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Abstract

The carefully designed backbone network, the increase
of training data and the improved training skills have
boosted the performance of modern face recognition sys-
tems. However, in some deployment cases which aim at
model compactness and energy efficiency, some of the exist-
ing systems may fail due to the high complexity. Lightweight
Face Recognition Challenge is proposed in order to make
some progress in this direction and establishes a new com-
prehensive benchmark. In this challenge, we have designed
a light weight backbone architecture and all the parameters
are trained in a progressive way. Finally we achieve the 5th
in track 1 and the 4th in track 3.

1. Introduction

Face recognition is one of the most popular research top-
ics in the field of computer vision, which has been studied
by both academy and industry for several decades. Re-
cently, benefited from the development of convolutional
neural networks, great progress has been achieved for
face recognition even in some unconstrained environments
[16, 22, 10].

However, most of these benchmarks focus on the im-
provement of the accuracy while the model size and the
runtime efficiency are neglected. Lightweight Face Recog-
nition Challenge (LFRC)[5] is one of the first proposed to
measure the performance in terms of both accuracy and the
model complexity. In this way, although using deeper neu-
ral network with hundreds of layers and millions of param-
eters could achieve high accuracy, the computational cost
will sometimes be beyond the requirement which will limit
its use in some mobile or embedded applications. Some ran-
dom selected sample images from this challenge are shown
in Fig.1, and we can find that the applications of uncon-
strained face recognition under limited computational re-
sources is still a challenge problem.

In the literature, as far as we can see there are mainly
three directions to deal with lightweight face recognition
problems: 1) the use of lightweight network structure; 2)
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Figure 1: Sample images from testing datasets. The track
1 consists of still images with large pose, exaggerated ex-
pression, non-uniform lighting, occlusion and sketch. The
track 3 contains a series of face images from consecutive
video frames, on which the main challenges are large pose,
motion blur, lighting and occlusions.

the carefully designed loss function which will usually aim
to reduce the intra class differences and at the same time
increase the inter class differences; and 3) some fancy train-
ing skills in order to avoid the overfitting and enhance the
model generalizability.

In this paper, we designed a lightweight network ar-
chitecture based on channel pruning and network deepen-
ing, which achieved high performance on face recognition
task. To enhance the model generalizability, we also pro-



posed an effective training process by warpping different
loss functions in a progressive way. Extensive experiments
on image-based test and video-based test demonstrate the
effectiveness of our method.

The rest part of this paper will be organized as follows:
in Section 2, we will briefly introduce the related works
from the three directions mentioned above; in Section 3 we
will give the details of our solution; in Section 4 the abla-
tion study will be conducted and experimental results for
each part of our solution will be compared; and finally in
Section 5 the conclusion and our future plan will be made.

2. Related Work
2.1. Network Architecture

In this light weight face recognition challenge (LFRC),
there is a strict limitation on both the model size (e.g. less
than 20M) and the model complexity (e.g. less than 1G
FLOPs). So the participants will be inclined to achieve a
trade-off between accuracy and efficiency during model de-
sign, and actually this topic has been actively studied in the
field of image classification [3]. For example, SqueezeNet
[17] is one of the early works in this direction, which has
proposed 1x1 convolution with squeeze and expand mod-
ules and the number of parameters will be reduced heavily.
SqueezeNext [9] is its following work, which will shift the
focus on reducing the number of operations (MAdds). In
this way, not only the number of parameters will be reduced
but also the inference latency will be substantially im-
proved. After that MobileNet [14] and MobileNetV2 [24]
are proposed to use novel structure for light weight image
classification, where the former one uses depth-wise con-
volution and point-wise convolution to replace the vanilla
convolution and the latter one uses linear bottleneck and in-
verted residual structure. Their performances are compa-
rable with large VGG-16 [27] but with only one thirtieth
of parameters and MAdds. There are another two impor-
tant works named ShuffleNet [37] and ShuffleNetV2 [21]
which utilize group convolution and channel shuffle opera-
tions to reduce the MAdds. IGCV1 [36], IGCV2 [34] and
IGCV3 [28] propose to use interleaved group convolution
(IGC) to further reduce the redundancy. Besides the man-
ually designed architecture, there are some pioneer works
(e.g. MobileNetV3 [13]) focusing on automatically Neural
Architecture Search (NAS), and based on which the perfor-
mance can still be improved while the model can still keep
the relative low complexity.

