63e-5 1.94e-6 5.03e-6 7.63e-5 2.72e-5 8.88e-6

I are set only to show the potential of On-RED dealing with

large datasets.

5.2. Convergence of On-RED

Theorem 1 implies that the expected accuracy improves

for a smaller step size γ and larger minibatch size B. In

order to numerically evaluate the convergence, we define

and consider the following normalized accuracy

Norm. Acc. := ‖G(xk)‖22/‖G(x0)‖22
where G is defined in (7). As the sequence {xk}k=0,1,... con-

verges to a fixed point in zer(G), the normalized accuracy
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Figure 4. Visual examples of recontructed Barbara, Parrot, and Pepper images by GM-RED (1), On-RED (1), and GM-RED (6) with

BM3D and DnCNN∗ denoisers. The original images are displayed in the first column. The second and the third columns show the results

of batch GM-RED using 1 fixed measurement. The fourth and the fifth columns present the results of On-RED using a single randomly

selected measurement per-iteration out of 6 total measurements. The results of the batch algorithm using all 6 measurements are given in the

last column. Differences are zoomed in using boxes inside the images. Each reconstruction is labeled by its SNR (dB) with respect to the

original image. Note that On-RED (1) recovers the details lost by GM-RED (1) by approaching the performance of GM-RED (6)

decreases to zero.

Figure 3 (left) shows the evolution of the convergence

accuracy for γ ∈ { 1
L+2τ ,

1
3(L+2τ) ,

1
9(L+2τ)} with DnCNN∗.

Here, L denotes the Lipschitz constant defined in Assump-

tion 1 and τ represents the parameter of RED. We observe

that the empirical performance of On-RED using DnCNN∗

is consistent with Theorem 1, as the accuracy improves

with smaller step size. Moreover, Figure 3 (right) numer-

ically evaluates the convergence accuracy of On-RED for

minibatch size B ∈ {10, 20, 30}. This plot shows that the

convergence accuracy improves when minibatch size B be-

comes larger. Therefore, the change of convergence accuracy

with both step size γ and minibatch size B follows the same

trend in Theorem 1 for this nonconvex problem.

We note that the similar trend generalizes to BM3D and

TV denoisers as well. The summary in Table 2 gives the

convergence results of all three denoisers.

5.3. Benefits of On-RED with a CNN Denoiser

In this subsection, we show the performance and effi-

ciency of On-RED in solving CDP. To understand the po-

tential of On-RED to scale to large datasets, we consider

the scenario where the number of illuminations processed at

every iteration is fixed to one.

Table 3 provides the SNR performance of different algo-

rithms. GM-RED (fixed 1) uses 1 fixed measurement and

On-RED (B = 1) uses 1 random measurement out of 6 total

measurements at every iteration, so they have the same per-

iteration computation cost. On-RED outperforms GM-RED

by 4.54 dB and 4.99 dB under BM3D and DnCNN∗, respec-

tively, by actually using all measurements. We also note

that the average SNR of stochastic gradient method (SGM)

(B = 1) is higher than that of GM-RED (fixed 1) for both

denoisers. This implies that the online processing in SGM



Table 3. Optimized SNR for each test image in dB

Algorithms SGM GM-RED On-RED GM-RED

(I = 6) (B = 1) (fixed 1) (B = 1) (fixed 6)

Denoisers — BM3D DnCNN∗ BM3D DnCNN∗ DnCNN∗

Barbara 27.37 26.04 26.15 30.95 31.50 32.59

Boat 27.68 26.90 27.53 31.65 32.61 33.17

Lenna 27.65 26.55 27.58 31.47 32.54 33.20

Monarch 27.51 24.76 26.34 29.66 31.31 32.63

Parrot 27.20 27.98 28.07 31.61 32.10 33.48

Pepper 27.08 26.14 25.85 30.29 31.39 32.58

Average 27.42 26.40 26.92 30.94 31.91 32.94

boosts the SNR more than the regularization of GM-RED.

By combining online processing and advanced denoisers,

On-RED largely improves the reconstruction performance,

which is close to that of the batch algorithm GM-RED (6)

using all 6 measurements.

Visual illustrations of Barbara, Parrot, and Pepper are

given in Figure 4. It is clear that the images reconstructed

by On-RED (1) preserve the features lost by GM-RED (1),

such as the stripes in Barbara, the white feather in Parrot,

and the stems in Pepper. Moreover, these features in the

reconstructed images of On-RED (1) have no visual dif-

ference from the results of GM-RED (6), as illustrated by

column 4, 5, and 6. This indicates that the online algorithm

approaches the image quality of the batch algorithm with a

lower per-iteration complexity.

