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Abstract

In most of the testing dataset, the images are collected

from video clips or different environment conditions, which

implies that the mutual information between pairs are sig-

nificantly important. To address this problem and utilize

this information, in this paper, we propose a graph-based

unsupervised feature aggregation method for face recogni-

tion. Our method uses the inter-connection between pairs

with a directed graph approach thus refine the pair-wise

scores. First, based on the assumption that all features fol-

low Gaussian distribution, we derive a iterative updating

formula of features. Second, in discrete conditions, we build

a directed graph where the affinity matrix is obtained from

pair-wise similarities, and filtered by a pre-defined thresh-

old along with K-nearest neighbor. Third, the affinity ma-

trix is used to obtain a pseudo center matrix for the iterative

update process. Besides evaluation on face recognition test-

ing dataset, our proposed method can further be applied to

semi-supervised learning to handle the unlabelled data for

improving the performance of the deep models. We verified

the effectiveness on 5 different datasets: IJB-C, CFP, YTF,

TrillionPair and IQiYi Video dataset.

1. Introduction

In recent years, the performance of face recognition

has been boosted by a large margin because of the suc-

cess of deep learning. With the development of algorithms

and increasing need for face recognition, larger and harder

datasets are proposed in recent years. LFW [18] with small

number of images and IDs was quickly saturated and larger

dataset such as YTF [43], IJB-C [29] and MS-Celeb-1M

Figure 1. In a video sequence, one person’s face pose may change

a lot and cause wrong recognition for some image pairs (red line).

However, the affinity information can be utilized to correct the

recognition as the blue line.

[14] was then proposed in this research area. The face im-

ages are always captured from two types of sources: sin-

gle photo or video sequence. However, most of the algo-

rithms consider the recognition accuracy on individual im-

ages, where lacks of the relationship between testing im-

ages. In an offline evaluation testing environment, utilizing

the mutual information is important.

As shown in Fig. 1, in a video captured in the wild en-

vironment, the change of face poses could be significant.

In conventional one-to-one evaluation way, the comparison

between large poses could result in low scores and fail in

recognition. Improving the capability of model itself is usu-

ally insufficient. In this paper, we target to solve the prob-

lem using external process among the given testing samples.

Many recent papers about loss functions [11, 25, 38, 26,

41, 50] propose the idea of reducing intra-class distance,

and similar to this, our proposed method aims to solve this

problem by clustering. In face recognition testing protocols,

the number of identities is usually unknown. Many conven-



tional clustering method would fail due to lack of this infor-

mation. Moreover, the conventional clustering approaches

will take large amount of computational consumption such

as k-means [27] and spectral clustering [16]. Therefore, we

propose a clustering method using iterative update.

First, we assume that the feature distribution follows

Gaussian distribution. For one given point in the domain,

the expectation value in a neighborhood will point to the

center of cluster. With multiple iterations, the testing fea-

tures will converge to their corresponding centers. In real

applications of face recognition, the samples are discrete, so

we approximate it using directed graph. We firstly compute

the affinity graph and replace the neighborhood constraint

with K-nearest neighbor and certain threshold.

After clustering, we can further make use of unlabelled

data to fine-tune our existing model. With our clustering re-

sults, the clusters are assigned with pseudo labels which will

be added in training set. The performance could be boosted

with these extra data. Our contributions can be summarised

as follows:

• We introduce a post-processing module for refining the

features using an iterative method.

• We propose a method for enhancing the offline evalu-

ation in large-scale face recognition dataset.

• The proposed method can be utilized for semi-

supervised learning and reach better performance us-

ing extra unlabelled data.

2. Related Works

Feature Aggregation The most intuitive way to aggre-

gate all features in each face images set is to take the av-

erage or maximum of all features. [3, 6, 32] employ av-

erage/max pooling of the features to yield the aggregated

representation. By fusing multiple models, [7] achieves

better results than single NetVLAD [1]. [45] introduces

attention mechanism in an aggregation module to learns

compact representation that is invariant to the input frame

order. Inspired by the image retrieval literature, [52] pro-

poses a GhostVLAD layer to automatically learn to weight

face descriptors. That is, down-weight the contribution of

low-quality images and improve the importance of the high-

quality ones. The GhostVLAD layer can be embedded into

deep networks directly for an end-to-end training. Their

methods surpass the state-of-the-art on the challenging IJB-

A [20] and IJB-B [42] benchmarks by a large margin. [51]

