
On-Device Image Classification with Proxyless Neural Architecture Search

and Quantization-Aware Fine-tuning

Han Cai, Tianzhe Wang, Zhanghao Wu, Kuan Wang, Ji Lin, Song Han

Massachusetts Institute of Technology

{hancai, usedtobe, zhwu, kuanwang, jilin, songhan}@mit.edu

Abstract

It is challenging to efficiently deploy deep learning mod-

els on resource-constrained hardware devices (e.g., mobile

and IoT devices) with strict efficiency constraints (e.g., la-

tency, energy consumption). We employ Proxyless Neu-

ral Architecture Search (ProxylessNAS) [4] to auto design

compact and specialized neural network architectures for

the target hardware platform. ProxylessNAS makes latency

differentiable, so we can optimize not only accuracy but

also latency by gradient descent. Such direct optimiza-

tion saves the search cost by 200× compared to conven-

tional neural architecture search methods. Our work is fol-

lowed by quantization-aware fine-tuning to further boost ef-

ficiency. In the Low Power Image Recognition Competition

at CVPR’19, our solution won the 3rd place on the task of

Real-Time Image Classification (online track).

1. Overview

1.1. Introduction

Deep Neural Networks (DNNs) have achieved great

success in many machine learning applications. How-

ever, it remains very challenging to efficiently deploy these

deep learning models on resource-constrained edge devices,

since they have to meet strict efficiency constraints (e.g.,

latency, energy consumption, throughput, etc.). Given the

target hardware, researchers either design efficient neural

network architectures specialized for the target hardware

[13, 8, 10] or apply model compression techniques [5, 6,

7, 14] to improve the efficiency of existing models. Both

approaches require to search in a vast design space, mak-

ing it difficult to rely on domain experts to manually design

compression strategies or neural network architectures for

each case [2]. Therefore, there is an increasing interest in

automating the design process, including neural architec-

ture search (NAS) [16, 17, 1], auto channel pruning [7, 15],

and auto model quantization [14].

Our solution incorporates Proxyless Neural Architecture

ProxylessNAS
Quantization-aware

Fine-tuning

Learner

Target Task
&

Hardware

ArchitectureGradient-based
Updates 8-bit activation

8-bit weight

Figure 1. Our solution includes two parts: 1. search a high perfor-

mance architecture under the latency constraint with ProxylessNAS

and train the full-precision model; 2. quantize the model to 8-bit

with quantization-aware finetuning.

Search (ProxylessNAS) [4] to auto design specialized neu-

ral network architectures, aiming to fit the given latency

constraints on the target hardware platform while optimiz-

ing the accuracy performances. Unlike conventional NAS

methods [16, 12, 3, 11] that search on the small proxy

dataset (e.g., CIFAR-10) and do not take hardware effi-

ciency into consideration, ProxylessNAS directly search for

hardware-efficient neural network architectures on the tar-

get task and target hardware. It is achieved by the path-

level pruning and path-level binarization techniques that

cut the search cost by more than two orders of magni-

tude. Additionally, a latency model is built to predict

each operator’s latency, and the network latency is mod-

eled as the weighted sum of each operator’s latency where

the weights are probabilities of choosing each operation.

This network latency is incorporated into the loss function

as a regularization term, thereby making latency differen-

tiable. Benefiting from the directness and specialization,

ProxylessNAS-searched model runs 1.8× faster than state-

of-the-art human-designed neural networks [13] on mobile

while maintaining similar accuracy, as shown in Figure 2.

After getting a specialized model using ProxylessNAS,

we apply network quantization to further improve efficiency

(Figure 1, right). Specifically, by adding fake-quantization

Figure 2. The performances of models searched by conventional

NAS and ProxylessNAS. Previous work attains low FLOPs with

the cost of high latency. Also, the models found by previous work

are not hardware-aware. In contrast, our ProxylessNAS directly

searches for a model on the target hardware, which takes latency

constraint into consideration. Thereby, our model has lower la-

tency and FLOPs while maintaining competitive accuracy, or even

higher, with the same latency and FLOPs constraint.

nodes [9] to simulate the low bit calculation, quantization-

aware finetuning preserves end-to-end model accuracy post

quantization.

