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Abstract

The carefully designed backbone network, the increase

of training data and the improved training skills have

boosted the performance of modern face recognition sys-

tems. However, in some deployment cases which aim at

model compactness and energy efficiency, some of the exist-

ing systems may fail due to the high complexity. Lightweight

Face Recognition Challenge is proposed in order to make

some progress in this direction and establishes a new com-

prehensive benchmark. In this challenge, we have designed

a light weight backbone architecture and all the parameters

are trained in a progressive way. Finally we achieve the 5th

in track 1 and the 4th in track 3.

1. Introduction

Face recognition is one of the most popular research top-

ics in the field of computer vision, which has been studied

by both academy and industry for several decades. Re-

cently, benefited from the development of convolutional

neural networks, great progress has been achieved for

face recognition even in some unconstrained environments

[16, 22, 10].

However, most of these benchmarks focus on the im-

provement of the accuracy while the model size and the

runtime efficiency are neglected. Lightweight Face Recog-

nition Challenge (LFRC)[5] is one of the first proposed to

measure the performance in terms of both accuracy and the

model complexity. In this way, although using deeper neu-

ral network with hundreds of layers and millions of param-

eters could achieve high accuracy, the computational cost

will sometimes be beyond the requirement which will limit

its use in some mobile or embedded applications. Some ran-

dom selected sample images from this challenge are shown

in Fig.1, and we can find that the applications of uncon-

strained face recognition under limited computational re-

sources is still a challenge problem.

In the literature, as far as we can see there are mainly

three directions to deal with lightweight face recognition

problems: 1) the use of lightweight network structure; 2)

(a) Trillion-pairs

(b) iQIYI-VID

Figure 1: Sample images from testing datasets. The track

1 consists of still images with large pose, exaggerated ex-

pression, non-uniform lighting, occlusion and sketch. The

track 3 contains a series of face images from consecutive

video frames, on which the main challenges are large pose,

motion blur, lighting and occlusions.

the carefully designed loss function which will usually aim

to reduce the intra class differences and at the same time

increase the inter class differences; and 3) some fancy train-

ing skills in order to avoid the overfitting and enhance the

model generalizability.

In this paper, we designed a lightweight network ar-

chitecture based on channel pruning and network deepen-

ing, which achieved high performance on face recognition

task. To enhance the model generalizability, we also pro-



posed an effective training process by warpping different

loss functions in a progressive way. Extensive experiments

on image-based test and video-based test demonstrate the

effectiveness of our method.

The rest part of this paper will be organized as follows:

in Section 2, we will briefly introduce the related works

from the three directions mentioned above; in Section 3 we

will give the details of our solution; in Section 4 the abla-

tion study will be conducted and experimental results for

each part of our solution will be compared; and finally in

Section 5 the conclusion and our future plan will be made.

2. Related Work

2.1. Network Architecture

In this light weight face recognition challenge (LFRC),

there is a strict limitation on both the model size (e.g. less

than 20M) and the model complexity (e.g. less than 1G

FLOPs). So the participants will be inclined to achieve a

trade-off between accuracy and efficiency during model de-

sign, and actually this topic has been actively studied in the

field of image classification [3]. For example, SqueezeNet

[17] is one of the early works in this direction, which has

proposed 1x1 convolution with squeeze and expand mod-

ules and the number of parameters will be reduced heavily.

SqueezeNext [9] is its following work, which will shift the

focus on reducing the number of operations (MAdds). In

this way, not only the number of parameters will be reduced

but also the inference latency will be substantially im-

proved. After that MobileNet [14] and MobileNetV2 [24]

are proposed to use novel structure for light weight image

classification, where the former one uses depth-wise con-

volution and point-wise convolution to replace the vanilla

convolution and the latter one uses linear bottleneck and in-

verted residual structure. Their performances are compa-

rable with large VGG-16 [27] but with only one thirtieth

of parameters and MAdds. There are another two impor-

tant works named ShuffleNet [37] and ShuffleNetV2 [21]

which utilize group convolution and channel shuffle opera-

tions to reduce the MAdds. IGCV1 [36], IGCV2 [34] and

IGCV3 [28] propose to use interleaved group convolution

(IGC) to further reduce the redundancy. Besides the man-

ually designed architecture, there are some pioneer works

(e.g. MobileNetV3 [13]) focusing on automatically Neural

Architecture Search (NAS), and based on which the perfor-

mance can still be improved while the model can still keep

the relative low complexity.

