
A System-Level Solution for Low-Power Object Detection

Fanrong Li1,2∗, Zitao Mo1,2∗, Peisong Wang1, Zejian Liu1,2∗,

Jiayun Zhang1∗, Gang Li1,2, Qinghao Hu1, Xiangyu He1,2, Cong Leng1,3,

Yang Zhang1,3, Jian Cheng1,2,3,4

1Institute of Automation, Chinese Academy of Sciences
2University of Chinese Academy of Sciences, 3AiRiA

4CAS Center for Excellence in Brain Science and Intelligence Technology

{lifanrong2017, mozitao2017}@ia.ac.cn, {gang.li, jcheng}@nlpr.ia.ac.cn

Abstract

Object detection has made impressive progress in recent

years with the help of deep learning. However, state-of-

the-art algorithms are both computation and memory in-

tensive. Though many lightweight networks are developed

for a trade-off between accuracy and efficiency, it is still a

challenge to make it practical on an embedded device. In

this paper, we present a system-level solution for efficient

object detection on a heterogeneous embedded device. The

detection network is quantized to low bits and allows effi-

cient implementation with shift operators. In order to make

the most of the benefits of low-bit quantization, we design a

dedicated accelerator with programmable logic. Inside the

accelerator, a hybrid dataflow is exploited according to the

heterogeneous property of different convolutional layers.

We adopt a straightforward but resource-friendly column-

prior tiling strategy to map the computation-intensive con-

volutional layers to the accelerator that can support arbi-

trary feature size. Other operations can be performed on

the low-power CPU cores, and the entire system is executed

in a pipelined manner. As a case study, we evaluate our

object detection system on a real-world surveillance video

with input size of 512×512, and it turns out that the system

can achieve an inference speed of 18 fps at the cost of 6.9W

(with display) with an mAP of 66.4 verified on the PASCAL

VOC 2012 dataset.

1. Introduction

Since AlexNet [7] won the 2012 large-scale image

recognition contest, Deep Convolutional Neural Networks

(DCNNs) have shown increasing performance in various

computer vision tasks. CNN’s impressive performance

is mainly due to its high complexity and capacity, in

∗These authors contributed equally.

other words, the great number of parameters and compu-

tations. Therefore, high-performance hardwares such as

GPUs (clusters) are often utilized for acceleration. How-

ever, as for embedded and mobile devices such as drones,

security cameras, and smart glasses, GPU-based solutions

are not the best choice due to the limitation of volume

and power consumption. In addition, modern GPUs that

designed for general propose processing are not flexible

enough to deal with low-bit integer values less than 8-bit

without efforts on tuning the codes. As a result, FPGA-

based accelerators are gaining popularity in recent years for

both industrial and academic communities.

As for memory efficiency, we find that the advantages of

the recent depthwise convolution [3, 5] are apparent. Un-

like traditional convolution, in depthwise convolution, each

output feature map relies solely on a single input feature

map in the previous layer, which dramatically reduces the

amount of computations and the demand of on-chip stor-

age. In terms of resource and energy efficiency, recent log-

arithmic computation [4, 12, 8] has shown its promise. It

quantizes the weight as power-of-two in order to efficiently

translate multiplication into bit shift operation, which can

get rid of the limitation of insufficient on-chip DSP blocks.

Considering the advantages of depthwise convolution

and logarithmic computation mentioned above, we put for-

ward an end-to-end hardware-software co-design for low-

power object detection on resource-constraint FPGA. Our

proposed solution can achieve relatively high performance

under extremely low resource budget while retaining con-

siderable accuracy. The contribution of this work can be

summarized as follows:

• We propose a dedicated object detection accelera-

tor for customized MobileNet-SSD [9, 5] algorithm

through software-hardware co-design. Specifically,

we quantize the activations and weights to 4-bit in-

teger and 3-bit power-of-two integer respectively, and

present a fused-layer architecture with shift-based pro-

cessing elements.

• We adopt a column-prior strategy to map the detection

network to the accelerator, which can reduce resource

consumption. Besides, a hybrid dataflow is introduced

to reuse output or weights according to the heteroge-

neous property of different layers.

