
Enriching Variety of Layer-wise Learning Information by Gradient Combination

Chien-Yao Wang1, Hong-Yuan Mark Liao1, Ping-Yang Chen2, and Jun-Wei Hsieh3

1Institute of Information Science, Academia Sinica, Taiwan
2Department of Computer Science, National Chiao Tung University

3College of Artificial Intelligence and Green Energy, National Chiao Tung University

x102432003@yahoo.com.tw, liao@iis.sinica.edu.tw,

pingyang.cs08g@nctu.edu.tw, and jwhsieh@nctu.edu.tw

Abstract

This study proposes to use the combination of gradient

concept to enhance the learning capability of Deep Convolu-

tional Networks (DCN), and four Partial Residual Networks-

based (PRN-based) architectures are developed to verify

above concept. The purpose of designing PRN is to pro-

vide as rich information as possible for each single layer.

During the training phase, we propose to propagate gradi-

ent combinations rather than feature combinations. PRN

can be easily applied in many existing network architec-

tures, such as ResNet, feature pyramid network, etc., and

can effectively improve their performance. Nowadays, more

advanced DCNs are designed with the hierarchical semantic

information of multiple layers, so the model will continue

to deepen and expand. Due to the neat design of PRN, it

can benefit all models, especially for lightweight models. In

the MSCOCO object detection experiments, YOLO-v3-PRN

maintains the same accuracy as YOLO-v3 with a 55% reduc-

tion of parameters and 35% reduction of computation, while

increasing the speed of execution by twice. For lightweight

models, YOLO-v3-tiny-PRN maintains the same accuracy

under the condition of 37% less parameters and 38% less

computation than YOLO-v3-tiny and increases the frame

rate by up to 12 fps on the NVIDIA Jetson TX2 platform.

The Pelee-PRN is 6.7% mAP@0.5 higher than Pelee, which

achieves the state-of-the-art lightweight object detection.

The proposed lightweight object detection model has been

integrated with technologies such as multi-object tracking

and license plate recognition, and is used in a commercial

intelligent traffic flow analysis system as its edge computing

component. There are already three countries and more than

ten cities have deployed this technique into their traffic flow

analysis systems.

1. Introduction

Since AlexNet [6] won the ImageNet Large Scale Visual

Recognition Challenge (ILSVRC) [1] in 2012, the era of

Deep Convolutional Networks (DCN) has begun. After that,

the architecture of Plain networks (PlainNet) makes VGG-16

and VGG-19 [16] achieve excellent performance. But the

researchers also found that when a DCN reaches a certain

depth, the accuracy of PlainNet begins to decrease as the

depth increases. This problem is uneasy to solve, even if

GoogLeNet [18] adopts the strategy of auxiliary loss, it still

cannot solve the problem. In the design of Residual networks

(ResNet), He et al. [2] introduce the concept of identity

shortcut connection, which attempts to make gradients more

efficiently propagate to all layers. Using this concept, they

successfully built a number of very deep architectures, such

as ResNet-50, ResNet-101, and ResNet-152. The highway

networks [17] published before ResNet and the stochastic

depth [5] developed after ResNet all adopted the shortcut

concept. Also want to let gradients quickly propagate to the

various layers, Larsson et al. [7] used the characteristics of

fractal to achieve the goal. They also proposed the concept

of drop path to increase the efficiency of information propa-

gation. In [4] and [3], Huang et al. proposed dense networks

(DenseNet) and condense networks (CondenseNet), respec-

tively, to directly let the loss layer link to all layers. However,

the sparse networks (SparseNet) proposed by Zhu et al. [24]

have confirmed that DCN can achieve better learning results

under a designed topology architecture.