However, there are mainly two obvious differences be-
tween image classification and face recognition. Firstly,
there is usually an alignment preprocess step before face
feature extraction while the model for image classification
is required to be rotation invariants. Secondly, the face im-
ages even from different classes will share a similar struc-

ture while the inter class difference in image classification
will be more obvious. Based on the analysis above, the
model capacities for face recognition can be further ex-
plored. There are already some works proposed to design
a light weight model for face recognition. For example,
LightCNN [33] is presented to learn a compact embed-
ding on the large-scale face data, and achieves 99.33% face
verification accuracy on LFW with 12.6 million parame-
ters. MobileFaceNet [1] is based on MobileNetV2 with re-
duced the expansion factor. Global Depth-wise Convolution
(GDC) [1] is introduced to replace Global Average Pooling
(GAP), and achieves better verification accuracy. MobiFace
[8] is also based on MobileNetV2. They adopt fast down-
sampling strategy to reduce the size of feature map. Be-
sides, ReLU and GAP are replaced by PReLU and Fully
Connected Layer for better performance. More recently, a
novel structure named MobileNetV3 [13] which introduced
Squeeze-and-Excitation [15] (SE) module, Hard Swish acti-
vation function and Network Architecture Search technique
exhibits even more promising results, which motivates us to
apply this new structure in our model design.

2.2. Loss Function

Another important way to improve face recognition per-
formance is the design of suitable loss functions. Some
early works [33] treat face recognition as a classification
problem, and Softmax loss with the identity labels will be
used as a supervised signal. It has to be mentioned that the
Softmax loss only considers the inter class differences while
the intra class differences are ignored. In order to overcome
this shortcoming, researchers will design an extra kind of
loss function with Softmax loss to construct a joint supervi-
sion. In this way, the intra class difference will be reduced
while the inter class difference will be enlarged. There are
mainly two streams proposed for this direction. For exam-
ple, in [32] the Center loss has been proposed which will ex-
plicitly impose extra loss term that penalizes the Euclidean
distance between samples and their representative centers.
In FaceNet [25], triplet loss has been introduced, where an-
chor based mining is implemented based on millions of im-
ages in the training set. Since the batch size is limited due
to hardware, the results will reply heavily on the online hard
example mining strategy and it becomes a little tricky to be
implemented to obtain a good result.

The other main stream is to modify the original Soft-
max loss to angular space due to the fact that the features
learned by Softmax loss have intrinsic angular distribution.
SphereFace [18] can be viewed as a milestone work of this
kind, which will model the features in angular space with
weight normalization operation and introduce an angular
margin to the decision boundary [20]. However, the mar-
gin used in [18] is multiplicative, which is a little hard to
convergence during training process. Later, additive an-



gular margin based methods (e.g. ArcFace [19] CosFace
[30] and AM-Softmax [29] ) are proposed, which are rela-
tively easier to train and can further boost the performance.
Similar ideas are also presented in CosFace [30] and AM-
Softmax [29] which enlarge the decision margin in the co-
sine manifold. More analysis and comparisons on angu-
lar margin based methods can be found in [19]. There are
some more recent works, which will consider the inter-class
separability. For instance, RegularFace [38] explicitly dis-
tances identities by penalizing the angle between an identity
and its nearest neighbor, which will result in discrimina-
tive face representations. UniformFace [7] impose an equi-
distributed constraint by uniformly spreading the class cen-
ters on the manifold, so that the minimum distance between
class centers can be maximized through complete exploita-
tion of the feature space.

The losses introduced above have already exhibit good
performance and may be complementary to each other.
Therefore in our solution instead of designing one more
loss function, we will propose a novel progressive learn-
ing framework, which will make use of all the introduced
losses and train the network in a progressive manner. In this
way, we believe that our model can avoid to be overfitting.