• We highlight the entire pipeline of our heterogeneous

system design, including hardware accelerator, host

processing and thread management of the main pro-

cessor, and describe each stage in details.

• We verify the performance of our design on heteroge-

neous devices Ultra96 SoC that targets to IoT appli-

cations. Experiments show that the entire system can

reach an inference speed of 18 fps at the cost of around

6.9W.

The rest of the paper is organized as follows. Sec-

tion 2 describes the quantization algorithm, with which

we quantize weights to the power-of-two and enables

resource-friendly shift-base multiplications. Section 3

briefly presents the overall system architecture. Section

4 introduces the architecture of the dedicated accelerator,

including Processing Elements (PEs), tiling strategy, and

dataflow. Section 5 reports the experimental results as well

as multithread management on low-power CPUs.

2. Quantization

To make the CNN model compatible with our hardware

architecture design, we introduce a three-step quantization

method, i.e., uniform activation quantization, power-of-two

weight quantization as well as scale quantization, as illus-

trated in Figure 1. It is worth noting that through the pro-

posed three-step quantization, all computing can be trans-

formed into fixed-point operations, without any floating-

point values.

Activation Quantization

Weight Quantization

Scale Quantization

Figure 1. Three-Step Quantization Pipeline.

2.1. Uniform Activation Quantization

For M -bit activation quantization, we want to quan-

tize all the positive activations into the set A =
{0, 1, 2, · · · , 2M − 1}. As with many other fixed-point

quantization methods, we also introduce a scaling factor α

to lower the quantization error, making the quantization set

into

A = {0, 1, 2, · · · , 2M − 1} ∗ α

To turn all activations into fixed-point numbers, we can

quantize the floating-point activation to the nearest point in

the set A. The 2M − 1 quantization thresholds can be set to

the medians of two successive quantized values:

ti =
(i− 1)α+ iα

2
= (i−

1

2
)α

for i = 1, · · · , 2M − 1

(1)

Thus the quantization function Qa can be formulated as

QA(x) =

⎧

⎨

⎩

(2M − 1)α x > t2M−1,

iα x ∈ (ti, ti+1],
0 x ≤ t1

(2)

2.2. Power-of-Two Weight Quantization

For weight, we utilize power-of-two quantization. In this

way, the floating-point multiplications within the convolu-

tion can be transformed into shifting operations, which can

dramatically lower the complexity of CNN and hardware

design. The 4-D weight tensor consists of n kernels of size

w × h × c, which are quantized by using different scaling

factors. More specifically, the 4-D tensor W ∈ R
w×h×c×n

is reshaped into a matrix W ∈ R
(w∗h∗c)×n, where each col-

umn wi ∈ R
w∗h∗c corresponds to a 3-D kernel. To lower

the quantization error, a floating-point scaling factor βi is

introduced for each kernel wi, i.e., for N -bit quantization,

the problem is to select weight values from the set

Bi = {0,±20,±21, · · · ,±22
N−1

−2} ∗ βi

Here we also use the nearest quantization and the 2N −2
quantization thresholds can also be determined by the medi-

ans of two successive quantized values, as in the activation

quantization.

2.3. Scale Quantization

By activation and weight quantization, the convolution

can be performed with only fixed-point operations. How-

ever, the whole network still requires floating-point opera-

tions due to the introduced scaling factors, bias term of con-

volution, as well as some other layers like Batch Normal-

ization. To further eliminate the above mentioned floating-

point operations, we introduce the scale quantization, which

consists of two parts:

Scale merge: For the l-th layer, the input activation X

can be represented by X = αX̂ , where X̂ is the fixed-

point version of X and α is the scaling factor. Similarly,

the w = βŵ where ŵ is one of the fixed-point kernels.

Table 1. Quantization results on ImageNet classification (top-1 ac-

curacy). The #Act., #Wei. and #Sca. represent the number of bits

for activations, weights, and scaling factors, respectively.