From the above state-of-the-art work, we found that the

strategy to improve DCN performance is nothing more than

how to combine features and propagate to subsequent layers,

and how to make gradients more efficiently propagate to all

layers. After an in-depth examination of the learning process

of the above mentioned models, we propose a new perspec-

tive, i.e., "How to combine gradients of each layer in the

training process to achieve better learning results?" In this

study, we propose the concept of partial residual networks

(PRN). We converted the residual connection into a path

that produces the combinations of gradients and designed

several PRN-based models to verify the proposed concept.

Since the strategy for designing PRN is no longer to prop-

agate combination of features, but rather the combination

of gradients, it can be more suitable for lightweight net-

works. This is mainly because the combination of features

will produce new layers, while the combination of gradients

will not. Because PRN has a lightweight nature, it can also

be effectively applied to real-time inferences in embedded

devices. Since the performance of lightweight networks is

often limited by the learning power of a network, PRN’s

design concept highlights its advantages in a lightweight

network architecture.

Since object detection is the basic technology that many

real-world systems need to use, we choose the object detec-

tion task to verify the performance of the PRN and prove

that it works perfectly for lightweight models. We compare

PRN with other state-of-the-art lightweight object detec-

tion methods, such as YOLO-v3-tiny [14], Pelee [20], and

tiny-DSOD [22]. The main baseline architecture of PRN is

YOLO-v3-tiny. Pelee combined DenseNet and SSD [12] and

form a 2-way dense layer. The architecture of tiny-DSOD is

based on DSOD proposed in [15]. It combines depth-wise

convolution and proposes to use depth-wise dense blocks to

make the network lightweight. We compared the execution

time of CPU, GPU, and Jetson TX2 on different lightweight

models, and found that our proposed PRN has significant ad-

vantages over other models. The contributions of this work

are summarized as follows:

• PRN enables shallow networks to learn abundant infor-

mation.

• PRN can combine layers with different number of chan-

nels, thus it has excellent flexibility in architecture de-

sign.

• The inference process of PRN occupies very little re-

sources and is suitable for deployment in highly re-

stricted embedded systems.

• Compare SparseNet(+) with PRN, the former is sparse

in layer, and the latter is sparse in channel, so PRN is

more suitable for shallow network architecture.

• PRN runs very fast, which is helpful for tasks that

require real-time processing.

The proposed PRN-based object detection model has been

deployed into commercial traffic flow analysis system. With

this AI software-embedded device, we are able to perform

real-time analysis on many traffic-related parameters.

2. Partial Residual Networks

In this section we will explore the structure and char-

acteristics of PRN. In Section 3, we will use the concept

of gradients to explain why PRN, ResNet, DenseNet, and

SparseNet can work.

Figure 1. Partial residual connection.

The PRN we propose is a stack of partial residual connec-

tion blocks, and the structure of partial residual connection

is shown in Figure 1. When we apply partial residual con-

nection on the feature maps of the c2 channels of the lth

layer and the c1 channels of the (l − k)
th

layer, we will ap-

ply the addition operation to the first c (c ≤ c1) channels in

the (l − k)
th

layer with the shortcut connected to the first

c (c ≤ c2) channels of the lth layer. After the current c
channels have done addition, the corresponding feature map

will feedforward to subsequent layers. The way how partial

residual connection operates can be expressed as follows:

xl = [Hl(xl−1)[0:c−1] + xl−k[0:c−1], Hl(xl−1)[c:cl]] (1)

where xl represents the feature map which is the output of

the lth layer, Hl represents the non-linear transformation

function of the lth layer, and [a, b, ...] means to perform con-

catenation on a, b, Therefore, [a : b] = [a, a + 1, ...b]
represents the corresponding feature map ranging from chan-

nel a to channel b. From the above equation we can see

that PlainNet is a special case of PRN. That is, when c = 0,

Equation 1 can be written as xl = Hl(xl−1). This is equiv-

alent to making a non-linear transformation layer-by-layer.

For the case of ResNet, Equation 1 can be rewritten as

xl = Hl(xl−1) + xl−k. This is equivalent to a special case

of PRN when c = c1 = c2.