proposes a novel Multi-Prototype Network (MPNet) model

to automatically learn multiple prototype face representa-

tions from raw video frames. Compared with existing set-

based face recognition methods [4, 5, 8], MPNet can ad-

dress the large intra-set variance issue with lower compu-

tational complexity. To both increase recognition accuracy

and reduce the computational costs of template matching,

[15] and [33] adopt the instance-level based aggregation

methods which aggregate raw video frames directly instead

of the features obtained by deep neural networks. Unlike all

the previous methods, [13] proposes a component-wise fea-

ture aggregation network to adaptively aggregates all fea-

ture vectors into a single vector for video face recognition.

The proposed component-wise feature aggregation network

(C-FAN) can adaptively predicts quality values for each

component of a learned feature vector, which produces a

discriminative feature for images in a set.

Face Clustering often yields significant performance

gain for large scale unlabeled data. Many clustering meth-

ods have been fully explored in the past few years. [9, 16]

adopt spectral clustering group unlabeled faces. [31] pro-

poses an approximate rank-order (ARO) metric to predict

whether a node should be linked to its neighbors. Benefit-

ing from the Approximate Nearest Neighbor (ANN) search

algorithm, ARO is much more efficient for large-scale clus-

tering tasks. Based on a linear SVM, [24] proposes the

proximity-aware hierarchical clustering to exploit the pair-

wise similarity between samples. [35] designs a conditional

pairwise clustering (ConPaC) method to estimate the ad-

jacency matrix which can be used to select the number of

clusters dynamically. [23, 53] propose a cluster-level affin-

ity to deal with density-unbalanced data and tag face dataset

respectively. [46, 40] improve learnable clustering method

based on the graph convolution network (GCN). In partic-

ular, [46] uses the GCN to learn how to cluster rather than

design new similarity metrics as most pervious works did.

The proposed method achieves state-of-the-art performance

in large-scale face clustering benchmarks. [40] regard clus-

tering as a link prediction problem and utilize the GCN to

predict linkages between pairs in a sub-graph. The proposed

clustering method can also be easily extended to video face

clustering tasks which demonstrates a good generalizability.

Graph convolution networks (GCNs) are proposed to

tackle problems with non-Euclidean data. Compared with

Convolutional Neural Networks (CNNs), GCNs have a

strong capability of modeling graph-structured data. GCNs

can be used in individual relations inference in social net-

works [21], recommendation engines [30, 48] and language

processing [2, 28]. In addition, GCNs can also be applied

to the area of computer vision tasks. [22, 44] use GCNs to

predict semantic relations between object pairs in images.

[39, 19, 47] apply GCNs to process unordered point cloud

data for semantic segmentation. [36, 44] employ GCNs for

skeleton-based action recognition. [46, 40] use GCNs for

face clustering and both consequently boost the face recog-

nition performance.

3. Method

Instead of tuning the network structures training param-

eters, we propose a method to improve the feature discrim-

inativity by clustering. Inspired by recent works on loss



Figure 2. The pipeline of our structure. The images are firstly fed into feature extractors to obtain face features. The affinity matrix is

then constructed and perform clustering. The results can be used for evaluation or further assigned with pseudo labels for fine-tuning the

existing network.

functions which aims to compact the intra-class distance of

features, we propose an unsupervised feature propagation

method to compact the features after extraction phase. The

pipeline is shown in Fig. 2. The images are firstly fed into

extractor network and features are obtained. Next, the affin-

ity matrix is derived to perform clustering. The clustered

results can be used for evaluation or assigned with pseudo

labels for fine-tuning the model.

3.1. Iterative Clustering

One of the classical unsupervised learning methods is

clustering, such as K-means and spectral clustering. Af-

ter clustering, the features can be represented by corre-

sponding feature centers and with proper settings of hyper-

parameters, the features in each cluster belongs to the same

identity. However, in face recognition tasks, the number

of features are usually a big quantity, which will consume

extreme large memory and CPU time using traditional clus-

tering methods.

To this end, we propose an iterative clustering method as

Eq. 1

F t
i = F t−1

i + γ(Ci − F t−1

i ) (1)

, where F is the feature matrix and C is the cluster center

matrix. A learning rate γ is applied for iterative updating.