1.2. Solution Pipeline

The Real-Time Image Classification task focuses on

building ImageNet classification models with tight latency

constraint on a Pixel phone (24∼36ms). We use Tensor-

flowLite for deploying our models.

The pipeline of our solution, shown in Figure 1, mainly

consists of two parts:

1. Adopt ProxylessNAS to design a specialized neural

network architecture under the latency constraint (i.e.

30ms) and train the model with full-precision.

2. Apply quantization-aware fine-tuning to the full-

precision model, with fake-quantization nodes, con-

verting the full-precision model to 8-bit one.

2. Proxyless Neural Architecture Search

Under strict efficiency constraints, it is critical to special-

ize neural network architectures to best fit the target hard-

ware. To achieve this, instead of using existing human-

designed neural network architectures (e.g., MobileNetV2

[13]), we consider searching for the best neural network ar-

chitecture in a large design space. Specifically, for each

block in the CNN model, we allow a set of candidate oper-

ations with various kernel sizes and widths:

• ConvOp: mobile inverted bottleneck conv [13] with

various kernel sizes and expansion ratios

– Kernel size: {3×3, 5×5, 7×7}

– Expansion ratio: {3, 6}

• ZeroOp: if ZeroOp is chosen at ith block, it means

the block is skipped.

Moreover, to enable a direct trade-off between width and

depth, we add the “ZeroOp” to candidate set. With a limited

efficiency budget, the network can either choose to be shal-

lower and wider by skipping more blocks and using larger

ConvOps or choose to be deeper and thinner by keeping

more blocks and using smaller ConvOps.

Therefore, the number of possible architectures in the

design space is [(3× 2)
︸ ︷︷ ︸

ConvOp

+ 1
︸︷︷︸

ZeroOp

]N = 7N where N is the

number of blocks (21 in our experiments).

Given the vast design space, it is infeasible to rely on do-

main experts to manually design the CNN model for each

hardware platform. So we need to employ neural archi-

tecture search (NAS) techniques to automatically design

specialized CNN models for different target hardware plat-

forms.

However, there are several challenges of applying con-

ventional NAS methods in this case. First, conventional

NAS methods [16, 17, 12] are very expensive to run (e.g.,

104 GPU hours) since they need to iteratively sample an

architecture, train it from scratch and update the meta-

controller. It typically requires tens of thousands of net-

works to be trained to find a good neural network architec-

ture. Therefore, it is computationally difficult to apply them

to large-scale datasets (e.g., ImageNet). Though we can al-

leviate this problem by first learning on a proxy dataset then

transferring learned neural network architectures to the tar-

get dataset, it will lead to sub-optimal results for the tar-

get dataset. Second, they only optimize for the trade-off

between accuracy and FLOPs [17]. However, FLOPs is a

proxy metric of hardware efficiency. It does not directly

translate to low latency on the hardware.

To address these challenges, we adopt a different ap-

proach to improve the efficiency of model specialization.

We first build a super network that comprises all candidate

architectures, which has a similar structure to a CNN model

in the design space except that each specific operation is

replaced with a mixed operation that has n parallel paths.

Each path in a mixed operation corresponds to a candidate

operation oi(·), and we introduce an architecture parame-

ter αi to each path to learn which paths are redundant and

thereby can be pruned (i.e. path-level pruning).

(1) Update weight parameters (2) Update architecture parameters

Learnable Block
i + 1

Learnable Block
i + 1

Learnable Block
i - 1

Learnable Block
i - 1

Learnable Block
i

……

……

Figure 3. The illustration of ProxylessNAS, which learns both weight parameters and binarized architecture parameters.

In the forward step, to save GPU memory, we allow

only one candidate path to actively reside in the GPU mem-

ory. This is achieved by hard-thresholding the probability

of each candidate path to either 0 or 1 (i.e., path-level bina-

rization). As such the output of a mixed operation is given

as

xl =
∑

i

gioi(xl−1) (1)

where gi is sampled according to the multinomial distribu-

tion derived from the architecture parameters, i.e., {pi =
softmax(αi;α) = exp(αi)/

∑

i exp(αi)}.