However, there are mainly two obvious differences be-

tween image classification and face recognition. Firstly,

there is usually an alignment preprocess step before face

feature extraction while the model for image classification

is required to be rotation invariants. Secondly, the face im-

ages even from different classes will share a similar struc-

ture while the inter class difference in image classification

will be more obvious. Based on the analysis above, the

model capacities for face recognition can be further ex-

plored. There are already some works proposed to design

a light weight model for face recognition. For example,

LightCNN [33] is presented to learn a compact embed-

ding on the large-scale face data, and achieves 99.33% face

verification accuracy on LFW with 12.6 million parame-

ters. MobileFaceNet [1] is based on MobileNetV2 with re-

duced the expansion factor. Global Depth-wise Convolution

(GDC) [1] is introduced to replace Global Average Pooling

(GAP), and achieves better verification accuracy. MobiFace

[8] is also based on MobileNetV2. They adopt fast down-

sampling strategy to reduce the size of feature map. Be-

sides, ReLU and GAP are replaced by PReLU and Fully

Connected Layer for better performance. More recently, a

novel structure named MobileNetV3 [13] which introduced

Squeeze-and-Excitation [15] (SE) module, Hard Swish acti-

vation function and Network Architecture Search technique

exhibits even more promising results, which motivates us to

apply this new structure in our model design.

2.2. Loss Function

Another important way to improve face recognition per-

formance is the design of suitable loss functions. Some

early works [33] treat face recognition as a classification

problem, and Softmax loss with the identity labels will be

used as a supervised signal. It has to be mentioned that the

Softmax loss only considers the inter class differences while

the intra class differences are ignored. In order to overcome

this shortcoming, researchers will design an extra kind of

loss function with Softmax loss to construct a joint supervi-

sion. In this way, the intra class difference will be reduced

while the inter class difference will be enlarged. There are

mainly two streams proposed for this direction. For exam-

ple, in [32] the Center loss has been proposed which will ex-

plicitly impose extra loss term that penalizes the Euclidean

distance between samples and their representative centers.

In FaceNet [25], triplet loss has been introduced, where an-

chor based mining is implemented based on millions of im-

ages in the training set. Since the batch size is limited due

to hardware, the results will reply heavily on the online hard

example mining strategy and it becomes a little tricky to be

implemented to obtain a good result.

The other main stream is to modify the original Soft-

max loss to angular space due to the fact that the features

learned by Softmax loss have intrinsic angular distribution.

SphereFace [18] can be viewed as a milestone work of this

kind, which will model the features in angular space with

weight normalization operation and introduce an angular

margin to the decision boundary [20]. However, the mar-

gin used in [18] is multiplicative, which is a little hard to

convergence during training process. Later, additive an-



gular margin based methods (e.g. ArcFace [19] CosFace

[30] and AM-Softmax [29] ) are proposed, which are rela-

tively easier to train and can further boost the performance.

Similar ideas are also presented in CosFace [30] and AM-

Softmax [29] which enlarge the decision margin in the co-

sine manifold. More analysis and comparisons on angu-

lar margin based methods can be found in [19]. There are

some more recent works, which will consider the inter-class

separability. For instance, RegularFace [38] explicitly dis-

tances identities by penalizing the angle between an identity

and its nearest neighbor, which will result in discrimina-

tive face representations. UniformFace [7] impose an equi-

distributed constraint by uniformly spreading the class cen-

ters on the manifold, so that the minimum distance between

class centers can be maximized through complete exploita-

tion of the feature space.

The losses introduced above have already exhibit good

performance and may be complementary to each other.

Therefore in our solution instead of designing one more

loss function, we will propose a novel progressive learn-

ing framework, which will make use of all the introduced

losses and train the network in a progressive manner. In this

way, we believe that our model can avoid to be overfitting.

3. Proposed Method

3.1. Network Architecture

We use depthwise separable convolution in our basic

block. Because compared with standard convolution, it

can often save substantial parameters. The linear bottle-

neck (Fig.2 (a)) and inverted residual structure (Fig.2 (b))

from MobileNetV2 [24] are also designed to save param-

eters, which is composed of pointwise expansion convolu-

tion, depthwise convolution, pointwise linear convolution

and residual connection. Pointwise expansion convolution

increases input channels for depthwise convolution. Point-

wise linear convolution has no activation layer to minimize

the loss of the information. Residual connection can ensure

stable optimization especially when network is deep. The

squeeze and excitation block adaptively recalibrate channel-

wise feature by explicitly modelling channel relationships,

which can achieve significant performance improvement in

modern architectures with slight computation cost. Mean-

while, PReLU [11] is used as activation function and the

extra computation cost is almost negligible. So based on

the structure mentioned above we design two kinds of basic

blocks and details can be found in Fig.2 (c) and (d).