Ideally, each row of center matrix Ci is the correspond-

ing cluster center of feature Fi, and with the equation above,

each feature will eventually converge to its center. How-

Figure 3. Considering a Gaussian distribution, the vector from

point x0 to the expectation value among the neighborhood of point

x0 is always pointed to the center of distribution.

ever, in practice, the accurate center features cannot be fig-

ured out due to the considerable computational complexity;

therefore, we use the pseudo center matrix C∗ which will

change from iteration to iteration, and result in Eq. 2.

F t
i = F t−1

i + γ(C∗t−1

i − F t−1

i ) (2)

3.2. Pseudo Center Matrix Approximation

The pseudo center matrix enables the possibility to sig-

nificantly reduce the computational complexity. We assume

that for each class a, the features are normally distributed



Figure 4. In the case with two distributions, wrong clustering could

happen in the overlapping area. For a point xa belongs to class a,

when the probability density of class b is larger than that of class

a, the convergence will move to wrong direction.

in the space with the mean value µa and standard deviation

σa.

In the single cluster case, where all samples belong to

the same class center, the equation should satisfy:

fj −

∫
Sj

xN(x|µa, σa)dx = fj − C∗

j = λ(fj − µa) (3)

, where Sj is the neighborhood area of the sample fj and

λ is a positive real number. Thus, our iterative clustering

will finally converge to the cluster center.

However, in multi-class case, the convergence is not cor-

rect for every sample. Theoretically, for the sample xa

whose ground truth is a but when

N(xa|µa, σa) < N(xa|µb, σb) (4)

, the sample will be assigned to wrong cluster, as illus-

trated in Fig. 4.

3.3. Directed Graph for Discrete Distribution

In the real-world applications, the features are discretely

distributed and form an affinity graph. With a given feature

matrix F of shape n× d, the affinity matrix A is given by

A = FFT (5)

In discrete condition, we approximate the pseudo center

matrix in Eq. 3 by the following equation

C∗

i,j = [Ai,j > t][j ∈ KNNi] (6)

, where the [·] stands for the Iverson Bracket. t is the

threshold value that constraint the area in the similarity per-

spective. Moreover, a KNN is applied to constraint the

neighborhood area and reduce the computational complex-

ity.

Compared to conventional k-means clustering algorithm

which will take O(nkT ) for n samples, K clusters and T

iterations on average, our method yeilds the complexity of

O(nKT ) where K nearest neighbors are selected in KNN

process. For a large-scale dataset with a setting of K = 15
for KNN in clustering, our method is 100 times faster than

conventional k-means approach with k = 1500. In addi-

tion, our proposed method does not require the pre-defined

number of clusters.

3.4. Semi-supervised Learning with Clusters

Aside from boosting the evaluation performance using

clustering, our approach also enables the possibility for

semi-supervised learning. Our proposed method can be uti-

lized for semi-supervised learning as well. For large-scale

unlabelled data, we first apply our clustering and obtain an

similarity matrix S. Then, the pairs with similarity score

less than threshold ts is pruned thus result in multiple clus-

ters. The clustered samples are assigned with new labels

and further added into training set for fine-tuning the net-

work.

4. Experiment Results

4.1. Evaluations on IJB-C Co-variant Protocol

IJB-C dataset [29] is a large-scale public benchmark con-

sisting of 31,334 images and 11,779 videos from 3,531 sub-

jects, which are further split into 117,542 frames. The

videos and photos are captured from the in-the-wild envi-

ronment and containing complex pose resolution changes.

The evaluation is carried out based on IJB-C 1:1 Co-variant

Protocol (test 2). Moreover, for correctly reflecting the im-

provement brought by our algorithm, we remove the iden-

tites which overlap with MS-Celeb-1M dataset.

We train our model provided by i-Bug Lightweight Face

Recognition Challenge 1 with the structure of EfficientNet

[37]. The model is trained with ArcFace [11] loss function

with s = 64 and m = 0.5. We use MTCNN [49] as the face

detector and for non-detected images, we use the provided

bounding boxes as the face box. Then, all the detected faces

are aligned by 5 facial keypoints and resized to size 112 ×
112.

The performance is shown in Fig. 5 6 and Tab. 1, where

we can observe that the performance is largely dropped with

smaller k and t. However, with higher threshold or larger k

value in the KNN graph, the performance will be increased.

Our best performance gives improvement from 0.59 to 0.67
at the 1e− 7 criteria.

