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Abstract

Deep learning methods have achieved state-of-the-art

accuracy in single image super-resolution (SISR). Yet, how

to achieve good balance between efficiency and accuracy

in SISR is still an open issue. While most existing methods

learn residual features only in low resolution (LR) space in

order for higher efficiency, recent studies show that jointly

learning residual features in LR and high resolution (HR)

space is more preferred for accurate SISR. In this paper, we

propose an efficient SISR method via learning hybrid resid-

ual features, based on which the residual HR image can be

reconstructed. To fulfill hybrid residual feature learning,

we propose a compact back-projection network that can si-

multaneously generate features in both LR and HR space by

cascading up- and down- sampling layers with small-sized

filters. Extensive experiments on four benchmark databases

demonstrate that our proposed method can achieve high ef-

ficiency (i.e., small number of parameters and operations)

while preserving state-of-the-art SR accuracy.

1. Introduction

As a low-level computer vision task, single image super-

resolution (SISR) aims to restore a high-resolution (HR)

image from a low-resolution (LR) image. SISR is an ill-

posed problem because a lot of information is lost in the

LR image compared with its HR counterpart. To solve

this problem, a number of methods have been proposed,

including non-learning based [6, 20] and learning based

[5, 4, 12, 14, 7, 24, 9, 1]. Learning based methods generally

work better by learning prior knowledge of the relation be-

tween HR and LR images from training data of pairing HR

and LR images. Among them, deep learning based methods

[9, 1, 7, 4] achieve the state-of-the-art.

Dong et al. [5] firstly introduced deep learning to SISR

with a three-layer convolutional neural network. Since then,

many efforts have been made to improve the SISR accuracy

by exploring different network structures, e.g., residual net-
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Figure 1: ×2 Super-resolution results of our method

(CBPN) and other algorithms. PSNR: CARN [1] (28.86

dB), FALSR-A [4] (28.80 dB), and Ours (29.37 dB).

works in [13], deep back-projection networks (DBPN) in

[7], and memory networks in [18]. Despite the impressive

SISR accuracy of these methods, they usually have a large

number of parameters and operations, which prevent them

from being adopted in many real-world applications, partic-

ularly image super-resolution (SR) on mobile phones.

In order to implement SISR on low-power systems (e.g.,

mobile phones and drones), the authors of DBPN [7] reduce

the number of filters as well as the depth of the network in

DBPN (resulting in light-weight DBPN, or in short DBPN-

M/S) at the cost of degraded SR accuracy. Ahn et al. [1]

propose to cascade residual networks with multiple short-

cut connections for learning residuals in LR feature space

(the corresponding SR model is called CARN), and further

reduce the model complexity for mobile applications by us-

ing the recursive network scheme (the model is thus called

CARN-M). Hui et al. [9] propose an information distilla-

tion network that can learn HR residual features in the LR

feature space with lightweight parameters and low compu-

tational complexity. Instead of manually designing efficient

networks, Chu et al. [4] employ neural architecture search

to construct three lightweight SISR networks (i.e., FALSR-

A, FALSR-B, FALSR-C). The building blocks of these net-

works are similar to the residual blocks in CARN, and there-

fore they essentially learn residuals in LR feature space too.



In this paper, we aim to propose an efficient SISR

method by exploiting latest advancement in network struc-

ture design for SR. Specifically, according to DBPN [7],

learning residuals in both LR and HR feature spaces is ben-

eficial to obtaining more accurate SR results. However, for

one thing, DBPN has high complexity because of its large-

sized filters and elaborated network structure; for another,

as discussed in the last paragraph, in order to improve the

efficiency, existing methods all learn residuals only in LR

feature space. Besides, according to [24] and [1], fully uti-

lizing multi-level representations and multiple local features

can effectively boost SR accuracy; and according to [9], re-

constructing the HR image for a LR image by learning its

residual in HR image space is an efficient way. However,

DBPN reconstructs the HR image directly from the multi-

ple HR features obtained via back-projection networks.

Motivated by the above observations, we propose a com-

pact back-projection network that can learn hybrid resid-

ual features in both LR and HR spaces to achieve a good

balance between efficiency and accuracy of SISR. We will

introduce in detail our proposed method in Section 3 after

briefly reviewing related work in Section 2. We then report

in Section 4 our experimental results, which prove that our

proposed method has high efficiency (i.e., fewer parameters

and operations) while maintaining state-of-the-art SR accu-

racy. We finally conclude the paper in Section 5.

