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Abstract

Recent works on no-reference image quality assess-

ment (NR-IQA) have reported good performance for vari-

ous datasets. However, they suffer from significant perfor-

mance drops in cross-dataset evaluations which indicates

poor generalization power. We propose a Siamese archi-

tecture and training procedures for cross-dataset deep NR-

IQA that achieves clearly better performance. Moreover,

we show that the architecture can be further boosted by i)

pre-training with a large aesthetics dataset and ii) adding

low-level quality cues, sharpness, tone and colourfulness,

as additional features.

1. Introduction

Image quality assessment (IQA) methods predict vi-

sual quality of images. Visual quality refers to the mean

opinion score (MOS) averaged over a number of human

subjects. Based on availability of a reference image, the

IQA methods are classified to full-reference IQA (FR-IQA),

reduced-reference IQA (RR-IQA) and no-reference IQA

(NR-IQA). NR-IQA methods are further divided to dis-

tortion specific [43, 23, 5, 32] and general purpose meth-

ods [25, 24, 31, 46, 11, 48, 44, 12, 21, 37]. The most chal-

lenging and general setting is general purpose no-reference

image quality assessment.

In our related work section (Sec. 2) we summarize the

recent general purpose NR-IQA methods and datasets. We

also report results from preliminary experiments with two

recent methods for which the original code is publicly avail-

able. We make an important observation: despite of good

performance in single-dataset experiments, there is a clear

performance drop in the cross-dataset setting.

Motivated by the preliminary findings we propose a

Siamese NR-IQA architecture (Fig. 1) and training proce-

dures to improve performace in the cross-dataset setting.

We experiment with two popular networks, VGGNet [35]

and ILGNet [10], as the core network inside the Siamese

structure. VGGNet is a patch-based and ILGNet is an

Figure 1. The proposed Siamese architecture for generic (cross-

dataset) no-reference image quality assessment. The two different

core networks compared in the experiments are the image-based

ILGNet (top) and the patch-based VGGNet (bottom).

image-based network. We also propose to add a pair-wise

ranking loss [21, 14] to the standard Euclidean loss func-

tion. Moreover, we show that pre-training with aesthetics

dataset and adding low level quality cues improves the per-

formance. The proposed architecture achieves state-of-the-

art cross-dataset accuracy on the challenging CID2013.

2. Background

We first provide a short survey to the recent works on

no-reference imaqe quality assessment with particular em-

phasis on deep approaches. Then, we report results for

two publicly available methods and multiple datasets in the

cross-dataset setting.

2.1. Related work

NSS-based NR-IQA methods define the problem as a clas-

sification or a regression problem for features that repre-

sent natural scene statistics (NSS) or statistics learned from

data [45]. NSS-based methods assume that there are statis-



Table 1. Summary of the recent related works on no-reference image quality assessment (SVR: Support Vector Regression; CNN: Convo-

lutional Neural Network; Cross: Cross-dataset evaluation reported). Since LIVE IQA was used in all works, we also added their reported

Pearson’s linear correlation coefficient (PLCC) values.

Method Year Feature Regressor LIVE IQA [33] TID2008 [28] CSIQ [17] TID2013 [27] CID2013 [39] LIVE WIQCD [6] Cross

→NSS based methods

DIIVINE [25] 2011 Wavelet coef. stats. SVR �(0.92)

BLIINDS-II [31] 2012 DCT coef. stats. SVR �(0.93)

BRISQUE [24] 2012 Spatial norm. image stats. SVR �(0.94) � �

CORNIA [46] 2012 Norm. image patches and pooling SVR �(0.94) � �

SOM [48] 2015 Same as CORNIA SVR �(0.96) � �

→CNN based methods

CNN [11] 2014 Norm. image patches CNN �(0.95) � �

CNN-NR-d [20] 2016 Deep feats. on sub-images CNN �(0.97) �

BIECON [12] 2017 Deep feats. CNN �(0.96) � �

RankIQA [21] 2017 Deep feats. (special training) CNN �(0.98) �

CNN+suml [2] 2017 Deep feats. on patches CNN �(0.97) �

deepIQA [4] 2018 Deep feats. on patches CNN �(0.98) � � �

deepBIQ [3] 2018 Deep feats. SVR �(0.98) � � � �

tical properties (features) in natural images which are mod-

ified by distortions. Moorthy and Bovik [25] proposed a

NSS-based framework, Distortion Identification-based Im-

age Verity and INtegrity Evaluation (DIIVINE), where a

large set of features are extracted from steerable pyramid

wavelet transform coefficients. DIIVINE adopts two stages:

at first, a support vector machine (SVM) classifier is em-

ployed to identify the distortion type and then a distortion-

specific regressor is used to assess image quality. The obvi-

ous limitation of this approach is that it does not generalize

well to distortion types beyond the ones in the training data

or mixed distortions. Saad et al. [31] introduced another

efficient model, BLind Image Integrity Notator, using DCT

statistics (BLIINDS-II), which uses a probabilistic graph-

ical model to directly map a small number of statistical

features to a scalar quality without considering distortion

types separately. A generalized Gaussian density function

models block DCT coefficients of images and quality is pre-

dicted based on the parameters of the model. Another well-

performing method was proposed by Mittal et al. [24] who

proposed Blind/Referenceless Image Spatial Quality Eval-

uator (BRISQUE) which adopts an asymmetric generalized

Gaussian distribution model of local normalized images in

the spatial domain. The modeled image features are differ-

ences of spatially neighbored, mean subtracted and contrast

normalized samples. A support vector machine regressor

(SVR) is used to map from feature space to quality scores.

To avoid the limitations of handcrafted features, several

methods that learn features from training data have been

proposed [38, 18, 45]. These methods rely on a large num-

ber of training features that are not easy to interpret. Ye and

Doermann [45] first introduced a codebook-based frame-

work. The codebook is constructed from Gabor features

extracted from patches in training images. Image qual-

ity is calculated by codeword histograms similar to the vi-

sual Bag-of-Words (BoW). The method suffers from a large

codebook. CORNIA [46] extends the codebook method

with unsupervised feature learning where the codebook is

constructed by k-means clustering of normalized image

patches. Features of a given image are extracted by max

and min pooling of soft-encoded distances between normal-

ized image patches and the codewords and the quality score

computed by regression. SOM [46] is refined from COR-

NIA by adopting semantic obviousness of objects. Object-

like regions are first detected and patches of detected re-

gions are fed into CORNIA.

CNN-based NR-IQA methods have recently attracted sig-

nificant attention since convolutional neural network (CNN)

based architectures represent state-of-the-art in many com-

puter vision and image processing applications [30, 7, 22].

CNN based methods have recently reached state-of-the-art

performance also in NR-IQA [13].

Kang et al. [11] proposed a shallow CNN model of only

5 layers. Input images are subdivided into small patches

and each patch is assigned the same subjective quality score

during training. Division to multiple patches is used as the

data augmentation method in many deep learning frame-

works. Kim and Lee [12] designed a deep CNN framework,

BIECON, which contains two steps: local image patches

are regressed againts full-reference IQA metrics (Step-1),

and then pooling of the local CNN scores is used to map the

first step scores to subjective scores (Step-2). Bosse et al.

[4] modified VGGNet [35] to learn a local weight for each

image patch to measure the importance of its local qual-

ity and weighted average patch aggregation is adopted as

the pooling method. Liang et al. [20] introduced a novel

Dual-path deep Convolutional Neural Network (DCNN) for

the both full-reference and no-reference IQA. In the train-

ing stage, distorted image and its relevant reference image

go through weight-sharing paths so that the same kind of

features are extracted. Then features from the both paths

are concatenated into a feature vector and fed into regres-

sion step to predict quality score. By selecting only one of

the two paths the same trained DCNN can be used for no-

reference IQA. Inspired by the deep residual networks [9],

Bare et al. [2] added two sum layers to a 9-layer CNN

framework for no-reference IQA in order to achieve bet-



ter stability and performance. Liu et al. [21] proposed

RankIQA approach to address the problem of limited IQA

database size. Using an arbitrary set of images, a ranking

dataset is generated by applying different levels of distor-

tions for each image. The ranking dataset is used to train a

Siamese network where only ranking information of input

images is needed. Finally the core CNN from the trained

Siamese network is extracted and is fine-tuned with NR-

IQA data.

