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Abstract

In the past few years, Neural Architecture Search (NAS)

has exhibited remarkable advances in terms of neural ar-

chitecture design, especially on mobile devices. NAS nor-

mally use hand-craft MBConv as building block. However,

they mainly searched for block-related hyperparameters,

and the structure of MBConv itself was largely overlooked.

This paper investigates that factorization and reconstitu-

tion can promote the efficiency of large-kernel MBConv and

thus proposes FR-MBConv (Factorizing and Reconstituting

large-kernel MBConv). Compared to large-kernel MBConv

with the same receptive field, our FR-MBConv has fewer

number of parameters and less computational cost, dra-

matically increased depth and nonlinearity. In addition,

from the perspective of feature generation mechanism, FR-

MBConv can be equivalent to more regular convolutions.

We combine FR-MBConv with MobileNetV3 [16] to

build a lightweight face recognition model. Extensive ex-

periments on face recognition benchmark demonstrate that

our lightweight face recognition model outperforms the

state-of-the-art lightweight model. Even on large scale face

recognition benchmark IJB-B, IJB-C and MegaFace, our

lightweight model also achieves comparable performance

with large models.

1. Introduction

Convolutional neural networks (CNN) have made signif-

icant progress in the related applications of computer vision,

such as image classification, object detection, visual ob-

ject tracking, and semantic segmentation. As modern CNN

models become increasingly deeper and larger, they also

become slower, and require more computation [25] [33]

[20] [9] [7]. Such increases in computational costs make

it difficult to deploy state-of-the-art (SOTA) CNN models

on resource-constrained platforms.

Recently Neural Architecture Search (NAS) achieved

the top performance on lightweight CNN design. In or-

Figure 1. Comparison of different blocks. (a) and (b) are search-

based blocks. (c) and (d) are hand-craft blocks. NasNet, Amoe-

baNet and MnasNet illustrations are excerpted from respective pa-

pers. FR-MBConv is proposed in this paper.

der to balance search space and search cost, NAS-based

methods always draw prior from hand-craft CNNs. NAS

can be summarized into two mainstream directions: cell-

based search methods such as NasNet [4], PNAS [6], ENAS

[14], and structural hyperparameter-based search methods

such as MnasNet [27], ProxylessNAS [13], FBNet [3], and

Single-path NAS [34]. The former only searches for the

structure of cells (or blocks) and repeat them to build net-

works. The blocks searched are always multi-path and

fragmented structure, and show poor performance-latency

trade-off. The later directly uses hand-craft MBConv (Mo-

bile Inverted Bottleneck Convolution, which was proposed

in paper [26]), as building blocks and searches for struc-

tural hyperparameters in limited search space. Rather than

optimizing the structure of block as cell-based methods,

these methods simply search hyperparameters of block.



Hardware-aware NAS methods integrate latency into object

function, and as a result these methods achieved the best

performance-latency trade-off. Some blocks are shown in

Figure 1.

Although the MBConv was extensively used in NAS-

based methods, we discover that this block has following

drawbacks:

(1) The computations of the two pointwise layers (i.e.

expansion layer and projection layer) are much higher than

the middle depthwise layer, but only the later makes con-

tribution to receptive field. The property of low cost makes

depthwise layer extraordinarily cheap to employ large ker-

nels in MBConv.

(2) From the perspective of feature generation mecha-

nism, the depthwise layer and the projection layer in an

MBConv can be regarded as a regular convolution [1].

However, the expansion layer always follows the projection

layer of the last MBConv, thus having little effect on feature

generation except changing feature dimensions. This heavy

expansion layer is a little wasteful.

(3) Modern hardware-aware efficient NAS methods

searched for hyperparameters of MBConv, like kernel size,

expansion factor, squeeze-and-excitation (SE) ratio, but the

structure of layers was largely overlooked.