3. Proposed Method
3.1. Network Architecture

We use depthwise separable convolution in our basic
block. Because compared with standard convolution, it
can often save substantial parameters. The linear bottle-
neck (Fig.2 (a)) and inverted residual structure (Fig.2 (b))
from MobileNetV2 [24] are also designed to save param-
eters, which is composed of pointwise expansion convolu-
tion, depthwise convolution, pointwise linear convolution
and residual connection. Pointwise expansion convolution
increases input channels for depthwise convolution. Point-
wise linear convolution has no activation layer to minimize
the loss of the information. Residual connection can ensure
stable optimization especially when network is deep. The
squeeze and excitation block adaptively recalibrate channel-
wise feature by explicitly modelling channel relationships,
which can achieve significant performance improvement in
modern architectures with slight computation cost. Mean-
while, PReLLU [11] is used as activation function and the
extra computation cost is almost negligible. So based on
the structure mentioned above we design two kinds of basic
blocks and details can be found in Fig.2 (c) and (d).

The network depth is one of the key factors to perfor-
mance on vision task. General speaking, deeper network
can capture richer information and get more remarkable
performance. However, due to the vanishing gradient prob-
lem and gpu memory limit, deeper network is harder to op-
timize. Sometimes, with the growing of network depth,

Input Operator | t c n|s
112%112%3 Conv - 24 11 |2
56*56%24 Block 56 | 24 | 2|1
56*%56%24 Block 116 | 56 | 1 |2
28*28*56 Block 116 | 56 | 6 |1
28%28%56 Block | 248 | 124 | 1 |2
14*%14%124 | Block | 248 | 124 | 15| 1
14%14*%124 | Block | 512 | 256 | 1 |2

T*T*256 Block | 256 | 256 | 24 | 1
T*T%256 Conv - 51271 |1
T*T*256 GDC - 12821 |1

Table 1: Each line describes a sequence of 1 or more identi-
cal layers, repeated n times. All layers in the same sequence
have the same number c of output channels. The first layer
of each sequence has a stride s and all others use stride 1.
All spatial convolutions use 3 3 kernels. The expansion
channels t is the input channels of depthwise convolution.

the performance could even decrease. The network width
is also important [35], which has been studied in the lit-
erature [14, 24, 37, 21]. Wider network which has more
parameters than the thin one is easier to train and usually
can achieve better performance. However, too wider but
shallow network will perform underachievement because
of lacking high level semantic features. Low-level block
has large feature map size. Increasing the depth and width
will increase computation obviously. High-level block is
related to large receptive filed and usually will contribute
more on final performance. In consideration of the semantic
information of high-level features, we prefer to increase the
depth and width of high-level blocks, which have greater
impact on results. The detailed structure can be found in
Tab.1.

3.2. Loss Function

Loss function also plays an important role on recognition
performance. In our solution instead of designing a new
loss, we propose to train the network in a progressive way.

Firstly, the well designed backbone network introduced
in previous section is trained with ArcFace loss [19] which
can be formulated as follows:
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ArcFace loss belongs the margin based loss and the
trained model usually has good generalizability, which will
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Figure 2: (a) linear inverted residual bottleneck in MobileFaceNet; (b) linear inverted residual bottleneck when stride = 2
in MobileFaceNet; (c) linear bottleneck and inverted residual structure with SE module; (d) linear bottleneck and inverted

residual structure with SE module when stride = 2.

be used as our base backbone. After convergence, we will
add one of the following loss functions [32, 30, 38, 19, 29,
31, 18] at each time, and the process will be repeated till all
the loss functions are added.
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Generally speaking, different losses may exhibit differ-
ently and could be complementary to each other. Our
wrapped loss will usually perform better than using only
one of them. Besides, the progressive learning makes the
training easier to converge than training multitask loss di-
rectly.

4. Experiments

In order to show the effectiveness of the proposed frame-
work, extensive experiments are conducted in different set-
tings. Firstly, we design our light weight backbone net-
work and train its parameters in manual search way with
ArcFace[4] loss. After the training convergence, we use
current best model as the warm up version and continue
the learning process in a progressive manner by wrapping
more loss functions. The process will be repeated till all the
losses are involved. Finally, we test our models on Track
1 Trillion-pairs dataset and Track 3 iQIYI-VID dataset, and
the final performances are evaluated and reported by the or-
ganizers.