2.2. Cross-dataset performance

The original codes for two of the well-performing

methods in the above section, BRISQUE [24] (NSS-

based) and BIECON [12] (CNN-based), are publicly avail-

able and in the following we report their performance

in the cross-dataset setting. For the experiments we se-

lected the most popular IQA datasets in literature: LIVE

IQA [33], CSIQ [17], TID2013 [27], CID2013 [39] and

LIVE WIQCD [6]. LIVE IQA, CSIQ and TID2013 are

generated datasets where the original undistorted images

are available and therefore also full-reference IQA methods

can be evaluated. On the other hand, LIVE WIQCD and

CID2013 are general purpose no-reference IQA datasets

where all quality distortions yield from cameras and their

settings. The results are reported for the two standard per-

formance indicators: Spearman Rank Order Correlation

Coefficient (SROCC) and Pearson Linear Correlation Co-

efficient (PLCC), but for compactness we include only the

PLCC values (SROCC provides the same interpretations).

More details about the datasets, settings and performance

indicators are in Section 4.1.

Results from the cross-dataset experiments are shown in

Table 2 for one-vs-one comparison and in Table 3 for leave-

one-dataset-out comparison.

Table 2. PLCC performance for BRISQUE and BIECON. The

shaded diagonal values represent the single-dataset results and the

non-diagonal values are one-on-one cross-dataset results.

BRISQUE Testing

LIVE IQA CSIQ TID2013 CID2013 LIVE WIQCD

T
ra

in
in

g

LIVE IQA 0.937 0.689 0.494 0.603 0.382

CSIQ 0.889 0.787 0.528 0.588 0.340

TID2013 0.798 0.692 0.624 0.501 0.381

CID2013 0.671 0.432 0.400 0.777 0.391

LIVE WIQCD 0.503 0.382 0.383 0.597 0.594

BIECON

T
ra

in
in

g

LIVE IQA 0.964 0.744 0.506 0.492 0.437

CSIQ 0.761 0.790 0.482 0.602 0.440

TID2013 0.859 0.660 0.602 0.616 0.361

CID2013 0.281 0.514 0.222 0.801 0.467

LIVE WIQCD 0.129 0.496 0.353 0.666 0.537

As the main experimental finding there are substan-

tial performance drops for both BRISQUE and BIECON

when moving from the single-dataset to cross-dataset eval-

uation. Poor performance on many combinations indi-

Table 3. PLCC performance from the leave-one-dataset-out cross-

dataset experiment.

LIVE IQA CSIQ TID2013 CID2013 LIVE WIQCD

BRISQUE 0.825 0.737 0.533 0.579 0.404

BIECON 0.735 0.725 0.421 0.570 0.460

Best one-vs-one 0.889 0.744 0.528 0.666 0.467

cate severe overfitting to training data and poor generaliza-

tion. The performance is moderate (≈ 0.8) between the

datasets that share similar distortions (LIVE IQA ← CSIQ

and TID2013). The two clearly most difficult datasets are

CID2013 and LIVE WIQCD that both represent general –

“in the wild” – image quality without artificially generated

distortions. TID2013 is clearly the most difficult of the three

distortion-specific datasets.

3. Methodology

The main component of the proposed architecture is the

“core CNN” which is replicated for training in Siamese

style with shared weights (Figure 1). The core network is

trained using a combination of the Euclidean loss for the

MOS scores and a ranking loss for pair-wise comparison.

Pair-wise training helps to exploit limited training data more

effectively. While RankIQA [21] uses pair-wise training

with synthetic data, the proposed network is trained with the

original training images. We experiment two popular net-

works as the core networks: VGGNet [35] which was orig-

inally proposed for image classification and ILGNet [10]

which was proposed for image aesthetics prediction. The

main difference of these networks is that VGGNet is deeper

and requires patch-based training (sub-windows) while IL-

GNet is trained using full image region.