(4) Successful large CNNs tend to use small-kernel con-

volutions to design networks [25] [33] [20] [9] [7], but NAS

networks searched [27] [13] [3] [34] include many large-

kernel MBConv. Moreover, factorizing large kernels into

small kernels cannot improve efficiency but hurt accuracy.

(5) As suggested in paper [37], large kernels do not al-

ways improve accuracy. For face recognition tasks, large

kernel notably hurt accuracy, as shown in Figure 6. Al-

though large kernels need more parameters and computa-

tions, the performance on CFP dataset [31] drops down

quickly from 3x3 kernels to 7x7 kernels.

Considering above drawbacks, in this paper, we study

the effect of factorization and reconstitution on large-kernel

MBConv. We discover that factorizing inside block and fea-

ture generation mechanism guided reconstitution achieves

more efficient performance than naı̈ve large-kernel MB-

Conv. Then we present a simple and efficient block called

FR-MBConv (Factorizing and Reconstituting Mobile in-

verted Bottleneck Convolution), as an alternative to MB-

Conv. Compared to MBConv with the same receptive field,

FR-MBConv has fewer parameters and computations, con-

siderably increased depth and nonlinearity. It is also easier

to be trained from scratch and deployed without additional

optimization on large kernels. From the perspective of fea-

ture generation mechanism , FR-MBConv can be equivalent

to more regular convolutions, indicating stronger ability of

feature representation. In addition, our FR-MBConv is a

generic block, which can be used to replace MBConv in

MobileNetV2-like network to get better performance- la-

tency trade-off.

We combine FR-MBConv and MobileNetV3 [16], a re-

cently proposed hardware-ware efficient network, to build a

lightweight face recognition model. In order to make it eas-

ier to be deployed on mobile devices, we decrease the model

size in terms of the feature embedding module and the SE

integration strategy. Extensive experiments on face recog-

nition benchmarks demonstrate that our lightweight face

recognition model outperforms SOTA lightweight models,

and achieves the best performance-efficiency trade-off. Our

lightweight model achieves competitive performance com-

pared with ResNet100-based large models on large scale

face recognition benchmark IJB-B (94.5%), IJB-C (96.0%)

and MegaFace (97.8%). Our contributions can be summa-

rized as follows:

• We investigate the effect of factorization and recon-

stitution on large-kernel MBConv, and propose FR-

MBConv, as a simple and efficient alternative to MB-

Conv.

• We combine FR-MBConv and MobileNetV3 to build

a lightweight face recognition model. We further ex-

plored feature embedding module and SE integration

strategy to regulate model size.

• Experiments on several face recognition benchmarks

indicate that our model is comparable with large mod-

els.

2. Related work

2.1. Hand-craft mobile building blocks

MobileNetV1 [1] introduced depthwise separable con-

volutions as an efficient replacement for traditional convo-

lution layers. From the respect of feature generation mech-

anism, depthwise separable convolutions effectively factor-

ize traditional convolution by separating spatial filtering.