2. Related Work

Recently, deep learning methods have substantially push

forward the frontier of image super-resolution. Dong et

al. [5] first proposed a three convolution layer network, SR-

CNN, which maps the interpolated LR images to HR coun-

terparts. Followup works focused on using deeper network,

new learning strategies or network structures. VDSR [10]

adopted a deeper network with global residual learning.

DRRN [17] compressed the network depth by applying re-

cursive learning strategy. Ledig et al. [13] employed gen-

erative adversarial network (GAN) for SISR and a percep-

tual loss to train SR networks. Tong et al. [21] used dense

connections to transfer information between middle layers,

which enabled features reuse in networks. Haris et al. [7]

exploited multiple up- and down- sampling layers, which

are alternately applied to implement bidirectional projec-

tion between LR and HR spaces. Lim et al. [14] connected

multiple residual blocks to fulfill multi-scale deep SR with

more than 160 layers and 8M parameters. Tai et al. [18]

proposed a very deep persistent memory network (Mem-

Net) for SISR, which mines persistent memory through an

adaptive learning process. The primary goal of those SR

methods is to achieve better SR accuracy. Yet, the large

number of operations and parameters hinders their applica-

tion in low power scenarios.

Ahn et al. [1] proposed a cascaded residual SR net-

work (CARN). They compressed the model and reduced its

computational complexity by effectively cascading residual

blocks. Further they employ group convolution and point-

wise convolution to construct a smaller model (CARN-M).

Chu et al. [4] constructed three lightweight networks via

automatic neural architecture search. In this work, we com-

press the SR network by reducing the size of feature chan-

nels, and reduce the number of operation by replacing the

deconvolution layers with sub-pixel convolution layers [16].

In addition, the utilization of LR and HR features to reha-

bilitate the HR images guarantees the SR accuracy of our

network. Finally, we establish the fast and lightweight net-

works, CBPN and CBPN-S, achieving comparable SR re-

sults with state-of-the-art methods.

3. Proposed Method

3.1. Network architecture

Figure 2 depicts the network structure of our proposed

method (for 4× super-resolution), namely compact back-

projection network, or shortly CBPN. CBPN is mainly com-

posed of three parts: Low-level feature extraction module,

compact projection module and reconstruction module. Let

ILR be the input LR image of M l × N l and IHR be the

output HR image of Mh × Nh, where M l < Mh and

N l < Nh. F 0

L is the LR feature output by the low-level

feature extraction module. F t
L and F t

H , respectively, denote

the LR feature and HR feature output by tth UD block (see

Fig. 3). FL is obtained by compressing the LR features

generated by all UD blocks. F 0

H is obtained by upsampling

FL with the first upsampling layer. FH is the output of the

second upsampling layer. ∆IH represents the HR residual

image learned by our network. I0H is the HR image obtained

by upsampling the input ILR with bicubic interpolation. We

train our network in an end-to-end manner.

In low-level feature extraction module, we use two

convolution layers to map the input LR image to a fea-

ture vector F 0

L, which is the input to the following pro-

jection module. Several UD blocks, two compression

layers (CL) and two upsampling layers constitute the

compact projection module. We use dense connections

among the UD blocks and export the LR and HR fea-

tures of UD blocks for subsequent processing. The op-

eration of the first compression layer can be represented

by FL = f
′

compress([F
1

L, . . . , F
t
L, . . . , F

T
L ]), which con-

catenates all input LR features and feeds the concate-

nated features to a 1 × 1 convolution layer. The oper-

ation of the first upsampling layer is F 0

H = f
′

up(FL),
which defines the mapping from LR space to HR space

and whose input is the compressed LR feature. FH =
f

′′

up(f
′′

compress[F
0

H , F 1

H , F t
H , FT

H ]), where f
′′

compress is the

compression layer between the two upsampling layers, and

f
′′

up is the second upsampling layer. In our 4× network,



Figure 2: Network structure of our CBPN on ×4 scale. CBPN consists of three modules: low-level feature extraction,

projection and reconstruction. Blue arrow lines in projection module are dense connection between UD-blocks. Red arrow

lines are the output of UD blocks.

Figure 3: The detailed structure of UD block.

T = 8 and t = 4, and thus only part of HR features are

involved in reconstruction. In reconstruction module, we

employ a 3 × 3 convolution layer as reconstruction layer.

The output of reconstruction layer, ∆IH = frec(FH), is a

residual image ∆IH of high resolution. The final output HR

image of our network is IHR = ∆IH + I0H .