3.1. Loss function

Using the Euclidean loss for MOS score is straightfor-

ward, but requires a large number of training examples

which are laborious to obtain for image quality assessment.

For this reason, we add a ranking loss term [14]:

lossrank =
1

2N

∑

i,j

max(0, α− δ(yi � yj)(yi− yj)) (1)

where

δ(yi � yj)

{

1 if yi � yj
−1 if yi < yj

(2)

and α is a specific margin parameter. The ranking loss al-

lows to train the core networks with image pairs where the

target is to rank which of the two images has better qual-

ity. Pair-wise data augmentation augments the number of

training samples from N images to
(

N
2

)

image pairs. In

the experiments, only image pairs capturing the same scene

were mixed.



3.2. ILGNet

The first “core network” experimented in our Deep NR-

IQA model is the ILGNet network that recently achieved

state-of-the-art performance in image aesthetics classifica-

tion [10]. ILGNet is built by stacking the Inception Mod-

ules introduced by Szegedy et al. [36]. The main change in

our case is that that classification layer is replaced with a

regression layer to output the MOS score. One of the rea-

sons to select ILGNet for our work is that we also pre-train

our model with the AVA [26] large scale image aesthetic

dataset. Moreover, we use ILGNet inside the Siamese ar-

chitecture which is trained with the two loss functions. For

pair-wise training we use two images from the same scene

but captured using two different cameras (Figure 1).

3.3. VGGNet

The second core network tested in the proposed model is

VGGNet [35] that was originally proposed for image clas-

sification, but has been used as a pre-trained network for

other vision tasks such as color constancy [29] and seman-

tic segmentation [34]. VGGNet is a deeper and more opti-

mized version of the AlexNet [16]. To train the architecture

with the VGGNet core network the training procedure of

BIECON [12] was adopted. Each training image was ran-

domly divided into patches of the same size and each patch

was assigned the same quality score as the training image.

For test images the patch scores are averaged.

3.4. Quality Attributes

In image aesthetics assessment [1, 42] the target is to

estimate multiple image aesthetics attributes. Inspired by

these works and the finding that certain low level cues

performed well in the CID2013 cross-dataset experiments

in [39] a number of low-level quality metrics were selected

as image quality attributes:

• Sharpness - Sharpness has been found as an impor-

tant cue for image quality and there are many pro-

posed sharpness measures: S3 [40], FISH [41] and

RISE [19]. For our experiments the spectral and spatial

sharpness S3 was selected.

• Tone - Tone is another important cue for image quality

and denotes the global lightness difference over entire

image. The works on perceptual lightness indicate that

the extreme values are more important than the mean

luminance [15]. Therefore, we compute the 95th per-

centile and 5th percentile according to [1]. The top

and bottom quantiles provide the two extrema, but are

robust to a small number of isolated pixels with noisy

values.

• Colourfulness - The third important cue that is also

present in user studies is colourfulness [8] measured

by the standard deviation and mean of the opponent

color channels yellow-blue and red-green.

Computation of the above quality attributes does not re-

quire a reference image and therefore they could be used

as additional features for CNN learning. However, we use

them as extra outputs and train the core network as a multi-

variate regressor (Figure 2). The main benefit of this ap-

proach is that the low level cues act as regularization terms

that enforce the core network to learn features that con-

tribute to the both low level quality attributes and high level

overall quality. Similar connections between visual tasks

have been resently reported in Zamir et al. [47].

Figure 2. Example of the three quality attributes added to the core

network (ILGNet) training stage. In addition to the MOS score

the network also learns features that are relevant for the low level

image quality cues. Euclidean loss is used for all outputs and in

the ablation study the optimal weights for the MOS vs. attributes

are experimentally investigated.

4. Experiments

In the experiments, the main focus is on “quality in the

wild” in which quality distortions are not artificially gen-

erated but yield from the real capturing process. Results

are reported only for the cross-dataset setting where train-

ing and test images are from different datasets. The results

indicate generalization power of different methods since

the contents and camera hardware are different. For single

dataset numbers see Section 2.2.