In the backward step, we update the weight parameters

of active paths using standard gradient descent. Since the

architecture parameters are not directly involved in the com-

putational graph (Eq. 1), we use the gradient w.r.t. binary

gates to update the corresponding architecture parameters:

∂L

∂αi

=
∑

j=1

∂L

∂pj

∂pj
∂αi

≈
∑

j=1

∂L

∂gj

∂pj
∂αi

.

This differentiable architecture learning process reduces

the cost of NAS to the same level of training a regular neural

network (as shown in Figure 4). Thereby, we can afford to

directly search for the optimal neural network architecture

on the target dataset without any proxy.

In order to specialize the model for hardware, we need

to take the latency running on the hardware as a design

reward. However, directly measuring the inference la-

tency suffers from (i) slow (ii) high variance due to differ-

ent battery condition and thermal throttling (iii) latency is

non-differentiable and can’t be directly optimized. To ad-

dress these, we present our latency prediction model and

hardware-aware loss.

To build the latency model we pre-compute the latency

of each operator with all possible inputs. We query the

lookup table during the searching process. The overall la-

tency of ith block is the weighted sum of the latency of each

operator.

E[LATi] = α× F (mb3 3x3)+

β × F (mb3 5x5)+

σ × F (identity)+

......

ζ × F (mb6 7x7)

E[LAT] =
N∑

i

E[LATi]

(2)

Then we combine the latency and training loss (e.g.

cross-entropy loss) using the following formula

L = LCE × α log

(
E[LAT]

LATref

)β

, (3)

where α and β are hyper-parameters controlling the

accuracy-latency trade-off, and LATref is the target latency.

Note our formulation not only provides a fast estimation of

the searched model but also makes the search process fully

differentiable.

3. Post Quantization-Aware Procedure

3.1. Model Conversion

Many of the proposed models designed for ImageNet

have only 1000 classes in total, in order to meet the require-

ment of the task with 1001 predictions, including an extra

class for background that will never be used, we adjust the

number of classes from 1000 to 1001 by assigning some

specific value to the weight and bias. Explicitly, we set the

bias of the background class to the minimum one among

the original 1000 classes and assign the randomly chosen

weight from the other 999 classes to this class. In that way,

it can be proved that the background class will never be the

prediction for any input.

Model Setting Accuracy Latency

MoblieNetV2 224-0.5 63.7%(65.4%) 28ms

MobileNetV2 192-0.75 67.4%(68.7%) 36ms

MobileNetV2 160-1.0 67.4%(68.8%) 31ms

ProxylessNAS 224-0.5 65.7%(67.0%) 31ms

ProxylessNAS 160-1.0 69.2%(70.3%) 35ms

Table 1. Results of 8-bit model using different preprocessing, the

number in the bracket denotes the full-precision model’s top-1 ac-

curacy on ImageNet The latency is directly measured on Google

Pixel 2. It takes only 200 GPU hours to find the specialized model

with ProxylessNAS in the table.

3.2. Quantization-Aware fine-tuning

In order to quantize the model found by ProxylessNAS

without sacrifice the accuracy, we adopt quantization-aware

fine-tuning. The process mainly contains two parts: con-

structing the fake-quantization graph and fine-tuning. The

graph is based on the computational graph of the original

model with extra fake-quantization nodes that simulate the

effect of quantization in the forward and backward passes.

During fine-tuning, the nodes also collects min-max infor-

mation for the activations which allows the model to be

quantized to fixed-point inference model easily without a

separate calibration step.

4. Experiments

4.1. Training Details

For architecture searching, following the settings in [4],

we randomly sample 5,000 images from the training set as a

validation set for learning architecture parameters which are

updated using the Adam optimizer with an initial learning

rate of 0.006 for the gradient-based algorithm. After the

training process of the over-parameterized network com-

pletes, a compact network is derived according to the ar-

chitecture parameters. Next, we train the compact network

using the same training settings except that the number of

training epochs increases from 200 to 300. It takes 200 GPU

hours to find the specialized model in the architecture search

phase.

We adopt the TF-slim for the fake-quantization graph

construction process in the quantization phase. However,

the automatic fake-quantization node adding process can

leave out some nodes, such as some adding and convolu-

tional operators. Therefore, we visualize model and manu-

ally add those nodes into it. After quantization-aware fine-

tuning, we can convert the model to 8-bit without much ac-

curacy degradation.