The network depth is one of the key factors to perfor-

mance on vision task. General speaking, deeper network

can capture richer information and get more remarkable

performance. However, due to the vanishing gradient prob-

lem and gpu memory limit, deeper network is harder to op-

timize. Sometimes, with the growing of network depth,

Input Operator t c n s

112*112*3 Conv - 24 1 2

56*56*24 Block 56 24 2 1

56*56*24 Block 116 56 1 2

28*28*56 Block 116 56 6 1

28*28*56 Block 248 124 1 2

14*14*124 Block 248 124 15 1

14*14*124 Block 512 256 1 2

7*7*256 Block 256 256 24 1

7*7*256 Conv - 512 1 1

7*7*256 GDC - 282 1 1

Table 1: Each line describes a sequence of 1 or more identi-

cal layers, repeated n times. All layers in the same sequence

have the same number c of output channels. The first layer

of each sequence has a stride s and all others use stride 1.

All spatial convolutions use 3 3 kernels. The expansion

channels t is the input channels of depthwise convolution.

the performance could even decrease. The network width

is also important [35], which has been studied in the lit-

erature [14, 24, 37, 21]. Wider network which has more

parameters than the thin one is easier to train and usually

can achieve better performance. However, too wider but

shallow network will perform underachievement because

of lacking high level semantic features. Low-level block

has large feature map size. Increasing the depth and width

will increase computation obviously. High-level block is

related to large receptive filed and usually will contribute

more on final performance. In consideration of the semantic

information of high-level features, we prefer to increase the

depth and width of high-level blocks, which have greater

impact on results. The detailed structure can be found in

Tab.1.

3.2. Loss Function

Loss function also plays an important role on recognition

performance. In our solution instead of designing a new

loss, we propose to train the network in a progressive way.

Firstly, the well designed backbone network introduced

in previous section is trained with ArcFace loss [19] which

can be formulated as follows:

L1 =
1

N

∑

i

− log
es·cos(θyi+m)

es·cos(θyi+m) +
∑n

j=1,j �=yi
es·cos θj

(1)

subject to:

Wj =
Wj

||Wj ||
, xi =

xi

||xi||
, cos θj = WT

j xi (2)

ArcFace loss belongs the margin based loss and the

trained model usually has good generalizability, which will



(a) (b) (c) (d)

Figure 2: (a) linear inverted residual bottleneck in MobileFaceNet; (b) linear inverted residual bottleneck when stride = 2

in MobileFaceNet; (c) linear bottleneck and inverted residual structure with SE module; (d) linear bottleneck and inverted

residual structure with SE module when stride = 2.

be used as our base backbone. After convergence, we will

add one of the following loss functions [32, 30, 38, 19, 29,

31, 18] at each time, and the process will be repeated till all

the loss functions are added.

L2 =
1

N

∑

i

− log
Z1

Z1 +
∑n

j=1,j �=yi
Z2

(3)

subject to:

Z1 = es·cos(m1θyi+m2)−m3 , Z2 = es·cos θj (4)

L3 =
1

N

∑

i

− log
Z1

Z1 +
∑n

j=1,j �=yi
Z3

(5)

subject to:

Z3 = es·(t−1)(cos θj+1)Ijes·cos θj ,

Ij =

{

0, cos(m1θyi
+m2)−m3 − cos θj ≥ 0

1, cos(m1θyi
+m2)−m3 − cos θj<0

(6)

LIntra =
1

N

∑

i

cos−1
WT

yi
xi

||WT
yi
|| · ||xi||

(7)

LInter =
1

C

∑

i

max
j �=i

WT
i Wj

||WT
i || · ||Wj||

(8)

LCe =
1− β

1− βny
log

ezy
∑C

j=1 e
zj

(9)

Generally speaking, different losses may exhibit differ-

ently and could be complementary to each other. Our

wrapped loss will usually perform better than using only

one of them. Besides, the progressive learning makes the

training easier to converge than training multitask loss di-

rectly.