4.1. Datasets and Settings

Datasets The two most recent image quality assessment

benchmarks were selected (Figure 3):

• CID2013 [39]: CID2013 Camera Image Database con-

sists of 480 images captured by 79 imaging devices

of 8 scenes that represent typical contents taken by

consumers. Quality difference yield from different

camera-specific factors such as sensor types, optics

and image signal processing pipelines. Subjective

evaluation was conducted by 188 observers and Mean

Opinion Scores (MOS) for each image are provided.

• LIVE WIQCD [6]: LIVE In the Wild Image Quality

Challenge Database contains 1,162 authentic images

captured with different and unknown mobile phone

cameras. Those images are evaluated by over 350,000

crow-sourced observers and MOS values are provided.



We also collected our own dataset:

• HUAWEI: HUAWEI dataset contains 884 images

taken by 4 high-end smartphone cameras and 32 con-

tent types (portrait, landscape, and different macro se-

tups). MOS scores are generated from pair-wise com-

parisons where human subjects have ranked each im-

age pair (winner gets 1 and loser gets 0). MOS val-

ues are computed from these preference scores and are

consistent at least over each content type. HUAWEI

dataset is similar to CID2013, but the cameras rep-

resent high-end smart phones and it contains more

scenes.

In order to experimentally validate whether image aes-

thetic contributes to image quality, we selected the follow-

ing large-scale aesthetics dataset to be used in cross-domain

training (Figure 3):

• AVA [26]: The Aesthetic Visual Analysis (AVA)

dataset contains ∼ 250k images collected from the

Web and aesthetics of each image is voted by 78-549
crowd-sourced users with the scale from 1 to 10. The

average scores are provided as the ground-truth aes-

thetic score for each image.

Performance Metrics Two standard performance met-

rics are used to report the results from the experiments:

Spearman Rank Order Correlation Coefficient (SROCC)

and Pearson Linear Correlation Coefficient (PLCC).

PLCC - Linear Correlation - is the standard measure for

regression where +1 denotes perfect positive correlation

and −1 perfect negative correlation. Values near zero de-

note poor correlation. In image quality assessment PLCC

is used to measure the linear correlation between the true

subjective and method predicted scores:

PLCC =

∑n

i=1
(si − s)(qi − q)

√

∑n

i=1
(si − s)2

√

∑n

i=1
(qi − q)2

(3)

where si is the ground truth subjective score (MOS/DMOS)

and qi is the predicted score for the i-th image. s and q

are the mean values computed over the ground truth and

predicted scores, respectively.

The PLCC measure is suitable for scores with monotonic

linear relationship, i.e. for the cases where the linear re-

gression also performs well. However, this is not always

the case in image quality assessment and therefore SROCC

performance metric is used in parallel with PLCC. SROCC

is also suitable for the cases of monotonic but non-linear

relationship since it uses rank-order statistics. SROCC is

defined as:

SROCC =
1− 6

∑n

i=1
d2i

n(n2 − 1)
(4)

Figure 3. Examples from the three image quality and one aesthet-

ics datasets used in the experiments.

where di is the rank-order difference between the i-th image

indeces in the sorted lists of the subjective ground truth and

predicted scores. SROCC values are interpreted similar to

PLCC values.

4.2. One-on-one cross-dataset results

The purpose of the first experiment is to study the ef-

fect of the core network (VGGNet vs. ILGNet) and training

data (AVA vs. LIVE WIQCD vs. CID2013 vs. HUAWEI)

to the model performance. As a side study also the effect of

pair-wise vs. direct training was tested. Note that the main

difference between the two core networks is that the VG-

GNet based NR-IQA model was trained patch-wise (details

in Section 3.3) and the ILGNet based model image-wise

(Section 3.2). The results are shown in Table 4.

The main findings from the first experiment are:



Table 4. Cross-dataset performance for the CID2013 and LIVE

WIQCD test datasets using various (single) datasets for train-

ing and using two different CNNs, VGGNet and ILGNet, as the

core networks in the proposed deep NR-IQA model. With the

HUAWEI dataset training was conducted both direct and pair-wise

training.