Model #Act. #Wei. #Sca. Accuracy

MobileNet Full Full Full 70.1

MobileNet 8 3 8 68.3

MobileNet 4 3 8 68.1

For simplicity, we discard the kernel index. Considering

the Batch Normalization term, the convolutional layer can

be represented by the following equation:

Y = α′Ŷ = QA(BN(βŵ ⊗ αX̂))

= QA(γαβŵ ⊗ X̂ + b)

= QA(aŵ ⊗ X̂ + b)

(3)

where Y is the output activation, Ŷ is the fixed-point ver-

sion of output activations, and the α′ is the scaling factor for

outputs. BN(x) = γx+ b is the batch normalization layer

and ⊗ is the convolution.

To further merge out the output scaling factor, we can

divide both sides of Eq. 3 by α′, resulting in the following

equation:

Ŷ = Q̂A(
a

α′
ŵ ⊗ X̂ +

b

α′
))

= Q̂A(a
′
ŵ ⊗ X̂ + b′)

(4)

Note that in the activation quantization function need to

be changed accordingly. By defining t̂i =
ti

α′
, the new quan-

tization function becomes:

Q̂A(x) = round(clip(x, 0, 2M − 1)), (5)

where round(x) is the rounding operation, and clip(x, u, v)
clips x within u and v.

Scale quantization: In Eq. 4, only the a′ and b′ are

floating-points. Note that Eq. 4 only coresponds to one 3-D

kernel, for the convolutional layer, there are n pairs of a′

and b′, denoted by a
′ and b

′. In the scale quantization, we

need to quantize these values into fixed-point numbers.

During the scale quantization, no scaling factors could

be incorporated. However, direct quantizing of a′ and b
′

will introduce large quantization error. Here we search for

the binary point position, resulting in the following set to be

quantized into:

C = {0,±1,±2, · · · ,±2K−1 − 1} ∗ 2d,

where d represents the binary point position. More specifi-

cally, when d go throught from 0 to -15, we find the best d

that minimize the quantization error for a′ and b
′.

215MHz
CLK

2GB LPDDR4

Memory

Memory

ARM

Cortex-A53

ARM

Cortex-A53

ARM

Cortex-A53

ARM

Cortex-A53

ARM

Cortex-A53
1

2
3

4
GIC

APU

AXI_LITE AXI_MMIRQ

C
o

-P
ro

ce
ss

o
r

Bu�er

DMA

Processing Element

PE_33PE_33PE_33PE_11

PE_33PE_33PE_33PE_33

PE_33PE_33PE_33PE_HEAD

PE_33PE_33PE_33PE_DW

C
o

n
tr

o
lle

r

AXI_MMIRQAXI_LITE

Figure 2. Architecture of the entire system.

2.4. Optimization

The optimization problem can be solved efficiently us-

ing Lloyd’s algorithm. Take the activation quantization

problem of section 2.1 for example, during the assignment

step, all activation data points are quantized into the nearest

fixed-point values in the set of A according to the quanti-

zation function QA(x). In the update step, the new scaling

factor can be obtained by solving a one-dimensional opti-

mization problem:

α∗ = argmax
α

∑

x

(x−QA(x))
2 (6)

By iterative quantization, we could find the optimal scaling

factors as well as the quantized values.

After the activation quantization and weight quantiza-

tion, we need to fine-tune the whole network to restore ac-

curacy.

2.5. Performance

The experiments are conducted on the ImageNet clas-

sification benchmark, results are shown in Table 1. The

results illustrate that the three-step quantization approach

has only minimal accuracy drop compared with the floating-

point counterpart.

3. System Architecture

Our detection network targets to run on the Ultra96 de-

velopment board, which is a heterogeneous embedded sys-

tem containing both programmable logic and low-power

CPU cores. A 2GB DDR4 is shared by Programmable

Logic (PL) and Processing System (PS). Since convolu-

tional layers dominate most of the inference time, we imple-

ment a dedicated CNN accelerator with the Programmable

Logic.

The entire system includes the following functional lay-

ers. Data forward layer: decode video streams. Encode

layer: organize data into the specific pattern for FPGA ac-

celerator. FPGA layer: perform all convolution on the dedi-

cated accelerator. Decode layer: organize extracted features

from the accelerator to the storage pattern for CPU. Mbox-

conf-reshape layer: reshape bounding boxes. Mbox-conf-

softmax layer: softmax layers of the detection. Mbox-conf-

flatten layer: reshape data. Detection and visualize layer:

generate detecting results and display on the screen. All

the layers except for FPGA layer are executed on CPU. All

operations before the FPGA layers are referred to as pre-

processing, while those operations after the FPGA layer are

post-processing.