4. Experiments

In order to show the effectiveness of the proposed frame-

work, extensive experiments are conducted in different set-

tings. Firstly, we design our light weight backbone net-

work and train its parameters in manual search way with

ArcFace[4] loss. After the training convergence, we use

current best model as the warm up version and continue

the learning process in a progressive manner by wrapping

more loss functions. The process will be repeated till all the

losses are involved. Finally, we test our models on Track

1 Trillion-pairs dataset and Track 3 iQIYI-VID dataset, and

the final performances are evaluated and reported by the or-

ganizers.

4.1. Dataset

The officially provided training set is a cleaned version

from the large scale MS1M [10] which contains 5.1M im-

ages of 93K identities. All the images are preprocessed

according to RetinaFace[6], and only the cropped version

sized of 112 × 112 is provided to public. Three popular

datasets such as Labelled Faces in the Wild (LFW) [16],

Celebrities in Frontal Profile (CFP) [26] and Age Database

(AgeDB) [23] can be used as the validation set.



Table 2: The process of adjusting the network structure and the results on validation datasets for each step. C means the

output channels, Num means the repeat times of SEResidual block. The right 3 columns are the accuracy on LFW, CFP-FP

and AgeDB-30.

Step

layer name

Dim FLOPs Size LFW CFP-FP AgeDB-30conv1 conv2 conv3 conv4 conv5

C N C N C N C N C N

0 64 1 64 2 128 8 256 16 512 4 256 933.3M 18M 0.9965 0.9797 0.9778

1 30 1 62 2 128 8 256 18 512 16 256 1G 18M 0.9977 0.9847 0.9798

2 28 1 60 2 128 8 256 16 512 19 256 1G 18M 0.9977 0.9854 0.9812

3 26 1 58 2 128 6 256 16 512 21 256 1G 19M 0.9982 0.9845 0.9802

4 24 1 56 2 124 6 256 16 512 23 256 998.4M 20M 0.9978 0.9860 0.9805

5 24 1 56 2 124 6 256 15 512 24 282 976.6M 20M 0.9977 0.9850 0.9815

LFW dataset collected from internet contains 13,233 im-

ages from 5749 identities, and a total of 6,000 image pairs

are used to measure the performance in term of verification

accuracy. The web-collected face images have large vari-

ations in pose, expression and illuminations. CFP dataset

consists of 500 subjects, each with 10 frontal and 4 pro-

file images. We take the most challenging subset CFP-FP

to report the performance following [19]. AgeDB dataset

is an in-the-wild dataset with large variations in pose, ex-

pression, illuminations and age. AgeDB contains 12,240

images of 440 distinct subjects. We use the most challenge

subset from the four groups, AgeDB-30, to report the per-

formance as well. We can also get a cropped version of the

validation set from the organizers. For testing, two typical

large-scale datasets are used, Trillion-pairs dataset for im-

age test and iQIYI-VID for video test. Images in Trillion-

pairs dataset come from ELFW and DELFW. ELFW con-

tains 274K images from 5.7K identities. DELFW is the dis-

tractors for ELFW and contains 1.58M face images from

Flickr. iQIYI-VID includes 200K videos of 10K identities,

with each video extracted to frames at 8FPS. Besides, modi-

fication (e.g. re-alignment or resize) and data argumentation

except Horizontal flipping on testing images are prohibited.

This will force all the participants to pay more attentions on

the network design and keep result comparison fair in this

challenge. Finally we report our performance on Track 1

Trillion-pairs dataset and Track 3 iQIYI-VID dataset.

4.2. Training Details and Experimental Results

In the first stage, we adjust the network architecture

within the limitations of computational complexity, model

size and feature dimension, which are 1G FLOPs, 20M and

512 dim respectively.

We take MobileFaceNet as baseline and trace the accu-

racy on validation datasets to guide the adjustment of the

network structure. Specially, inspired by MobileNetV3 we

add SE-Block to the two basic blocks of MobileFaceNet for

applying attention mechanism to feature maps. We name

the new basic blocks SEResidual and SEDResidual. The

computational complexity of the baseline is close to 1G

FLOPs and the model size is close to 18M. To enhance the

discrimination of our model, we mainly focus on expending

the depth and width of higher blocks. In our solution, we in-

crease the number of blocks in Conv5 x and the channels

of feature map in deep layers. In order to avoid increas-

ing the total computational complexity and model size, we

decrease the corresponding item in shallow layers. We also

take feature dimension into consideration and fix it to a suit-

able value through experiments. The process of adjusting

the network structure is shown on Tab.2. Step 0 means the

baseline, Step 1 to Step 5 adjust the depth and width pro-

gressively. What’s more, step 5 also adjusts the feature di-

mension based on the previous work.