Core CNN w/ Tr. Data CID2013 LIVE WIQCD

pair-wise SRCC PLCC SRCC PLCC

VGGNet w/ AVA 0.483 0.558 0.193 0.186

VGGNet w/ LIVE WIQCD 0.642 0.684 - -

VGGNet w/ CID2013 - - 0.366 0.360

VGGNet w/ HUAWEI 0.392 0.486 0.095 0.075

VGGNet w/ HUAWEI � 0.462 0.515 0.225 0.206

ILGNet w/ AVA 0.575 0.647 0.363 0.348

ILGNet w/ LIVE WIQCD 0.412 0.477 - -

ILGNet w/ CID2013 - - 0.329 0.315

ILGNet w/ HUAWEI 0.506 0.545 0.348 0.335

ILGNet w/ HUAWEI � 0.507 0.604 0.333 0.320

• Image aesthetics is closely connected to image qual-

ity as the models trained with only the AVA aesthetics

dataset and using the aesthetic scores directly as qual-

ity scores (MOS) performed moderately well with the

both VGGNet and ILGNet based models. Rather strik-

ingly, ILGNet model achieved better performance with

AVA training data (PLCC 0.647), than with any of the

image quality datasets.

• The selected core network has significant effect to the

performance and the best results for the both tested

datasets strongly depends on the combination of the

core network and training data. This clearly indicates

that either the datasets or the core networks or both

have complementary properties. The best combina-

tion for CID2013 is VGGNet w/ LIVE WIQCD and

for LIVE WIQCD VGGNet w/ CID2013.

• With VGGNet pair-wise training has clear positive ef-

fect and with ILGNet there is no strong effect.

• The best results for CID2013 are moderate (PLCC

0.684) and for LIVE WIQCD poor (0.360) indicating

that the LIVE WIQCD dataset is very challenging.

4.3. Many-vs-one cross-dataset results

Table 5. CID2013 performance using multiple training datasets

(pre-training and fine-tuning) and an attribute layer.

Core CNN w/ pre + fine CID2013

pair-wise attributes SRCC PLCC

VGGNet w/ LIVE WIQCD 0.642 0.684

VGGNet w/ LIVE WIQCD � 0.519 0.610

VGGNet w/ AVA + LIVE WIQCD 0.561 0.632

VGGNet w/ HUAWEI + LIVE WIQCD � 0.501 0.584

VGGNet w/ LIVE WIQCD + HUAWEI � 0.509 0.561

ILGNet w/ AVA 0.575 0.647

ILGNet w/ AVA + HUAWEI � 0.606 0.672

ILGNet w/ AVA + HUAWEI � � 0.666 0.710

In this experiment, the complementary properties of

datasets and networks are further investigated, and multiple

training datasets are used. The experiments are conducted

only for CID2013 since the LIVE WIQCD results are al-

ways far from sufficient (PLCC ≥ 0.8 is needed for practical

applications). Moreover, we investigate the effect of adding

semantic attributes available during training (Section 3.4).

For all possible combinations, we carefully tune the train-

ing parameters via cross-validation and the best performing

combinations are presented in Table 5.

The starting point for these experiments is to take the

best combination from Table 4 and fine-tune it further with

additional data and attributes. The main findings from the

second experiment are:

• The model using VGGNet core network cannot expoit

additional value of more data or attributes or pair-wise

training but the performance actually degrades in all

cases as compared to the initial setup of training only

with the LIVE WIQCD dataset.

• Interestingly, different to VGGNet the ILGNet core

network benefits from all additional data - fine-tuning

with HUAWEI data, pair-wise training and adding the

attributes to the network. The best PLCC performance

is 0.710 which outperforms VGGNet and is the best

reported result for the CID2013 dataset in the cross-

dataset setting to the authors’ best knowledge.

4.4. Ablation study
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Figure 4. Ablation study of the effect of each component in the

proposed model.