At the very beginning, images together with the weights

and instructions of a specific CNN are stored in DDR. The

CPU initiates a calculation request and transfer instructions

to the accelerator through AXI. The accelerator receives in-

structions and completes all convolution computation. Note

that the accelerator has its own instruction set, and it can

complete the calculations independently unless interrupted

by exceptions. Results of the FPGA layer are sent back

to CPU for post-processing. Multi-thread technique is ex-

ploited to make the most use of 4 low-power ARM cores.

The entire system works in a pipelined manner, and the sys-

tem architecture is shown in Figure 2.

4. Dedicated Accelerator

In this section, we first describe the overall architecture

of our accelerator, which exploits multiple PEs for high

computing parallelism. Then the design of PE is introduced.

After that, the column-prior tiling strategy is presented to

support the arbitrary size of input feature maps under lim-

ited resources. Finally, a hybrid dataflow is proposed for

more efficiency.

4.1. Overall Architecture

Figure 3 shows the overall architecture of our acceler-

ator with different types of PEs inside. The Co-Processor

module controls the entire computation flow. It parses in-

structions to generate control information for the Memory

Controller and different kinds of PEs. The addresses of ac-

tivations and weights are calculated by the Memory Con-

troller, with which all kinds of data can be sent to the proper

destinations. Prefetching is enabled since we implement

a 4KB instructions cache inside the Co-processor. Note

that some cache features are unavailable in this design be-

cause they are unnecessary for a specific accelerator with-

out branch and jump instructions. Controllers for different

types of PEs generate control signals according to the con-

trol information received from Co-Processor. IARAM and

PE_33

PE_11

PE_DW

PE_HEAD

Controller

Processing Element

Memory

Controller

Weight

Bu�er

WRAM

96KB IARAM_0
96KB

IARAM_1
96KB

IARAM_2
96KB

OARAM
256KB

IA
R

A
M

Inter
RAM
16KB

C
o

-P
ro

ce
ss

o
r

ICache

4KB

Programmable Logic

DMA

P
ro

ce
ss

in
g

 S
y

st
e

m

Figure 3. Architecture of dedicated CNN accelerator with only one

for each type of PEs.

OARAM are used to store the intermediate feature maps

during computation, where IARAM is implemented with

three banks, providing sufficient bandwidth to complete the

3 × 3 convolution more efficiently. And the IARAMs and

OARAM can be logically swapped between the computa-

tion of two adjacent layers. We implement two-level weight

caches (Weight buffer and WRAM) with on-chip registers

and BRAMs, which can provide sufficient bandwidth for

computing.

4.2. Processing Elements

Heterogeneous nature of 1×1 convolution and depthwise

convolution may make the reuse of processing elements

costly, so reusing PEs does not necessarily lead to benefits

and is contrary to our original intention to design a dedi-

cated low-power accelerator. Therefore, PEs are special-

ized for different kinds of convolutional layers, i.e., 3×3

convolution (PE 33), 1×1 convolution (PE 11), and depth-

wise convolution (PE DW) for the consideration of reduc-

ing the control complexity and improving hardware effi-

ciency. To efficiently compute the location offsets in the de-

tection algorithm, PE HEAD is necessary. Each type of PEs

is mainly composed of multipliers and reduction trees, as

well as modules that can selectively execute the ReLU and

Batch Normalization functions. Each PE processes with

only one kernel at a time.

Different from some previous work using line buffer,

we implement 3×3 convolution in PE 33 more efficiently,

as shown in Figure 4. The input image is divided into

three parts according to row number and stored in three

IARAMs. During the computation, inputs in three continu-

ous rows can be fetched from different IARAMs simultane-

ously. Compared to line buffer implementation, it reduces

data-preparing time and register consumption. Besides, as

for the 3×3 convolution with stride=2, each IARAM can

provide higher bandwidth to support jump connection for

(a) Line buffer convolution.