PRN’s architecture is highly flexible in design, allowing

feature maps of arbitrary layers and arbitrary number of chan-

nels to be combined. The PRN architecture is very different

from that of ResNet, because the latter limits the blocks

within the same stage to have the same number of channels.

The operation mechanism of PRN is not like the way of skip

connection. The skip connection needs to combine feature

maps formed by different number of channels. The method

of skip connection requires an additional transition layer to

integrate feature maps of the above mentioned sort. The de-

sign and inference of PRN proves that this is unnecessary. In

addition, during the inference phase, the shortcut connection

and the concatenate layer need to save the shortcut or the

concatenate feature map that is still needed in the memory.

By the design of PRN, when the number of channels for par-

tial residual connection is 50% of the total channel number,

we can save up to half of the memory space required for the

inference phase.

This study proposes three architectures to highlight and

validate the characteristics and benefits of PRN, which are

described as follows:

• Characteristic 1: Without changing the topology of

ResNet, replace only the residual connection with the

partial residual connection of sparsity = ρ, as shown in

Figure 2. The computational complexity of this archi-

tecture is almost identical to that of ResNet, which we

use to compare the learning power of PRN and ResNet.

Figure 2. Characteristic 1: maintain the topology of ResNet, change

offset, use sparsity = ρ as the basis for partial residual connection.

• Characteristic 2: The number of channels of the block

in the same stage is linearly decremented from c to γ×c,

as shown in Figure 3 for the example of reduce rate =

γ. This architecture can be used to demonstrate the

flexibility of PRN when combining different channel

numbers, and the stage to be modular PRN.

Figure 3. Characteristic 2: Set reduce rate = γ, the number of

channels linearly decremented to γ × c, partial residual connection

operates on feature maps with different channel numbers in the

same stage.

• Characteristic 3: The architecture of Figure 4 shows

that PRN can be highly flexible because it can be com-

bined with multiple sets of distinct-channel feature

maps.

3. Combination of Gradients

The propagated gradients mainly consist of two parts: one

is the gradient source, and the other is the timestamp of gra-

dient. We use Gs
t to represent it, where s is the source and t

is the timestamp. We will use timestamp and source, respec-

tively, to observe how the gradient is composed during the

training process. We will also explain why ResNet, ResNext

[21], DenseNet, SparseNet, and the proposed PRN can learn

more effectively based on the combination of gradients.

Figure 4. Characteristic 3: Receive partial residual connection from

different sources simultaneously.

3.1. Timestamp

The analysis of gradient timestamp for residual connec-

tion, partial residual connection, and dense connection is

shown in Figure 5, where ResNet, PRN, DenseNet, and

SparseNet are all five-layer DCN. As can be seen from

Figure 5, ResNet is equivalent to the integration of m k-

layer shallow networks, and the total number of layers is

L = m×k+1. The gradient flow will form a cycle for every

k timestamps along the time axis and continue to propagate

to the bottom layer, and this propagation will last for m cy-

cles. Another characteristic of PRN is that it has only part

of the channels connected to the subsequent layers during

partial residual connection. It is this reason that makes it

possible to naturally produce a variety of gradient combi-

nations, in total m sets of combinations, when propagating

backwards. If PRN further combines partial residual connec-

tions from multiple sets with different number of channels,

more combinations can be obtained.

As to DenseNet, it links all layers directly to the loss layer,

so for the first layer, it receives all gradient flows from the

timestamps sitting in the 1 ≤ t ≤ L− l+1 duration. For the

case of SparseNet, it does the sparse connection at a power of

2 when doing the concatenation. Compared with DenseNet,

SparseNet uses the same gradient combinations along the

time axis. It increases the level of gradient combinations

along the time axis, and this operation makes its number of

gradient combinations equal to that of a DenseNet.