The best result in the previous experiment was achieved

with the following settings: 1) ILGNet, 2) combining

the Euclidean loss and the pair-wise ranking loss, 3) pre-

training with AVA, 4) using additional loss terms for the

low-level quality attributes. The effect of the each design

choice is shown in the ablation study graph in Figure 4.

We want to further study the optimal balance between

the MOS error and the attribute error term. The results are

shown in Table 6. Weighting the MOS error twice more

than the attribute estimation provides the best performance.



Table 6. Ablation study of the balance between the Euclidean loss

(λMOS) and attribute estimation loss (λattr). The best results

were achieved at 2/1 where the MOS error is given twice more

weight.

weights settings CID2013

λMOS /λattr SRCC PLCC

1/1 0.616 0.678

2/1 0.666 0.710

3/1 0.632 0.686

4.5. More detailed analysis on CID2013

The original authors of CID2013 provide labels for each

image that represent a “sub-clusters” of similar content.

According to the original paper, the sub-cluster accuracies

were also computed and are shown in Table 7 for the best

combinations in the previous experiment (only the PLCC

numbers are included for compactness). Both VGGNet

and ILGNet based models work well for certain type of

images (Cluster-1: portraits in dim light and Cluster-3:

small groups of people in dim light) and fail for another

type (Cluster-5: small groups in sunny/cloudy outdoor and

Cluster-7: zoomed groups in outdoors) (see Figure 5 for ex-

amples of these clusters).

5. Conclusion

We investigated general purpose no-reference image

quality assessment in the challenging cross-dataset evalu-

ation setting. The results for the two most popular datasets,

LIVE IQA and CSIQ, are already saturing as their sin-

gle dataset performance are very good and even the cross-

dataset results are moderately good (assuming suitable

training data): best PLCC 0.889 for LIVE IQA and 0.744
for CSIQ. On the other hand, TID2013, CID2013 and LIVE

WIQCD are still challenging and the tested methods’ per-

formance collapsed in the cross-dataset setting.

To improve generalization power of deep NR-IQA we

proposed a deep architecture that exploits various general-

ization tricks proposed in literature. In the final architec-

ture, image-wise trained ILGNet won patch-wise trained

VGGNet. Moreover, ILGNet benefits from pre-training

with large image aesthetics data (AVA), pair-wise training

with ranking loss and low-level quality attributes (sharp-

ness, tone and colourfulness). For the CID2013 dataset the

network achieved state-of-the-art cross-dataset performance

(PLCC 0.710). Our code will be made publicly available.
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Matas. Recurrent color constancy. In Int. Conf. on Computer

Vision (ICCV2017), 2017. 4

[30] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, et al. Imagenet large

scale visual recognition challenge. International Journal of

Computer Vision, 115(3):211–252, 2015. 2

[31] Michele A Saad, Alan C Bovik, and Christophe Charrier.

Blind image quality assessment: A natural scene statistics

approach in the dct domain. IEEE transactions on Image

Processing, 21(8):3339–3352, 2012. 1, 2

[32] H.R Sheikh, A.C Bovik, and L. Cormack. No-reference

quality assessment using natural scene statistics: JPEG2000.

IEEE Trans. on Image Processing, 14(11), 2005. 1

[33] Hamid R Sheikh, Muhammad F Sabir, and Alan C Bovik.

A statistical evaluation of recent full reference image quality



assessment algorithms. IEEE Transactions on image pro-

cessing, 15(11):3440–3451, 2006. 2, 3

[34] E. Shelhamer, J. Long, and T. Darrell. Fully convolutional

networks for semantic segmentation. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 39(4), 2017. 4

[35] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014. 1, 2, 3, 4

[36] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. Going deeper with

convolutions. In The IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), June 2015. 4

[37] H. Talebi and P. Milanfar. NIMA: Neural image assessment.

IEEE Trans. on Image Processing, 27(8), 2018. 1

[38] Huixuan Tang, Neel Joshi, and Ashish Kapoor. Learning a

blind measure of perceptual image quality. In 2011 IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 305–312. IEEE, 2011. 2

[39] T. Virtanen, M. Nuutinen, M. Vaahteranoksa, P. Oittinen,
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