(b) PE 33, stride=1. (c) PE 33, stride=2.

Figure 4. The implementation for 3×3 convolution with different

strategies: (a) Line buffer convolution; (b) Our implementation of

3×3 convolution with stride=1; (c) Our implementation of 3×3

convolution with stride=2

the registers, as shown in Figure 4(b). Therefore, only the

necessary calculations are performed, which can achieve

4× speedup than the original convolution based on classic

line buffer.

Depthwise convolutional layer can be fused with its ad-

jacent layers in a pipelined manner to speedup computation

due to its less data-dependent property. With this insight,

in this work, we introduce two types of cascaded PEs to the

architecture of our accelerator, which can be summarized as

follows.

• PE 33, PE DW. The results of 3×3 convolution can

be sent to PE DW directly. Different from PE 33,

PE DW are processing with line buffer to accommo-

date the continuous inflow of data. This manner works

in conjunctions with our column-prior tiling strategy

to reduce the consumption of registers, which we will

present in section 4.3.

• PE 11, PE DW. Similarly, 1×1 convolution and

depthwise convolution can also be processed in a fused

manner. During computation, input activations are

fetched from one of three input buffers, and the results

of 1×1 convolution are sent to PE DW immediately

and processed on the fly. The final results are written

back to the corresponding output buffer.

As mentioned in section 2, activations and weights of the

network are quantized to low bits. Specifically, the weights

are quantized to power-of-two, which enables us to replace

multipliers with shift operators. Compared with normal

multiplications, it can reduce resource and power consump-

tion. We conduct an experiment to verify the benefits of this

shift-based multipliers, which shows that shift-based multi-

LU
T

0

1000

2000

3000

4000

16 32 64 128

3,537

1,746

867

428

3,409

1,682

835

412

2,146

1,043

516

253

MAC-Shift
MAC-Base
MAC-IP

Figure 5. LUT consumption of different implementations of

MACs. MAC-Shift (activation 4b/weight 3b) is our implementa-

tion of multipliers using shift operations, while MAC-Base (4b/4b)

is direct multiplication and MAC-IP (4b/4b) is multiplications us-

ing Xilinx IP. Reduction trees are also included in all three cases.

Note that if we use multipliers, we have to use 4b/4b inputs in

order to represent numbers from -4 to 4.

Table 2. Notation for tiling strategy and dataflow.

Variables Descriptions

WT width (column) of a tile of feature maps

HT height (row) of a tile of feature maps

KT parallelism on output channel dimension

CT parallelism on the input channel dimension

Nk number of tiles along the filter dimension

Nc number of tiles along the channel dimension

plication can reduce the usage of LUT by approximately

40%, as shown in Figure 5.

4.3. Column-Prior Tiling Strategy

Under the limited on-chip resources, tiling is necessary

to map convolutional layers to the accelerator. We adopt a

column-prior tiling strategy, as shown in Figure 6, which

can reduce both latency and register consumption. We take

a feature map with size 256×256 as an example, which is

expected to be divided into two parts to fit into the limited

on-chip buffers. As for the row-prior manner, a tile with

size 128×256 is generated after 1×1 convolution and can

be sent to PE DW immediately for the processing of depth-

wise convolution. In this situation, at least 2×256+3 = 515
registers are required for applying line buffer convolution.

However, if the feature maps are divided into the size of

256×128 in a column-prior manner, only 2×128+3 = 259
registers are needed. Thus register consumption can be ap-

proximately halved. Similarly, invalid cycles caused by fill-

ing registers are also reduced, which will also be beneficial

to latency and efficiency.

Since the feature maps are divided into several tiles by

column index, overlapping between adjacent tiles are in-

troduced. Suppose that we can obtain output tiles with

five valid columns after 1×1 and depthwise convolution

T
c1 T

c2 T
c3

⇒

T
c1 + 1 T

c2 + 2 T
c3 + 1

⇒

T
c1 T

c2 T
c3

Conv

1x1

Conv

3x3 DW

Figure 6. A particular case of column-prior tiling strategy applied

to 1×1 and depthwise convolution (stride=1). The input feature

maps are divided into three tiles and transferred from DDR to on-

chip BRAMs sequentially. As shown in the middle of the figure,

extra features columns from adjacent tiles are necessary.