3.2. Source

We use Figure 6 to show how gradient source can be

analyzed for residual connection, partial residual connection,

and dense connection. In Figure 6 we only draw the gradient

source for Gs
t=1. It is obvious that the DenseNet and the

SparseNet are concatenate-based, which is different from the

ResNet that is shortcut-based. In the gradient propagation of

a concatenate-based architecture, the gradients propagated

by the same layer with the same timestamp are split and not

intersected. As to the ResNet architecture, it is to propagate

exactly the same gradient to all layers of the target. This

explains why ResNet is easy to learn a lot of redundant infor-

mation. In order to solve the above mentioned problem, PRN

separates part of the gradients to produce a richer gradient

Figure 5. Gradient timestamp and routes for ResNet, PRN, DenseNet and SparseNet.

Figure 6. Shortcut connection and concatenate have different gradi-

ent propagation sources.

combinations. As for ResNext, it uses the split-transform-

merge strategy when propagating forward, so it gets similar

outcome as what PRN gets.

3.3. Summary

Through the analysis of the timestamp and source gener-

ated by the gradients in the backpropagation process, we can

clearly explain how ResNet, PRN, DenseNet, and SparseNet

learn the information and how efficient the parameters can

be utilized. In ResNet, different layers share many gradi-

ents coming from the same timestamp and the same source,

while DenseNet propagates gradients coming from differ-

ent sources but have the same timestamp. This explains

why DenseNet can avoid the problem of learning a lot of

redundant information like ResNet. The sparse connection

strategy of SparseNet splits the gradient timestamp into dif-

ferent layers, which reduces the gradient source but increases

the number of changes on gradient timestamp, and also re-

duces the amount of computation. As for the proposed PRN,

it performs partial residual connection on the channel, which

increases the number of combinations of the gradients in

the timestamp without increasing the number of layers, and

causes the gradient source to generate the shunt, and also

increases the variability of the gradient source.

4. Experimental Results

4.1. Experimental setting

We use MSCOCO object detection dataset [10] to evalu-

ate PRN. We implement PRN on top of the Darknet frame-

work [13]. In order to reduce the impact caused by adjusting

hyperparameters, all settings follow the specifications of

YOLO-v3. The training set adopted is the trainval35k sub-

set. We design four different PRN models to evaluate their

performances. The four models and their corresponding

settings are illustrated in Table 1. Among the four PRN

models, YOLO-v3-FPRN (Figure 7.(b)) and YOLO-v3-PRN

(Figure 7.(c)) are based on YOLO-v3 (Figure 7.(a)), but they

are equipped with characteristic 1 and characteristic 2 of

PRN, respectively. During the training process, the hyperpa-

rameters used by these two models are exactly the same as

those used by YOLO-v3. As to v3-tiny-PRN and Pelee-PRN,

their architectures are respectively based on YOLO-v3-tiny

and Pelee models plus PRN head (Figure 8). During the

training process, the hyperparameters used by v3-tiny-PRN

and Pelee-PRN are exactly the same as those adopted by

YOLO-v3-tiny.

Table 1. PRN models for evaluation.

Models

Name Description

YOLO-v3-FPRN The network topology and the number of convolu-

tional kernels are exactly the same as YOLO-v3. One

needs to set the threshold of sparsity to 0.5 when the

shortcut connection is accumulated.

YOLO-v3-PRN Based on YOLO-v3, the five stages of the Darknet-53

backbone gradually decrement the channel to reduce-

rate = 0.5. The partial residual connection we designed

can work on feature maps with different channel num-

bers.

v3-tiny-PRN Add multiple sets of partial residual connection to the

YOLO-v3-tiny head, including those partial residual

connections combining from multiple sources.

Pelee-PRN On the PeleeNet backbone, apply the head of v3-tiny-

PRN.

4.2. Analysis on effect of combination of gradient

We have designed several architectures using partial resid-

ual connection, which use combination of gradients with

different degree of richness. The purpose of this experiment

is to verify that when we try to reduce the computational

complexity of the model, if our strategy is to maximize the

utility of the gradient combination, can we get the most ben-

efit? We validate our results using the validation set used

by ImageNet at ILSVRC 2012. In the meanwhile, we also

Figure 7. Architectures of Darknet53, Darknet53-FPRN, and Darknet53-PRN.