Furthermore, to eliminate the negative effect brought by

mis-detection or mis-alignment which is irrelevant to the

recognition, we remove the non-detected samples in IJB-C

1https://ibug.doc.ic.ac.uk/resources/lightweight-face-recognition-

challenge-workshop/



K Threshold Cleaned 1e− 7 1e− 6 1e− 5 1e− 4 1e− 3
- - No 0.5899 0.6691 0.7429 0.8011 0.8491

5 0.75 No 0.6374 0.6955 0.7638 0.8320 0.8797

10 0.75 No 0.6588 0.7096 0.7693 0.8341 0.8802

15 0.75 No 0.6669 0.7142 0.7711 0.8348 0.8884

20 0.75 No 0.6711 0.7165 0.7720 0.8350 0.8804

5 0.55 No 0.1679 0.3127 0.5839 0.8003 0.8911

10 0.55 No 0.2221 0.3339 0.5073 0.7913 0.8925

15 0.55 No 0.2569 0.3668 0.4989 0.7938 0.8930

20 0.55 No 0.3140 0.3786 0.5018 0.7973 0.8933

- - Yes 0.5899 0.6690 0.7429 0.8011 0.8490

5 0.75 Yes 0.7247 0.7741 0.8061 0.8386 0.8668

10 0.75 Yes 0.7342 0.7776 0.8089 0.8395 0.8674

15 0.75 Yes 0.7369 0.7772 0.8091 0.8397 0.8674

20 0.75 Yes 0.7382 0.7802 0.8099 0.8397 0.8675

5 0.55 Yes 0.7127 0.7804 0.8342 0.8620 0.8837

10 0.55 Yes 0.6634 0.7738 0.8293 0.8648 0.8862

15 0.55 Yes 0.6666 0.7692 0.8271 0.8658 0.8873

20 0.55 Yes 0.6851 0.7785 0.8261 0.8660 0.8878

Table 1. The evaluation results on IJB-C dataset co-variant protocol (test 2). We removed the identities which is overlapped with MS-

Celeb-1M dataset for better evaluation. We utilize the EfficientNet structure for feature extraction and tested different threshold and K

size for clustering. Furthermore, we remove the images which is not detected to perform another evaluation on ”cleaned” dataset, which is

more fair for recognition task.

Figure 5. The evaluation on IJB-C dataset co-variant protocol with

fixed threshold t = 0.75 and varies the K for KNN. A consistent

improvement is observed compared to the baseline.

dataset and perform another evaluation on this ”cleaned”

version. In this circumstance, we can assume that the

dataset is mostly clean and reliable, and the results is shown

in Fig. 7 and Tab. 1. It is observed that with different

hyper-parameter settings, our algorithm can give stable im-

provement and the result is insensitive to different hyper-

parameters.

We show some representative failure cases which is

shown in Fig. 8. The failure cases are usually caused by

low image quality or mis-alignment. It shows the necessity

Figure 6. The evaluation result on IJB-C dataset co-variant pro-

tocol with fixed K for KNN. A huge drop in performance is ob-

served with lower K but it is recovered with higher values.

of reducing noise before applying clustering, and the exper-

iments in IJB-C dataset show the significant effectiveness

of our clustering on cleaned dataset.

4.2. Evaluations on IJB-C Template Protocol

We further conduct the evaluation on IJB-C Template

matching protocol (test 1) which evaluates on 15.6M tem-

plate pairs. We extract all images features and aggregate

them by the template ID provided. We take the naive aver-

aging as the aggregation method for all templates. Then our



Figure 7. The evaluation result on IJB-C dataset with cleaned ver-

sion, where the non-detected images are removed for better evalua-

tion of recognition model. Even with lower threshold t, a constant

improvement of performance can still be achieved.

Figure 8. Some representative failure cases. The abnormal illumi-

nation, misalignment and extreme low resolution will increase the

error of our clustering method.

cluster method was applied on the template features. The re-

sults are shown in Fig. 10 and Tab. 2. The results show that

our method performs much better than the original score.

4.3. Evaluations on CFP Dataset

CFP [34] is a dataset including 7000 images and 500

identities. We follow the protocol which contains 7000 pairs

of images and calculate the AUC curve. The MTCNN is uti-

lized and all images are resized to 112× 112.

Same as the experiments in Section 4.2, we evaluate our

clustering result based on the same feature extractor net-

work and different K and t values are tested. The results

are shown in Fig. 11 and Tab. 3.