Algorithm 1: Output stationary dataflow for 1×1

convolution.

for h = 0 : HT do

for w = 0 : WT do

for nk = 0 : Nk do

for nc = 0 : Nc do

Parallel for k = (nk-1)Kt : nkKt do

Parallel for c = (nc-1)CT : ncCT do
P = I[c][w][h] ∗W [k][c];
O[k][w][h] = O[k][w][h] + P ;

// Partial sums keep stationary in PE

until a valid output is obtained;

// Sent O[(nk-1)Kt : nkKt][w][h] to Out buf;

Algorithm 2: Weight stationary dataflow for 1×1

convolution.

for nk = 0 : Nk do

for nc = 0 : Nc do
// Fetch weights from weight buffer and keep weights

stationary in PEs;

for h = 0 : HT do

for w = 0 : WT do

Parallel for k = (nk-1)Kt : nkKt do

Parallel for c = (nc-1)CT : ncCT do
P = I[c][w][h] ∗W [k][c];
O[k][w][h] = O[k][w][h] + P ;

// Keep partial sums in Inter buffer;

// Sent O[(nk-1)Kt : nkKt][:][:] to out buf;

(stride=1), the input tiles should contain seven valid val-

ues in each row. During the processing, a column of input

features from the last tile is needed.

4.4. Hybrid Dataflow

Although column-prior tiling strategy is utilized for the

efficiency of the accelerator, the on-chip buffer require-

ment and memory accesses depend heavily on the dataflow

of computations [1, 2]. The output stationary, as well as

the weight stationary, is the most commonly used dataflow

in previous designs. Algorithm 1 and 2 illustrate both

dataflows, respectively, where the parameters are shown in

Table 2.

• Output stationary dataflow. Input activations and

weights are fed into the PE array continuously, and

the partial sums are held in PEs until the final results

are available. These final results are either passed to

PE DW for the following computation or stored in the

IARAMs/OARAM. Since each output is completed

after weights in a filter have been calculated, higher

bandwidth is required for weight transmission. In ad-

dition, because of the implementation of weight buffer,

there are more opportunities for weights to be reused.

• Weight stationary dataflow. Each PE holds part of

weights for reuse until finishing the computation with

input activations in the corresponding channels. And

the partial sums generated in each PE are stored to the

Inter RAM. Only if the kernel group is completed can

the final results be sent to IARAMs/OARAM. In this

way, weights can be reused as many as possible, but

the accelerator requires additional storage, i.e., Inter

RAM.

Although our accelerator is specialized for compact de-

tection network, different convolutional layers (1×1 con-

volution and depthwise convolution) still present hetero-

geneous property (e.g. width, height, and channel size).

The dimensions of feature maps near to the input are rel-

atively large. Thus these layers require more on-chip buffer

to store the activations, while weights require less stor-

age. In this case, there are more opportunities for weights

to be reused, which is more suitable for output stationary

dataflow. However, in the deeper layers, weights become

much more intensive in memory, because output stationary

dataflow needs to fetch all the weights of a kernel to the PE

to calculate each output. If the weight buffer can not accom-

modate those weights, weights are required to be fetched

multiple times during the processing, leading to more en-

ergy consumption. In other words, we need a larger weight

buffer to reuse weights.

Therefore, we consider a hybrid dataflow that makes a

balance between the weight reuse and weight buffer re-

quirements to get the best performance and energy on the

resource-limited computing platform. In most of the early

layers, we adopt the output stationary dataflow. Thus, all the

weights of a kernel group can be reused in weight buffer,

and they are fetched from WRAM only once during the

processing of a layer. The case becomes different as the

network goes deeper, and the weight stationary dataflow is

adopted. So the weight buffer requirement can be signifi-

cantly reduced with only a small Inter RAM overhead.

With the help of Co-Processor, our accelerator is flexible

enough to support these two types of dataflow according to

the size of kernels.

Table 3. Configurations of each type of PEs and the overall re-

source utilization on Ultra96 development board.