6. Conclusion

In this paper, we proposed an online algorithm for the

Regularization by Denoising framework. We provided the

theoretical convergence proof under a few transparent as-

sumptions and a detailed analysis in a convex problem set-

ting. We then applied On-RED to a nonconvex phase re-

trieval problem from coded diffraction patterns to show its

convergence. The performance of On-RED with our learn-

ing denoiser DnCNN∗ demonstrated that On-RED is well

compatible with powerful denoisers that do not correspond

to explicit regularizers. Our results showed that On-RED

has the potential to solve data-intensive problems involving

a large number of measurements by reducing per-iteration

computation cost.

7. Proof of Theorem 1

We consider the following two operators

P := I− γG and P̂ := I− γĜ

where P̂ is the online variant of P. The iterates of On-RED

can be expressed as

xk = P̂(xk−1) = xk−1 − γĜ(xk−1), with Ĝ = ∇̂g+H.

Note also the following equivalence

x∗ ∈ zer(G) ⇔ x∗ ∈ fix(P)

Proposition 1. Consider an operater P and its online vari-

ant P̂. If the data-fidelity g(·) satisfies Assumption 1, then

we have

E[P̂(x)] = P(x), E[‖P(x)− P̂(x)‖22] ≤
γ2ν2

B
.

Proof. First, we can show

E[Ĝ(x)] = E[∇̂g(x)] + H(x) = G(x)

and

E[‖G(x)− Ĝ(x)‖22] = E[‖∇g(x)− ∇̂g(x)‖22] ≤
ν2

B

Then, we can prove the desired result

E[P̂(x)] = I− γE[Ĝ(x)] = P(x)

and

E[‖P(x)− P̂(x)‖22] = γ2
E[‖G(x)− Ĝ(x)‖22] ≤

γ2ν2

B

Proposition 2. Let the denoiser Dσ be such that it satisfies

Assumption 3 and ∇g is L-Lipschitz continuous. For any

γ ∈ (0, 1/(L+ 2τ)], the operator P is nonexpansive

‖P(x)− P(y)‖2 ≤ ‖x− y‖2 ∀x,y ∈ R
n

Proof. The proposition is a direct result of the part (c) of

the proof of Theorem 1 (Section A) in the Supplementary

Material of [39] by setting U = UT = I and Gi = G, which

corresponds to the full-gradient RED algorithm of (9).

Now we prove Theorem 1 in the paper. Consider a single

iteration xk = P̂(xk−1), then we can write for any x∗ ∈
zer(G) that

‖xk − x∗‖22 = ‖P̂(xk−1)− P(x∗)‖22
= ‖P̂(xk−1)− P(xk−1) + P(xk−1)− P(x∗)‖22
= ‖P(xk−1)− P(x∗)‖22 + ‖P̂(xk−1)− P(xk−1)‖22

+ 2(P̂(xk−1)− P(xk−1))T(P(xk−1)− P(x∗))

≤ ‖xk−1 − x∗‖22 −
(

γ

L+ 2τ

)
‖G(xk−1)‖22 (15)

+ ‖P̂(xk−1)− P(xk−1)‖22
+ 2‖P̂(xk−1)− P(xk−1)‖2 · ‖P(xk−1)− P(x∗)‖2,

where we use the Cauchy-Schwarz inequality and adapt

the bound (14) in the part (d) of the proof of Theorem 1

(Section A) in the Supplementary Material of [39] by setting



U = UT = I and Gi = G. According to Assumption 2 and

Proposition 2, we have

‖P(xk−1)− P(x∗)‖2 ≤ ‖xk−1 − x∗‖2 ≤ R0. (16)

Additionally, by using Jensen’s inequality, we can have for

all x ∈ R
n that

E

[
‖P(x)− P̂(x)‖2

]
= E

[√
‖P(x)− P̂(x)‖22

]

≤
√
E

[
‖P(x)− P̂(x)‖22

]
≤ γν√

B
. (17)

By rearranging and taking a conditional expectation of (15)

and using these bounds, we can obtain

E
[
‖xk − x∗‖22 − ‖xk−1 − x∗‖22 | xk−1

]

≤ 2γν√
B
R0 +

γ2ν2

B
−
(

γ

L+ 2τ

)
‖G(xk−1)‖22,

which can be reorganized as

‖G(xk−1)‖22 ≤
(
L+ 2τ

γ

)[γ2ν2

B
+

2γν√
B
R0

+ E
[
‖xk−1 − x∗‖22 − ‖xk − x∗‖22 | xk−1

] ]
.

By averaging the inequality over t ≥ 1 iterations, taking the

total expectation, and dropping the last term, we obtain

E

[
1

t

t∑

k=1

‖G(xk−1)‖22

]

≤ L+ 2τ

γ

[
γ2ν2

B
+

2γν√
B
R0 +

R2
0

t

]

where we apply the law of total expectation and Assump-

tion 2. This establishes the Theorem 1.
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