Since the CFP-FF protocol is already saturated, here we

evaluate the performance on CFP-FP protocol. From Tab.

Figure 9. The evaluation results on IJB-C template matching pro-

tocol. With fixed K, variation of t gives consistent improvement.

Figure 10. The evaluation results on IJB-C template matching pro-

tocol. With fixed t, variation of K gives improvement.

3, we can observe that the clustering method helps to im-

prove the true positive rate (TPR) by almost 3 percent while

false positive rate (FPR) equals 1e-3. However, when we

increase the clustering threshold, the increase becomes not

that obvious and K value have no effectiveness. One of the

possible reason is that number of images and pairs is not

sufficient, where our clustering becomes less effective.

4.4. Evaluations on YTF Dataset

YouTube Faces DB [43] is a dataset containing 3,425

videos and 1,595 identities. The video clips are split into

621,126 frames. Provided with the 5,000 pairs, we perform

our evaluation of our model as well as the effects of the

cluster method.

The images are firstly processed in the same way as in-

dicated in Section 4.2. For this dataset, each pair consists

of multiple frames. We cluster all the video features after

aggregating the frames features into one by sum up their

features, and then perform the evaluation. The results are



K Threshold 1e− 7 1e− 6 1e− 5 1e− 4 1e− 3
- - 0.7743 0.8877 0.9222 0.9485 0.9675

5 0.55 0.8604 0.9339 0.9477 0.9681 0.9812

10 0.55 0.8074 0.9141 0.9441 0.9676 0.9801

15 0.55 0.8169 0.9154 0.9433 0.9675 0.9810

20 0.55 0.8169 0.9139 0.9433 0.9675 0.9810

5 0.6 0.8302 0.9065 0.9434 0.9664 0.9801

5 0.7 0.7781 0.9011 0.9357 0.9613 0.9767

5 0.8 0.8127 0.9055 0.9317 0.9547 0.9717

10 0.6 0.7781 0.9018 0.9412 0.9655 0.9798

10 0.7 0.7229 0.8954 0.9362 0.9607 0.9766

10 0.8 0.7754 0.9054 0.9324 0.9546 0.9715

Table 2. The evaluation results on IJB-C dataset template maching protocol. We use the original dataset for evaluation and different

threshold and K size is tested.

Figure 11. The evaluation results on CFP dataset. The threshold

t is fixed at 0.65 and k varies from 5 to 20. The performance is

improved in all cases.

k t 1e− 4 1e− 3 1e− 2 1e− 1
- - 0.7671 0.7820 0.8360 0.8791

5 0.65 0.7860 0.8177 0.8417 0.8846

10 0.65 0.7860 0.8109 0.8417 0.8869

15 0.65 0.7866 0.8111 0.8411 0.8863

20 0.65 0.7866 0.8111 0.8411 0.8863

5 0.60 0.7909 0.8106 0.8417 0.8877

10 0.60 0.7671 0.7820 0.8360 0.8791

15 0.60 0.8029 0.8146 0.8423 0.8889

20 0.60 0.8029 0.8146 0.8423 0.8889

5 0.70 0.7740 0.8014 0.8400 0.8846

10 0.70 0.7706 0.8057 0.8411 0.8851

15 0.70 0.7706 0.8057 0.8411 0.8851

20 0.70 0.7706 0.8057 0.8411 0.8851

Table 3. The evaluation results on CFP-FP dataset.

shown in Fig. 12 and Tab. 4.

The YTF result shows that our cluster method in-

Figure 12. The ROC curve on YTF dataset. The performance is

increased by the clustering.

crease the performance significantly when FPR equals 1e-

4, around 25 percent improvement while threshold equals

0.55. Similar to the CFP dataset, YFP is not sensitive to K

values.

4.5. Evaluations on TrillionPair and IQiYi Dataset

Furthermore, we perform the evaluation on TrillionPair

and IQiYi dataset. We follow the evaluation protocol of

iBug Light-Weight Competition[12]2 where the faces are

detected by RetinaFace [10] detector and resized to 112 ×
112. The TrillionPair dataset contains 1.862 million images

where there are 274K ground truth images from 5.7K identi-

ties and 1.58M distractors. The IQiYi dataset contains 6.3M

face frames with 203,848 groups.