Parameters Kt CT Precision(A/W/O) Operations

PE 33 8 3 8/3/4 bits Conv 3×3

PE 11 16 32 4/3/4 bits Conv 1×1

PE DW 16 16 4/3/4 bits Conv 3×3 DW

PE Head 2 32 4/8/16 bits Conv 1×1

Resource Available Used Utilization

LUT 70560 50485 71.55%

FF 141120 74174 52.56%

BRAM 216 178.50 82.86%

DSP 360 83 23.06%

5. Experiments

We implement our solution on the Ultra96 development

board with Xilinx Zynq UltraScale+ MPSoC. The accelera-

tor runs at a frequency of 215 MHz with clock gating to each

type of PE. Power measurement is obtained via a power

monitor. We measured the power of approximate 6.9W on

the Ultra96 when processing the detection task with the im-

age size of 512 × 512. The configurations of each type of

PE and the overall resource utilization are shown in Table 3,

in which we also list the supported precision of activations

(A), weights (W), and outputs (O) respectively. It shows

that less than 25% of the total on-chip DSPs are used on the

FPGA since most of the multiplications are implemented

as shift operations using LUTs. Most of the registers are

used as weight buffer while BRAMs are mainly used for

data buffer and the WRAM. With limited programmable

resources on Ultra96 board, the whole system reaches an

inference speed of 18 fps. Results are reported when the

system is detecting objects from a video. Table 4 shows the

specification of the entire system.

Although FPGA undertakes most of the computations in

detection algorithm, we find that pre-processing and post-

processing on CPUs still account for most of the inference

time, as shown in Figure 7 (a). In order to overcome the bot-

tleneck of CPU execution, we adopt a pipelined task man-

agement with multi-thread techniques. In this way, the total

latency is reduced, and FPGA layers dominate most of the

inference time, as shown in Figure 7 (b).

Thread assignments are conducted empirically. Figure

7(c) presents the detailed time breakdown of each layer.

The latency can vary greatly depending on the input image

because the number of objects within an image varies sig-

nificantly and thus influence the computational complexity

in the post-processing phase. Therefore, time breakdown

in Figure 7 is obtained by averaging over a batch of im-

ages. As shown in the figure, the softmax layer is the most

Table 4. System specification.

Device Ultra96 development board

Network customized MobileNet-SSD

Quantization activation 4b/weight 3b

Power 6.9Watt

Frame rate 18 fps

Accelerator frame rate 27 fps

mAP on VOC 2012 66.4

time-consuming among all the layers, while the data for-

ward layer and visualization layer account for 34% of the la-

tency. Note that in a real-world application such as ADAS,

the detection results are used as part of the control system,

in which visualization may not be necessary. In this situa-

tion, the latency of CPUs can be further reduced, pushing

the system frame rate towards the maximum.

Figure 8 shows a demo of our proposed object detec-

tion system. As we can see, the measured power is around

6.9W, and there are slight fluctuations as the detected im-

age changes. Most of the targets are correctly detected (e.g.

pedestrian, cars), frame rate for FPGA layers is around 25-

30.

Table 5. Comparison with other accelerators
VGG ACC[10] Low-Bit[6] Synetgy[11] Ours

Precision
16/16 bits 2/1 bits 4/1 bits 4/3 bits

(A/W)

Platform
Zynq Zynq Zynq Zynq

XC7Z045 XC7Z020 ZU3EG ZU3EG

Frequency
150 200 250 215

(MHz)

Classification
64.64% 46.10% 68.47% 68.1%

Top 1 Acc

Network VGG-16 DoReFa ShuffleNetV2 MobileNet

Performance
136.97 410.22 47.09∼418 202.76

(GOPs)

As shown in Table 5, we also compare our accelera-

tor against previous works. Since the previous works are

mainly designed for image classification, we also evaluate

the performance of our customized MobileNet on ImageNet

classification task. Compared with VGG ACC, which is

implemented with 16-bits integers, our design can achieve

better performance and accuracy even on a smaller FPGA.

Low-Bit is implemented with lower bits, which leads to se-

vere accuracy degradation. Synetgy uses shift operations

to replace the spatial convolutions. It can achieve high

accuracy with lower bits, i.e., 4-bits activations and 1-bit

weights. However, our accelerator can achieve more stable

performance with comparable accuracy.