3.2. Projection module

Our compact projection module is inspired by the up-

and down- projection units of DBPN [7]. But we adapt the

projection units of DBPN from the following three aspects

to improve its efficiency without significant loss of SR ac-

curacy. (i) The LR features generated by down-projection

units are overlooked during reconstruction in DBPN, while

we utilize both HR and LR features. (ii) DBPN implements

upsampling layers with deconvolutional layers, while we

employ sub-pixel convolutional layers, which have lower

complexity. (iii) We add local residual connections to im-

prove the learning ability of the UD blocks.

Figure 3 shows the detailed structure of our UD block.

F t−1

L represents the input of the tth UD block. F t
L and F t

H ,

respectively, denote the LR and HR feature outputs of tth

UD block. F t
L0

and F t
L1

are the LR features. F t
H0

and F t
H1

are the HR features. etL0
and etL1

are LR residual features,

and etH1
is HR residual feature. The operations involved in

our projection unit can be defined as follows

F t
H0

= U t
0
(F t−1

L ;W 0

U ), (1)

where U t
0

denotes the first sub-pixel convolution layer in

tth UD block, and W 0

U is the weights of the first sub-pixel

convolution layer.

F t
L0

= Ct
0
(F t

H0
;W 0

C), (2)

where Ct
0

denotes 4×4 convolution operation with weights

W 0

C . This convolution layer implements the mapping from

HR space to LR space.

etL0
= F t

L0
− F t−1

L , (3)

F t
H = etH1

= U t
1
(etL0

;W 1

U ), (4)

where U t
1

is the second upsampling layer in tth UD block,

and W 1

U represents its weights. The LR residual feature etL0

is mapped to HR space by this upsampling layer. etH1
is the

HR residual feature, which is also taken as the HR feature

output F t
H of this UD block.

F t
H1

= etH1
+ F t

H0
, (5)

F t
L1

= Ct
1
(F t

H1
;W 1

C), (6)

where Ct
1

is the operation of 4 × 4 convolution layer, and

Ct
1

is similar to Ct
0
, mapping features from HR to LR space.

etL1
= F t

L1
− F t−1

L , (7)

F t
L = Concat([etL1

, etL1
]). (8)

We duplicate the residual feature (etL1
) and stack it with its

duplication together as LR residual feature output (F t
L) of

the UD block. The duplication operation aims to increase

the weight of LR features in the network.



Figure 4: SR accuracy in terms of PSNR of our CBPN for

×2 SR on B100 and Urban100 datasets w.r.t. the number of

used intermediate HR features generated by the UD blocks.

The whole process of UD blocks embodies the idea of

back-projection. The cascaded upsampling and downsam-

pling layers achieve iteratively learning residual features.

The information in both HR and LR space is expanded

through those projection units. The iterative operation can

be interpreted as a self-correcting procedure which provides

feedback of the projection error to sampling layer and iter-

atively improves the features, as mentioned in [7].

3.3. Reconstruction module

Reconstruction module combines the features in LR and

HR space such that a wealth of feature information can be

used to recover the HR image. Note that the HR features

generated in both low and high level layers of the UD blocks

are used by the reconstruction module. This is beneficial to

reconstructing high quality HR images. In addition, the fea-

tures from LR space provide additional low frequency in-

formation, promoting effective reconstruction together with

HR features.

4. Experimental Results

4.1. Datasets and metrics

We train our proposed network with a high-quality

dataset DIV2K [19] of 800 training images, 100 valida-

tion images and 100 test images, and test the obtained

model on four standard benchmark datasets: Set5 [2],

Set14 [23], BSDS100 [15] and Urban100 [8]. Set5, Set14

and BSDS100 mainly consist of images of natural scenes,

while Urban100 consists of images of urban scenes. LR im-

ages are obtained by bicubic downsampling the HR images.

We use PSNR and SSIM [22] to measure the SR accuracy,

CBPN-L CBPN-H CBPN

HR features
√ √

LR features
√ √

Set5 37.87 37.86 37.90

B100 32.15 32.13 32.17

Urban100 32.06 32.10 32.14

Table 1: SR accuracy in terms of PSNR (dB) of our CBPN

with or without using LR/HR features on three benchmark

datasets for ×2 SR. CBPN-L means using only LR features,

and CBPN-H using only HR features. CBPN uses both LR

and HR features.

Algorithm Mult-Adds
Set5 Set14

PSNR/SSIM PSNR/SSIM

D-DBPN-L [7] 1101.7G 31.99/0.893 28.52/0.778
CBPN 97.9G 32.21/0.894 28.63/0.781

Table 2: Quantitative comparison results between our

CBPN and D-DBPN-L [7] for ×4 SR. The best results are

shown in red color.

and the number of parameters in the SR models and the

total number of multiplications and summations required to

super-resolution one image (denoted as Mult-Adds) to mea-

sure the computational complexity of the SR models. Note

that we calculate PSNR and SSIM on the luminance chan-

nel (Y) of the YCbCr color space.