Figure 8. Architecture of tiny PRN head.

analyze how recognition rate is affected when we adjust γ to

control the amount of computation.

The PRN mentioned in Figure 3 at Section 2 may be grad-

ually shrunk as the number of channels increases with the

number of layers. Therefore, in this section we call it PRN-

shrink. When the gradients of PRN-shrink pass forward

to each of the subsequent layers, distinct number of chan-

nels will be affected. Therefore, for a k-layer PRN-shrink,

the total number of combination of gradient timestamp is

1 + 2 + ... + k = (1+k)×k
2 . The channel that is updated

by gradient combination sent at different points in time will

be considered as a different source and the total number of

gradient source is 1 + 2 + ...+ k = (1+k)×k
2 .

In most CNN architectures, the number of convolutional

filter channels contained in a stage tends to increase as the

stage is getting deeper. Here we increase the number of chan-

nels of the blocks of the same stage as block is getting deeper,

and introduce the proposed partial residual connection into

the architecture. As illustrated in Figure 9, we call the modi-

fied architecture PRN-expand. When the gradients under this

structure are backward propagating, the total number of com-

bination of gradient timestamp is equal to 1+1+ ...+1 = k.

In the forward propagation phase, the partial residual con-

nection will choose to add unequal channel numbers for

different feature maps. Therefore, the source of the total

number of gradient source is 1 + 2 + ...+ k = (1+k)×k
2 .

In the final phase, we adopt the encoder-decoder architec-

ture that auto-encoder often uses, and incorporate the concept

Figure 9. Architecture of PRN-expand.

of partial residual connection into this architecture. Since the

number of middle layer channels in this architecture is ex-

tremely small, we call this part PRN-bottleneck, as shown in

10. When the gradient flow passes through the bottleneck lay-

ers, these gradients will be integrated into one gradient flow.

So we can think of the above integration as a stack of PRN-

shrink and PRN-expand. The total number of combination of

gradient timestamp of this part, under these circumstances,

is
(1+k/2)×(k/2)

2 + (k/2) = (1+k/2)×(k/2)+k
2 , it is sitting

between PRN-shrink and PRN-expand. The total number of

gradient sources is 1 + 2 + ...+ (k/2) + (k/2) + ((k/2)−

1) + ... + 1 = 2 × (1+k/2)×(k/2)
2 = (1 + k/2) × (k/2), it

is roughly about one half of PRN-shrink and PRN-expand.

Figure 10. Architecture of PRN-bottleneck.

Figure 11 shows the results of PRN testing on ImageNet,

designed according to three strategies. From results shown

in Figure 11, when the architecture is designed to reduce

the amount of computation, the PRN-shrink designed by

maximizing the gradient combination receives the best re-

sults. It receives 76.8% and 76.4% recognition rates when

the γ is set 0.75 and 0.5, respectively. For the same γ set-

tings, PRN-expand receives 75.7% and 72.7% recognition

rates, respectively, and PRN-bottleneck receives 75.5% and

72.7% recognition rates. From the outcomes received by ap-

plying PRN-bottleneck and PRN-expand, it is obvious that

the benefit of increasing the gradient source combination is

higher than that of increasing the gradient timestamp combi-

nation. In addition, we observed the effect of changing the

γ value and found that the recognition rate of PRN-shrink

which is designed to follow the maximal gradient combina-

tion linearly and gradually decreases as γ linearly decreases.

However, for a PRN which is not designed according to the

rule, its recognition rate declines exponentially.

Figure 11. Results of PRN-shrink, PRN-expand, and PRN-

bottleneck on ImageNet.