4.2. Results

The final submission is 160-1.0 model found by Proxy-

lessNAS (160 for the input size and 1.0 for the width mul-

200x

>48,000 GPU hours!
~$100,000 Cloud Compute Cost

>200 GPU hours
~$400 Cloud Compute Cost

Search Cost: GPU hours (h)

[16,12]

Figure 4. The comparison of GPU hours between conventional

NAS and ProxylessNAS. ProxylessNAS can save two orders of

magnitude for search cost, which is the same level as normal train-

ing.

tiplier), which outperforms the published mobilenetv2 192-

0.75 about 2% accuracy, as shown in 1. Also, it is worth

noticing that under the same latency constraint, the wider

model (160-1.0) outperforms the deeper one (224-0.5) by

about 3% accuracy.

5. Conclusion

We introduced ProxylessNAS that can directly learn neu-

ral network architectures on the target task and target hard-

ware without any proxy. Benefiting from the direct search,

we achieve strong empirical results on ImageNet. More-

over, we allow specializing network architectures for differ-

ent platforms by directly incorporating the measured hard-

ware latency into optimization objectives. Making the la-

tency differentiable and using path binarization, we further

reduce the searching cost for a specific target device to 200

GPU hours, which is the same level with normal training.

6. Acknowledgement

We thank Bo Chen, Bill Mark and the mobile vision team

for the technical support on Tensorflow Lite and the mobile

phone donation.

References

[1] H. Cai, T. Chen, W. Zhang, Y. Yu, and J. Wang. Efficient

architecture search by network transformation. In Thirty-

Second AAAI Conference on Artificial Intelligence, 2018.

[2] H. Cai, C. Gan, and S. Han. Once for All: Train One

Network and Specialize it for Efficient Deployment. arXiv

preprint arXiv:1908.09791, 2019.

[3] H. Cai, J. Yang, W. Zhang, S. Han, and Y. Yu. Path-level

network transformation for efficient architecture search. In

ICML, pages 677–686, 2018.

[4] H. Cai, L. Zhu, and S. Han. ProxylessNAS: Direct neural

architecture search on target task and hardware. In Interna-

tional Conference on Learning Representations, 2019.

[5] S. Han, H. Mao, and W. J. Dally. Deep compression: Com-

pressing deep neural networks with pruning, trained quanti-

zation and huffman coding. ICLR, 2016.

[6] S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights

and connections for efficient neural network. In Advances

in neural information processing systems, pages 1135–1143,

2015.

[7] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han. AMC:

AutoML for Model Compression and Acceleration on Mo-

bile Devices. In ECCV, 2018.

[8] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,

T. Weyand, M. Andreetto, and H. Adam. Mobilenets: Effi-

cient convolutional neural networks for mobile vision appli-

cations. CVPR, 2017.

[9] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard,

H. Adam, and D. Kalenichenko. Quantization and training

of neural networks for efficient integer-arithmetic-only infer-

ence. In CVPR, 2018.

[10] Z. Liu, H. Tang, Y. Lin, and S. Han. Point-Voxel CNN for

Efficient 3D Deep Learning. arXiv, 2019.

[11] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean. Efficient

neural architecture search via parameter sharing. In Interna-

tional Conference on Machine Learning, pages 4092–4101,

2018.

[12] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le. Regularized

evolution for image classifier architecture search. In Pro-

ceedings of the AAAI Conference on Artificial Intelligence,

volume 33, pages 4780–4789, 2019.

[13] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C.

Chen. Mobilenetv2: Inverted residuals and linear bottle-

necks. In CVPR, 2018.

[14] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han. HAQ: Hardware-

Aware Automated Quantization with Mixed Precision. In

CVPR, 2019.

[15] T.-J. Yang, A. Howard, B. Chen, X. Zhang, A. Go, M. San-

dler, V. Sze, and H. Adam. Netadapt: Platform-aware neural

network adaptation for mobile applications. In Proceedings

of the European Conference on Computer Vision (ECCV),

pages 285–300, 2018.

[16] B. Zoph and Q. V. Le. Neural architecture search with rein-

forcement learning. In ICLR, 2017.

[17] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learning

transferable architectures for scalable image recognition. In

CVPR, 2018.