4.2. Implementation details

We use L1 loss instead of L2 loss to train our model. We

initialize the learning rate to 10−4 for all layers and decrease

it by a factor of 10 for every 1M iterations. We augment the

training images by randomly flipping them horizontally or

vertically and rotating them by 90◦. In our experiments,

the input LR image size is 64 × 64, and the batch size is

set to eight. Note that CBPN is implemented with eight

UD blocks with dense connections, while CBPN-S (i.e., a

simplified version of CBPN) has only three UD blocks. The

training is done on a PC with a NVIDIA RTX 2080TI GPU,

and stopped at 2M iterations. During the training, we ex-

port a model every 50 epochs. We finally choose the model

that has the highest PSNR on the validation set.

4.3. Model analysis

We first study the impact of the number of used inter-

mediate HR features in the UD blocks on the SR accuracy.

We construct five networks, which use 0, 1, 3, 5, and 8 HR

features, respectively. We evaluate their ×2 SR accuracy

(in terms of PSNR) on the B100 and Urban100 datasets.

The results are shown in Fig. 4. As can be seen, although
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Figure 5: Comparison of our CBPN with other SR methods for ×4 SR. Bold text represents best performance in terms of

PSNR and SSIM.

HR features do help for obtaining better HR images, us-

ing more HR features does not necessarily mean higher SR

accuracy. This indicates that a balance should be made in

utilizing LR and HR features. According to the results in

Fig. 4, when three HR features (i.e., F 1

H , F 4

H , F 8

H in CBPN,

and all the HR features in CBPN-S) are used, the best SR

accuracy is achieved on both datasets. Therefore, in the rest

experiments, when HR features are used, we use three HR

features as being done here.

We further evaluate the contribution of HR and LR fea-

tures on three datasets, Set5, B100 and Urban100. The

results are given in Table 1, in which CBPN-L means us-

ing only LR features, CBPN-H using only HR features, and

CBPN using both LR and HR features. Obviously, the best

SR accuracy is achieved when both LR and HR features are

used. This suggests that HR and LR feature spaces contain

complementary information that are useful for image SR.

Besides, we also analyze the complexity of our proposed

CBPN. Table 2 compares both complexity and accuracy of

CBPN and one of the state-of-the-art (SOTA) models, D-

DBPN-L [7], for ×4 SR on the Set5 and Set14 datasets.

In this experiment, following [1], the HR images are as-

sumed to be 720p (1280 × 720). Under this setting, the

Multi-Adds of CBPN is 97.9G, which is about 9% of that

of D-DBPN-L (1101.7G). As for the number of parameters

involved in the models, our CBPN has 1, 197K parame-

ters, while D-DBPN-L has about two times more parame-

ters (i.e., 2, 198K). Moreover, our CBPN achieves better



Scale Model Params Mult-Adds
Set5 Set14 B100 Urban100

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

×2

SRCNN [5] 57K 52.7G 36.66/0.9542 32.42/0.9063 31.36/0.8879 29.50/0.8946
VDSR [10] 665K 612.6G 37.53/0.9587 33.03/0.9124 31.90/0.8960 30.76/0.9140
LapSRN [12] 813K 29.9G 37.52/0.9590 33.08/0.9130 31.80/0.8950 30.41/0.9100
DRRN [17] 297K 6, 796.9G 37.74/0.9591 33.23/0.9136 32.05/0.8973 31.23/0.9188
SelNet [3] 974K 225.7G 37.89/0.9598 33.61/0.9160 32.08/0.8984 -

IDN [9] 553K 202.8G 37.83/0.9600 33.30/0.9148 32.08/0.8985 31.27/0.9196
CARN [1] 1, 592K 222.84G 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256
CARN-M [1] 412K 91.2G 37.53/0.9583 33.26/0.9141 31.92/0.8960 30.83/0.9233
FALSR-A [4] 1, 021K 234.7G 37.82/0.9595 33.55/0.9168 32.12/0.8987 31.93/0.9256
FALSR-B [4] 326K 74.7G 37.61/0.9585 33.29/0.9143 31.97/0.8967 31.28/0.9191
FALSR-C [4] 408K 93.7G 37.66/0.9586 33.26/0.9140 31.96/0.8965 31.24/0.9187
CBPN (Ours) 1, 036K 240.7G 37.90/0.9590 33.60/0.9171 32.17/0.8989 32.14/0.9279
CBPN-S (Ours) 430K 101.5G 37.69/0.9583 33.36/0.9147 32.02/0.8972 31.55/0.9217