4.3. Comparison with GPU-based real-time models

Table 2 illustrates the comparison of our PRN model with

those models with GPU running speed over 30 fps in the

literature. First, we compare our PRN with the baseline

YOLO-v3 model. For YOLO-v3-FPRN, we only change the

offset of all shortcut connections in YOLO-v3, and make

a partial residual connection to the subsequent layers with

50% of the channel in the feature map. With only the above

simple changes, we increase 1% and 0.5% mAP@.5:.95 on

320 × 320 and 416 × 416 input image, respectively. By

gradually reducing the number of feature map channels per

stage to 50% for YOLO-v3-PRN, we can achieve the same

accuracy with 35% less computation and twice the speed of

computation. Compared with other state-of-the-art models,

YOLO-v3-PRN performs better. For example, YOLO-v3-

PRN can speed up 2ms computation time than RBFNet

[11], but at the same time gain 0.5% mAP@.5:.95 over

RBFNet. The above experiments confirm that under exactly

the same conditions, we only need to increase the number of

gradient combinations and enrich their content to get better

learning results. That is to say, we can use the parameters

more effectively and achieve the same learning effect with a

smaller number of parameters.

Table 2. Compare with state-of-the-art GPU real time models on

MSCOCO test-dev set.

Model Input size BFlops mAP@.5:.95 GPU time

SSD [12] 300 - 25.1% 12 ms

RFBNet [11] 300 - 30.3% 15 ms

RefineDet [23] 320 - 29.4% 26 ms

YOLO-v3 [14] 320 38.973 28.2% 22 ms

YOLO-v3-FPRN [ours] 320 38.973 29.2% 21 ms

YOLO-v3-PRN [ours] 320 25.106 28.4% 11 ms

YOLO-v3 [14] 416 65.864 31.0% 29 ms

YOLO-v3-FPRN [ours] 416 65.864 31.5% 27 ms

YOLO-v3-PRN [ours] 416 42.429 30.8% 13 ms

4.4. Comparison with state-of-the-art lightweight
models

In this set of experiments, we will demonstrate the high

flexibility of PRN and its advantages in lightweight models.

First, we found that when integrating features from multiple

stages, either SSD or YOLO-v3 uses concatenate technique.

Models such as feature pyramid networks[8]-based (FPN-

based) RetinaNet [9] require an additional transition layer to

convert the features of different stages into the same number

of channels for shortcut connection. These extra operations

may be insignificant in large models, but for lightweight

models, this is enough to introduce very significant compu-

tational cost. The results shown in Table 3 show that our

proposed PRN is highly flexible. It has the ability to reduce

computing cost and computing time, as well as improving

the performance of the model.

Adding PRN to YOLO-v3-tiny (v3-tiny-PRN of Table 3)

can reduce 38% of computation, 37% CPU computation

time, and 19% GPU computation time, while maintaining

the accuracy of 33.1% mAP@0.5. With the NVIDIA Jet-

son TX2 platform, the above system is 12 fps faster in the

object detection task. From the above data, the PRN intro-

duced will undoubtedly result in a full range of performance

improvements.

If we compare Pelee and Pelee-PRN, the latter has 47%

less parameter. In addition, Pelee-PRN has a much smaller

overhead than Pelee, it is far better than Pelee in terms of

computing speed. When the input image size is 416 ×

416, Pelee-PRN is 6.7% mAP@0.5 better than Pelee. If we

compare the computation time spent on GPU, CPU, and TX2,

then Pelee-PRN is 2.9 times, 2.4 times, and 1.8 times faster

than Pelee, respectively. If the input image size is 320 ×

320, Pelee-PRN reduces the computation by 7% compared

to Pelee, but increases 2.6% mAP@0.5. If we compare

the computation speed spent on GPU, CPU, and TX2, then

Pelee-PRN is 3 times, 4.3 times, and 2.4 times faster than

Pelee.

Overall, the proposed PRN can effectively improve the

accuracy of the existing lightweight models with only a small

number of parameters. The PRN-based architectures can

combine multiple sets of features from different channels to

significantly reduce the extra computational cost caused by

combining different pyramid features based on concatenate

or transition layers.