4.1. Dataset

The officially provided training set is a cleaned version
from the large scale MS1M [10] which contains 5.1M im-
ages of 93K identities. All the images are preprocessed
according to RetinaFace[6], and only the cropped version
sized of 112 x 112 is provided to public. Three popular
datasets such as Labelled Faces in the Wild (LFW) [16],
Celebrities in Frontal Profile (CFP) [26] and Age Database
(AgeDB) [23] can be used as the validation set.



Table 2: The process of adjusting the network structure and the results on validation datasets for each step. C means the
output channels, Num means the repeat times of SEResidual block. The right 3 columns are the accuracy on LFW, CFP-FP

and AgeDB-30.

layer name
Step | convl conv2 conv3 conv4 conv5 Dim | FLOPs | Size | LFW CFP-FP | AgeDB-30
C|{N|IC|N|] C |N|C|N|] C|N
0 64 | 1 |64 |2 128 | 8 | 256 | 16 | 512 | 4 | 256 | 933.3M | 18M | 0.9965 | 0.9797 0.9778
1 301|622 | 128 | 8 | 256 | 18 | 512 | 16 | 256 1G 18M | 0.9977 | 0.9847 0.9798
2 28 |1 |60 |2 | 128 | 8 | 256 | 16 | 512 | 19 | 256 1G 18M | 0.9977 | 0.9854 0.9812
3 26 | 1 | 58| 2 | 128 | 6 |25 | 16| 512 | 21 | 256 1G I9M | 0.9982 | 0.9845 0.9802
4 24 |1 |56 2 | 124 ] 6 | 256 | 16 | 512 | 23 | 256 | 998.4M | 20M | 0.9978 | 0.9860 0.9805
5 24| 1 | 56| 2 | 124 | 6 | 256 | 15| 512 | 24 | 282 | 976.6M | 20M | 0.9977 | 0.9850 0.9815

LFW dataset collected from internet contains 13,233 im-
ages from 5749 identities, and a total of 6,000 image pairs
are used to measure the performance in term of verification
accuracy. The web-collected face images have large vari-
ations in pose, expression and illuminations. CFP dataset
consists of 500 subjects, each with 10 frontal and 4 pro-
file images. We take the most challenging subset CFP-FP
to report the performance following [19]. AgeDB dataset
is an in-the-wild dataset with large variations in pose, ex-
pression, illuminations and age. AgeDB contains 12,240
images of 440 distinct subjects. We use the most challenge
subset from the four groups, AgeDB-30, to report the per-
formance as well. We can also get a cropped version of the
validation set from the organizers. For testing, two typical
large-scale datasets are used, Trillion-pairs dataset for im-
age test and iQIYI-VID for video test. Images in Trillion-
pairs dataset come from ELFW and DELFW. ELFW con-
tains 274K images from 5.7K identities. DELFW is the dis-
tractors for ELFW and contains 1.58M face images from
Flickr. iQIYI-VID includes 200K videos of 10K identities,
with each video extracted to frames at 8FPS. Besides, modi-
fication (e.g. re-alignment or resize) and data argumentation
except Horizontal flipping on testing images are prohibited.
This will force all the participants to pay more attentions on
the network design and keep result comparison fair in this
challenge. Finally we report our performance on Track 1
Trillion-pairs dataset and Track 3 iQIYI-VID dataset.

4.2. Training Details and Experimental Results

In the first stage, we adjust the network architecture
within the limitations of computational complexity, model
size and feature dimension, which are 1G FLOPs, 20M and
512 dim respectively.

We take MobileFaceNet as baseline and trace the accu-
racy on validation datasets to guide the adjustment of the
network structure. Specially, inspired by MobileNetV3 we
add SE-Block to the two basic blocks of MobileFaceNet for
applying attention mechanism to feature maps. We name
the new basic blocks SEResidual and SEDResidual. The

computational complexity of the baseline is close to 1G
FLOPs and the model size is close to 18M. To enhance the
discrimination of our model, we mainly focus on expending
the depth and width of higher blocks. In our solution, we in-
crease the number of blocks in C'onv5_x and the channels
of feature map in deep layers. In order to avoid increas-
ing the total computational complexity and model size, we
decrease the corresponding item in shallow layers. We also
take feature dimension into consideration and fix it to a suit-
able value through experiments. The process of adjusting
the network structure is shown on Tab.2. Step O means the
baseline, Step 1 to Step 5 adjust the depth and width pro-
gressively. What’s more, step 5 also adjusts the feature di-
mension based on the previous work.