×4

SRCNN [5] 57K 52.7G 30.48/0.8628 27.49/0.7503 26.90/0.7101 24.52/0.7221
VDSR [10] 665K 612.6G 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524
DRCN [11] 1, 774K 9, 788.7G 31.53/0.8854 28.02/0.7670 27.23/0.7233 25.14/0.7510
LapSRN [12] 813K 149.4G 31.54/0.8850 28.19/0.7720 27.32/0.7280 25.21/0.7560
DRRN [17] 297K 6, 796.9G 31.68/0.8888 28.21/0.7720 27.38/0.7284 25.44/0.7638
SelNet [3] 1, 417K 83.1G 32.00/0.8931 28.49/0.7783 27.44/0.7325 -

IDN [9] 553K 89.0G 31.82/0.8903 28.25/0.7730 27.41/0.7297 25.41/0.7632
SRDenseNet [21] 2, 015K 389.9G 32.02/0.8934 28.50/0.7782 27.53/0.7337 26.05/0.7819
CARN [1] 1, 592K 90.9G 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837
CARN-M [1] 412K 32.5G 31.92/0.8903 28.42/0.7762 27.44/0.7304 25.63/0.7688
CBPN (Ours) 1, 197K 97.9G 32.21/0.8944 28.63/0.7813 27.58/0.7356 26.14/0.7869
CBPN-S (Ours) 592K 63.1G 31.93/0.8908 28.50/0.7785 27.50/0.7324 25.85/0.7772

Table 3: Quantitative results of our methods compared with the SOTA SR methods. Red and second texts indicate the best

and the second best results.

Figure 6: Trade-off between SR accuracy (PSNR) and

model complexity (the number of operations or Mult-Adds)

for ×4 SR on the Set5 dataset. Red triangles represent our

methods and green circles are other methods.

SR accuracy in terms of both PSNR and SSIM. These re-

sults prove that our method makes a better balance between

efficiency and accuracy of SR than the counterpart method.

4.4. Comparison with the SOTA methods

We quantitatively and qualitatively compare our CBPN

and CBPN-S with SOTA methods. Table 3 reports the

PSNR and SSIM of different methods for times2 and ×4
SR on the four test datasets. Our proposed CBPN achieves

the highest accuracy compared with the SOTA methods for

×4 SR on all the four datasets. For ×2 SR, our methods also

perform competitively. CBPN achieves 32.14 dB PSNR on

Urban100, 0.21 dB better than FALSR-A [4] and 0.22 dB

better than CARN [1]. On B100 CBPN is 0.05 dB bet-

ter than FALSR-A [4] and 0.08 dB better than CARN [1].

Figs. 5 and 7 show the qualitative comparison results of

CBPN, CBPN-S and other SOTA SR algorithms. Our meth-

ods tend to restore more realistic textures. Taking the image

img062 in Fig. 7 for example, our CBPN successfully re-

stores the correct building appearance, whereas the restored

appearance of other methods are obviously different from
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Figure 7: Visual comparison of the ×2 super-resolution results of our CBPN and the SOTA algorithms for images 37073
from B100 and img062 from Urban100.

the ground truth HR image.

Fig. 6 shows the comparison results with other deep

learning based SR methods in terms of the number oper-

ations (Multi-Adds) required for ×4 SR with respect to the

SR accuracy in terms of PSNR on the Set5 dataset. As

can be seen, Multi-Adds of our CBPN is similar to that of

CARN and FALSR-A, but our CBPN achieves better SR

accuracy than them. Note that the number of parameters

of CBPN is 0.4M less than CARN [1]. Using fewer num-

ber of UD blocks and thus fewer parameters and operations,

our simplified model CBPN-S obtains comparable accuracy

with IDN [9] and D-DBPN-L [7] but much lower computa-

tional complexity. This demonstrates the better trade-off of

our methods between complexity and accuracy.

5. Conclusion

In this paper, we propose a compact back-projection net-

work for fast and effective single image super-resolution.

We design novel UD blocks and reconstruction layer to re-

store the HR images by utilizing both HR and LR features.

Our qualitative and quantitative evaluation results demon-

strate that our method performs favorably against SOTA SR

methods in terms of both accuracy and complexity. In the

future, we will extend our method to other tasks, such as

video SR that demands for restoring high-quality video in

real time.
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