Table 3. Compare with state-of-the-art lightweight models on

MSCOCO test-dev set.

Model
v3-tiny

[14]

v3-tiny

-PRN

[ours]

Pelee

[20]

Pelee

-PRN

[ours]

Pelee

-PRN

[ours]

Tiny

-DSOD

[22]

ENet-B0

-PRN

[ours]

Input size 416 416 304 320 416 300 320

BFlops 5.57 3.47 2.58 2.39 4.04 2.24 2.21

#Parameters 8.86M 4.95M 5.98M 3.16M 3.16M 1.15M -

MAP@0.5 33.1 33.1 38.3 40.9 45.0 40.4 41.0

GPU time 3.3ms 2.7ms 26ms 8.7ms 9.0ms 21ms -

CPU time 125ms 78ms 394ms 92ms 166ms 704ms -

TX2 time 28ms 21ms 68ms 28ms 38ms 71ms -

TX2 system

+visualize

+tracking

37 fps

23 fps

22 fps

49 fps

28 fps

28 fps

14 fps

-

-

37 fps

24 fps

23 fps

27 fps

19 fps

19 fps

-

-

-

-

-

-

TX2 tensorRT 71 fps 91 fps 49 fps 70 fps 48 fps - -

§ GPU: titanX; CPU: intel i7; TX2: Nvidia Jetson TX2.
§ GPU time, CPU time and TX2 time consider model inference time.
§ TX2 system including preprocessing, model inference, and post-

processing time.
§ TX2 tensorRT including preprocessing, model inference time.
§ tensorRT can significantly increase the speed, but at the same time

lower down the accuracy.
§ Pelee merges convolution layer and batch normalization layer, the

time spent on GPU and CPU are 13ms and 271ms, respectively. The

accuracy will drop a little bit.
§ SSD-300: GPU 46fps, MAP@0.5 41.2; Mobilenet-v1-SSD-512: GPU

33fps, MAP@0.5 39.2. Pelee-PRN: GPU 108fps, MAP@0.5 45.0.
§ ENet-B0 is EfficientNet-B0 proposed in [19].

4.5. Applications in the real world

The object detection model trained by our PRN architec-

ture has actually worked with the Ministry of Transportations

in several countries and established real-time traffic flow

analysis platforms in those countries. Our system can in-

stantly analyze information such as vehicle type, number of

steering vehicles, vehicle speed, road occupancy, etc. These

collected data can be used as the basis for the conversion of

traffic signals. Figure 12 shows the intelligent traffic flow

analysis machine box of the actual device at the intersection,

which houses the embedded computing device we developed

and a 1TB SSD for recording videos. Figure 13 shows the

fisheye lens-based traffic analysis system at the intersection,

which can be used to analyze vehicle type, vehicle color,

vehicle speed, and steering traffic flow. Figure 14 shows the

traffic tracking system, which can be used to analyze the

instantaneous vehicle speed, the length of vehicle queue, etc.

Figure 15 shows the road license plate recognition system.

In addition to detecting and tracking vehicles, the system

can also recognize the license plate.

Figure 12. Intelligent traffic flow analysis machine box.

Figure 13. Fisheye lens-based traffic analysis system.

Figure 14. Traffic tracking system.

5. Conclusions

In this study we proposed to use the gradient combination
concept to enhance the learning process. We designed partial
residual connection and four different PRN architectures to
verify our assertion. The proposed PRN has a high degree of
flexibility, learning ability, and execution efficiency. Besides,
PRN is highly compatible with lightweight models, and it
can be easily applied to many advanced DCN architectures,

Figure 15. Road licence plate recognition system.

such as ResNet, FPN, etc. We used MSCOCO dataset for
object detection and the experimental results confirmed that
YOLO-v3-PRN maintains the same detection accuracy as
YOLO-v3 with a 35% reduction of computation in YOLO-
v3, while simultaneously increased the speed of execution by
twice. In the experiments designed for lightweight models,
YOLO-v3-tiny-PRN maintained the same accuracy under the
condition of 37% less parameters and 38% less computation
than YOLO-v3-tiny. For computational speed, our PRN-
based object detection system can increase the frame rate by
up to 12 fps on the NVIDIA Jetson TX2 platform. As to the
performance of Pelee-PRN, it is 6.7% mAP@0.5 higher than
Pelee, which improves the state-of-the-art of the lightweight
object detection models.