We trained one EfficientNet B0 [37] (noted as Light) and

one ResNet-SE-100 [17] (noted as heavy). For both net-

works, we train them based on ArcFace loss function with

s = 64 and m = 0.5. SGD optimizer is used with momen-

2http://39.104.128.76/overview



k t 1e− 4 1e− 3 1e− 2 1e− 1
- - 0.2670 0.8030 0.9683 0.9854

5 0.65 0.3469 0.7151 0.9679 0.9854

10 0.65 0.3482 0.7151 0.9679 0.9854

15 0.65 0.3482 0.7151 0.9679 0.9854

20 0.65 0.3482 0.7151 0.9679 0.9854

5 0.55 0.4981 0.7447 0.9708 0.9863

10 0.55 0.5056 0.7447 0.9708 0.9863

15 0.55 0.5056 0.7447 0.9708 0.9863

20 0.55 0.5056 0.7447 0.9708 0.9863

5 0.75 0.3161 0.8072 0.9688 0.9850

10 0.75 0.3161 0.8072 0.9688 0.9850

15 0.75 0.3161 0.8072 0.9688 0.9850

20 0.75 0.3161 0.8072 0.9688 0.9850

Table 4. The evaluation results on YTF dataset. The clustering

obtains increase in performance for strict conditions.

Model Protocol Base Clustered

Light Trillion 0.8200 0.9341

Light IQiYi 0.5702 0.7222

Heavy Trillion 0.9200 0.9793

Heavy IQiYi 0.6489 0.7259

Table 5. The evaluation is based on 1e − 8 for TrillionPair and

1e− 4 for IQiYi dataset.

tum 0.9 and learning rate 0.1 which is scaled by 0.1 every 4
iterations. For both datasets, we extract features from all the

images and perform our clustering algorithm. In addition,

for the IQiYi dataset, since it is a template-based protocol

where images are split into different groups, we first con-

duct intra-group feature aggregation according to the fea-

tures L− norm where L is chosen to be 3.6 empirically.

The evaluation results are shown in Tab. 5. For hyper-

parameter settings we choose K = 15 and t = 0.55 for both

datasets since all the images are successfully detected and

relatively reliable, refering to Section 4.2. Our clustering

can significantly boost the performance of models where the

light model is boosted by 20% and the heavy one by 7.5%
on TrillionPair dataset. The same effect is also observed in

IQiYi dataset where the light model is boosted by 15% and

8%, respectively.

4.6. Semi-supervised Learning

We also evaluated the semi-supervised learning with our

proposed clustering method. We utilized the same training

dataset as in previous sections but we remain only a pro-

portion of identities labels for training. After training the

initial model with labelled data, our clustering is applied to

the remaining unlabelled data and fine-tune the network.

The evaluation is conducted on IJB-C dataset and the re-

sults are shown in Fig. 13. The lower-bounder is evaluated

Figure 13. The evaluation of semi-supervised learning. The upper

bound is the model trained with full data, and lower bound is the

model with partial training data. The results are evaluated on IJB-

C Co-variant protocol (test 2) uncleaned version as in Section 4.1.

Results at FPR = 1e− 5 are shown in this figure.

by the model with fully-supervised learning with limited la-

belled data, and upper-bound is the performance of model

trained with the whole dataset. We observe that our clus-

tering can effectively boost the performance of our model

with unlabelled images. With only 50% of the dataset, the

TPR@FPR = 1E − 5 is increased by 13% with our

method and performance with other proportion of data is

also boosted by a large margin.

5. Discussion and Future Work

From the evaluations on different in-the-wild datasets,

we observe that our algorithm can give improvements based

on extracted features. Instead of merely improving the net-

work’s performance, our method can boost the performance

of recognition by post-processing. However, there still exist

some limitations of our proposed method:

- The algorithm is somehow dependent on hyper-

parameter setting, especially for noisy dataset, although it

can be fixed by increasing the K and threshold value.

- The algorithm is not an online algorithm, which re-

quires the image pool to be fixed.

- Extra computational consumption. The clustering pro-

cess will cost extra 30 minutes for 1.5M images with fea-

ture dimension of 512 on single 2080Ti GPU according to

our evaluation.

Although with the limitations above, our proposed

method is still useful in various of offline applications. Fur-

thermore, the soft-clustering method will be helpful to var-

ious types of tasks not limited to face recognition but can

be extended to other applications such as person ReID and

image search.
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