In the second stage, we keep the network architecture
fixed and aim at exploring a better form of loss function.
We use current best model as the warm up version and con-
tinue the learning process in a progressive manner by wrap-
ping more loss functions. The details can be found in Tab.3.
As we expected, model training in a loss wrapping way will
further boost the performance and the training is much eas-
ier to convergence in comparison with directly multitask
learning.

Table 3: Results on Trillion-pairs for loss function wrap-
ping.

Methods LFW | CFP-FP | AgeDG-30 | ICCV19-challenge
ArcFace | 99.767 | 98500 | 98.150 36.666
Combined | 98.800 | 98371 | 98.017 86.877
Combined | 99 g0 | 98371 | 98017 87.181
+svgs
Combined
FSVES | 99800 | 98.343 | 98.183 87.195
+Intra
+Inter

In the final stage, we target on exploring better ways for
data processing to boost the performance on large-scale im-
age test benchmark and large-scale video test benchmark.
After carefully analyzing the characteristics of training and



Table 4: Results on Trillion-pairs dataset using proposed
progressive learning strategy.

Methods LFW | CFP-FP | AgeDG-30 | ICCV19-challenge
Combined

evs 99.800 | 98.343 | 98.183 87.195
+Intra

+Inter

Combined

+Intra 99.833 | 98.443 98.250 87.141
+Inter+CB

Combined

+Intra

+Inter+CB 99.817 | 98.243 98.183 87.214
+batch id=4[12]

Combined

+Intra

+Inter+CB 99.817 | 98.443 98.167 87.432
+batch id=4

+ semi-hard samples mining

testing datasets, we designed a search strategy which in-
cludes cutting long tail identities (Fig.5), PK mining[12]
and semi-hard samples mining. We conduct a series of ex-
periments to examine each effect and match different data
processing method for different benchmark.

According to our analysis, there are three kinds of noise
in iQIYI-VID test dataset. We sample some of the videos
shown as Fig.3. Obviously, the noise frames will affect the
video feature and make it less representative on condition
that we map the frame features to video feature by simply
averaging. Specially, we use unsupervised clustering based
on Union-Find for each video to remove the noise frames.
We choose the relatively large cluster which contains the
most elements as the cleaned frames of the video. In this
way, a large number of outliers aforementioned can be fil-
tered. Fig.4 shows the result of Union-Find cluster for video
id 0144686. Extensive experiments have been conducted to
determine the threshold of Union-Find cluster. The results
are shown in Tab.5. Extensive experiments on iQIYI-VID
test dataset demonstrate the effectiveness of the method.

Table 5: Results on iQIYI-VID dataset after Union-Find
Cluster with different thresholds.

Model Threshold Result
0 0.57201
0.3 0.57191
baseline 0.4 0.57442
0.5 0.57191
0.6 0.56473
0.3 0.57952
best model 0.4 0.58207
0.5 0.57894

...
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Figure 3: Examples for noise frames in iQIYI-VID test
dataset. The first row shows the frames of 0144611. There
are two indentities in the same video id. The second row
shows the frames of 0144691. Some of the frames in the
video id are not face images. The third row shows the
frames of 0144610. Some of the frames in the video id suf-
fer from heavy occlusion of faces. Noise frames are marked
by red rectangle. Best viewed in color.

Class 0 Class 1

Figure 4: Sample result for Union-Find Cluster [2]. Frames
in video id 0144610 are splitter by unsupervised cluster into
two classes. noise class with few frames are marked by red
circle. We map the frame features to video feature after
noise removal. Best viewed in color.

5. Conclusion

In this paper, we have proposed a carefully designed
backbone architecture for light weight face recognition.
When the base backbone is ready, a novel loss progressive
learning framework is used to further finetune the model.
After cleaning the outlier of the training set, the generaliz-
ability of the model will be further enhanced. Finally, we
have achieved the 5th in Track 1 and the 4th in Track 3.



(c) Hard example

Figure 5: Sample images in the training set which will lead
to bad results. Images in the same row are sampled from the
same class. (a)lmages with poor quality.(b)Images in the
same class but come from different identities. (c)Images in
the same class but come from different domain.
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