In the second stage, we keep the network architecture

fixed and aim at exploring a better form of loss function.

We use current best model as the warm up version and con-

tinue the learning process in a progressive manner by wrap-

ping more loss functions. The details can be found in Tab.3.

As we expected, model training in a loss wrapping way will

further boost the performance and the training is much eas-

ier to convergence in comparison with directly multitask

learning.

Table 3: Results on Trillion-pairs for loss function wrap-

ping.

Methods LFW CFP-FP AgeDG-30 ICCV19-challenge

ArcFace 99.767 98.500 98.150 86.666

Combined 98.800 98.371 98.017 86.877

Combined

+svgs
99.800 98.371 98.017 87.181

Combined

+svgs

+Intra

+Inter

99.800 98.343 98.183 87.195

In the final stage, we target on exploring better ways for

data processing to boost the performance on large-scale im-

age test benchmark and large-scale video test benchmark.

After carefully analyzing the characteristics of training and



Table 4: Results on Trillion-pairs dataset using proposed

progressive learning strategy.

Methods LFW CFP-FP AgeDG-30 ICCV19-challenge

Combined

+svs

+Intra

+Inter

99.800 98.343 98.183 87.195

Combined

+Intra

+Inter+CB

99.833 98.443 98.250 87.141

Combined

+Intra

+Inter+CB

+batch id=4[12]

99.817 98.243 98.183 87.214

Combined

+Intra

+Inter+CB

+batch id=4

+ semi-hard samples mining

99.817 98.443 98.167 87.432

testing datasets, we designed a search strategy which in-

cludes cutting long tail identities (Fig.5), PK mining[12]

and semi-hard samples mining. We conduct a series of ex-

periments to examine each effect and match different data

processing method for different benchmark.

According to our analysis, there are three kinds of noise

in iQIYI-VID test dataset. We sample some of the videos

shown as Fig.3. Obviously, the noise frames will affect the

video feature and make it less representative on condition

that we map the frame features to video feature by simply

averaging. Specially, we use unsupervised clustering based

on Union-Find for each video to remove the noise frames.

We choose the relatively large cluster which contains the

most elements as the cleaned frames of the video. In this

way, a large number of outliers aforementioned can be fil-

tered. Fig.4 shows the result of Union-Find cluster for video

id 0144686. Extensive experiments have been conducted to

determine the threshold of Union-Find cluster. The results

are shown in Tab.5. Extensive experiments on iQIYI-VID

test dataset demonstrate the effectiveness of the method.

Table 5: Results on iQIYI-VID dataset after Union-Find

Cluster with different thresholds.

Model Threshold Result

baseline

0 0.57201

0.3 0.57191

0.4 0.57442

0.5 0.57191

0.6 0.56473

best model

0.3 0.57952

0.4 0.58207

0.5 0.57894

Figure 3: Examples for noise frames in iQIYI-VID test

dataset. The first row shows the frames of 0144611. There

are two indentities in the same video id. The second row

shows the frames of 0144691. Some of the frames in the

video id are not face images. The third row shows the

frames of 0144610. Some of the frames in the video id suf-

fer from heavy occlusion of faces. Noise frames are marked

by red rectangle. Best viewed in color.

Figure 4: Sample result for Union-Find Cluster [2]. Frames

in video id 0144610 are splitter by unsupervised cluster into

two classes. noise class with few frames are marked by red

circle. We map the frame features to video feature after

noise removal. Best viewed in color.

5. Conclusion

In this paper, we have proposed a carefully designed

backbone architecture for light weight face recognition.

When the base backbone is ready, a novel loss progressive

learning framework is used to further finetune the model.

After cleaning the outlier of the training set, the generaliz-

ability of the model will be further enhanced. Finally, we

have achieved the 5th in Track 1 and the 4th in Track 3.



(a) Image quality

(b) Wrong label

(c) Hard example

Figure 5: Sample images in the training set which will lead

to bad results. Images in the same row are sampled from the

same class. (a)Images with poor quality.(b)Images in the

same class but come from different identities. (c)Images in

the same class but come from different domain.
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