6. Conclusion

In this paper, we present a system-level solution for ob-

ject detection on the heterogeneous embedded system. We

quantize the compact detection network to low bits, which

12%2%

1%

28%

1%

2% 27%

6%

22%

data forward

encode

fpga

decode

mbox_conf_reshape

mbox_conf_softmax

mbox_conf_flatten

detection

visualization

73%

27%

fpga

others

35%

65%

fpga

others

(a) (b) (c)

Figure 7. (a) Time breakdown before pipeline. (b) Time breakdown after pipeline. (c) Detailed time breakdown of each layer before

pipeline. Figure (a) and (b) demonstrate that with the heterogeneous pipeline, the overall latency is reduced, thus the proportion of FPGA

layers becomes larger, dominates most of the latency. Figure (c) shows that data forward layer and mbox-conf-softmax layer are the most

time-consuming layer and require more threads to process.

Ultra 96 Board

Power Monitor

Figure 8. A demo of our proposed object detection system.

allows us to replace multiplications with efficient shift op-

erations. A dedicated CNN accelerator is implemented to

carry out convolution computation. In order to support the

arbitrary size of input feature maps under limited resources,

we adopt a column-prior tiling strategy to map the convo-

lutional layer to the accelerator. Compared to row-prior

tiling strategy, it can reduce both register consumption and

latency. According to the heterogeneous properties of dif-

ferent layers, we provide a hybrid dataflow, with which we

can flexibly reuse the partial sums or filter weights. Multi-

thread is also exploited to accelerate the pre-processing and

post-processing. We believe that such an efficient and low

energy system can play a role in IoT applications.

Acknowledgment

This work was supported by the Strategic Priority Re-

search Program of Chinese Academy of Sciences (Grant

No. XDB32050200) and National Natural Science Foun-

dation of China (Grant No.61972396, 61906193).

References

[1] Y.-H. Chen, J. S. Emer, and V. Sze. Eyeriss: A spatial archi-

tecture for energy-efficient dataflow for convolutional neural

networks. In ISCA, 2016.

[2] Y.-H. Chen, T.-J. Yang, J. S. Emer, and V. Sze. Eyeriss v2:

A flexible accelerator for emerging deep neural networks on

mobile devices. IEEE Journal on Emerging and Selected

Topics in Circuits and Systems, 9:292–308, 2018.

[3] F. Chollet. Xception: Deep learning with depthwise separa-

ble convolutions. In CVPR, 2016.

[4] D. Gudovskiy and L. Rigazio. ShiftCNN: Generalized low-

precision architecture for inference of convolutional neural

networks. arXiv preprint arXiv:1706.02393, 2017.

[5] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,

T. Weyand, M. Andreetto, and H. Adam. Mobilenets: Effi-

cient convolutional neural networks for mobile vision appli-

cations. arXiv preprint arXiv:1704.04861, 2017.

[6] L. Jiao, C. Luo, W. Cao, X. Zhou, and L. Wang. Accelerating

low bit-width convolutional neural networks with embedded

fpga. In FPL, 2017.

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

NIPS, 2012.

[8] E. H. Lee, D. Miyashita, E. Chai, B. Murmann, and S. S.

Wong. Lognet: Energy-efficient neural networks using loga-

rithmic computation. In ICASSP, 2017.

[9] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C.-

Y. Fu, and A. C. Berg. Ssd: Single shot multibox detector.

In ECCV, 2016.

[10] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu,

T. Tang, N. Xu, S. Song, Y. Wang, and H. Yang. Going

deeper with embedded fpga platform for convolutional neu-

ral network. In FPGA, 2016.

[11] Y. Yang, Q. Huang, B. Wu, T. Zhang, L. Ma, G. Gam-

bardella, M. Blott, L. Lavagno, K. Vissers, J. Wawrzynek,

and K. Keutzer. Synetgy: Algorithm-hardware co-design for

convnet accelerators on embedded fpgas. In FPGA, 2019.

[12] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen. Incremen-

tal network quantization: Towards lossless cnns with low-

precision weights. arXiv preprint arXiv:1702.03044, 2017.