References

[1] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.

Imagenet: A large-scale hierarchical image database. In 2009

IEEE conference on computer vision and pattern recognition,

pages 248–255. IEEE, 2009.

[2] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 770–778,

2016.

[3] G. Huang, S. Liu, L. Van der Maaten, and K. Q. Wein-

berger. Condensenet: An efficient densenet using learned

group convolutions. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 2752–

2761, 2018.

[4] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Wein-

berger. Densely connected convolutional networks. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 4700–4708, 2017.

[5] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger.

Deep networks with stochastic depth. In European conference

on computer vision, pages 646–661. Springer, 2016.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in neural information processing systems, pages

1097–1105, 2012.

[7] G. Larsson, M. Maire, and G. Shakhnarovich. Fractalnet:

Ultra-deep neural networks without residuals. arXiv preprint

arXiv:1605.07648, 2016.

[8] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and

S. Belongie. Feature pyramid networks for object detection.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 2117–2125, 2017.

[9] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal

loss for dense object detection. In Proceedings of the IEEE

international conference on computer vision, pages 2980–

2988, 2017.

[10] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-

manan, P. Dollár, and C. L. Zitnick. Microsoft coco: Com-

mon objects in context. In European conference on computer

vision, pages 740–755. Springer, 2014.

[11] S. Liu, D. Huang, et al. Receptive field block net for accurate

and fast object detection. In Proceedings of the European

Conference on Computer Vision (ECCV), pages 385–400,

2018.

[12] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-

Y. Fu, and A. C. Berg. Ssd: Single shot multibox detector.

In European conference on computer vision, pages 21–37.

Springer, 2016.

[13] J. Redmon. Darknet: Open source neural networks in c. 2013.

[14] J. Redmon and A. Farhadi. Yolov3: An incremental improve-

ment. arXiv preprint arXiv:1804.02767, 2018.

[15] Z. Shen, Z. Liu, J. Li, Y.-G. Jiang, Y. Chen, and X. Xue.

Dsod: Learning deeply supervised object detectors from

scratch. In Proceedings of the IEEE International Conference

on Computer Vision, pages 1919–1927, 2017.

[16] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014.

[17] R. K. Srivastava, K. Greff, and J. Schmidhuber. Highway

networks. arXiv preprint arXiv:1505.00387, 2015.

[18] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,

D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper

with convolutions. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 1–9, 2015.

[19] M. Tan and Q. V. Le. Efficientnet: Rethinking model

scaling for convolutional neural networks. arXiv preprint

arXiv:1905.11946, 2019.

[20] R. J. Wang, X. Li, and C. X. Ling. Pelee: A real-time object

detection system on mobile devices. In Advances in Neural

Information Processing Systems, pages 1963–1972, 2018.

[21] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He. Aggre-

gated residual transformations for deep neural networks. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 1492–1500, 2017.

[22] J. L. Yuxi Li, Jianguo Li and W. Lin. Tiny-DSOD:

Lightweight object detection for resource-restricted usage.

In BMVC, 2018.

[23] S. Zhang, L. Wen, X. Bian, Z. Lei, and S. Z. Li. Single-shot re-

finement neural network for object detection. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 4203–4212, 2018.

[24] L. Zhu, R. Deng, M. Maire, Z. Deng, G. Mori, and P. Tan.

Sparsely aggregated convolutional networks. In Proceedings

of the European Conference on Computer Vision (ECCV),

pages 186–201, 2018.