Depthwise separable convolutions consist of two separate

layers: a 3x3 depthwise convolution for spatial filtering in-

side each channel and a 1x1 pointwise convolution for ex-

changing information across channels. Computations and

parameters of MobileNetV1 are mostly expend on point-

wise convolutions, in theory which is 31x and 70x times

than depthwise convolutions respectively. In MobileNetV1

block, the time cost of the 1x1 convolution is 4.3x times

than the 3x3 depthwise convolutions when testing on an

Apple iPhone X [5]. MobileNetV2 [26] introduced the lin-

ear bottleneck and inverted residual structure, and proposed

more efficient MBConv block. The structure of MBConv

is a 1x1 expansion convolution followed by depthwise con-

volutions and a 1x1 projection layer. The input and out-

put are connected with a residual connection if and only

if they have the same number of channels. This structure



maintains a compact representation at the input and the out-

put, while expanding to a higher-dimensional feature space

internally, which enlarges the proportion of computations

of the depthwise convolution and increases the expressive-

ness of spatial filtering. MBConv is one of the best hand-

craft blocks and extensively utilized in NAS-based meth-

ods. MnasNet [27] and MobileNetV3 [16] drew large ker-

nels and SE [20] based lightweight attention module into

MBConv. The SE module is placed before the projection

layer in the expansion feature space to maximize channel-

wise modulation. Most recently, MDConv (mixed depth-

wise convolution) [37] is proposed to mix up multiple ker-

nel sizes in a single depthwise convolution to capture dif-

ferent types of patterns. As an alternative, in this paper we

introduce convolutional factorization to MBConv to make it

more efficient.

2.2. Hardware-aware efficient NAS

Based on reinforcement learning, MnasNet [27] used

MobileNetV2 [26] as the baseline network structure and

searched for structural hyperparameters. The search space

of MnasNet include block related options like kernel size,

expansion factor, SE ratio, and stage related options like

numbers of channels and blocks. However, the structure of

MBConv was disregard. Network searched use both 3x3

and 5x5 convolutions to have better accuracy-latency trade-

off. MobileNetv3 [16] used the NetAdapt [36] algorithm

to search per layer for the number of filters. Furthermore,

swish [28] was introduced to replace ReLU. Swish signifi-

cantly improves the accuracy but increases latency cost, so

it was used only in the deep layers. Differentiable NAS

[13] [3] [34] methods train a single over-parameterized

super-model network to prune a compact optimized archi-

tecture. These methods significantly reduce search cost, but

also decrease search space to only block-related hyperpa-

rameters. ProxylessNAS [13] and FBNet [3] formulated

the architecture searching problem to a multi-path selection

problem. Besides, ProxylessNAS introduced 7x7 kernels

to MBConv and FBNet introduced group convolutions to

the pointwise layers. Search results show that large ker-

nels frequently appear in the deep layers and group option

is merely used. Single-Path NAS [34] encoded all archi-

tectural decisions based on shared convolutional kernel pa-

rameters, and drastically decreased the search cost. In sum-

mary, hardware-aware efficient NAS methods directly use

hand-craft MBConv as building block, and mainly search

for MBConv-related hyperparameters, especially differen-

tiable NAS methods. However, all these methods do noth-

ing with the structure of MBConv.

2.3. Lightweight Face Recognition

The face recognition models deployed locally on mo-

bile devices are expected to be not only accurate but also

small and fast. Lightweight network specifically designed

for face recognition have been rarely researched. The

most straight-forward way is combining above efficient net-

works with SOTA face recognition loss [22] [11] [39] [15].

ArcFace [22] utilized MobileNetV1 as backbone and the

BN-Dropout-FC-BN structure to get the 512-D embedding

feature. For the drawback, this structure increases the

model size to 112M. MobileFaceNet [32] proposed global

depthwise convolution (GDC) to make a lightweight fea-

ture embedding module. They employed the Conv1x1-BN-

GDC7x7-FC-BN structure to get the 128-D embedding fea-

ture which greatly reduces model size (only 4M). However

the computation of this structure is comparable with Arc-

Face, and relatively poor performance. We propose a fea-

ture embedding module in this paper, which achieves better

performance-parameter trade-off than both above. Shrink-

TeaNet [10] introduced a teacher-student learning algorithm

to train lightweight face recognition model. With FR-

MBConv, our lightweight model can be trained from scratch

without any assistance.

3. Proposed method

We propose FR-MBConv, as a simple and efficient al-

ternative to MBConv. The FR-MBConv can be regard as

a factorization-reconstitution version of large-kernel MB-

Conv but more lightweight and powerful. Then we combine

FR-MBConv with MobileNetV3 to build a lightweight face

recognition model.

3.1. FR-MBConv: an efficient and powerful mobile
block

The structures of our FR-MBConv are shown in Figure

2 (c) and (d). Similar to MBConv, the first 1x1 convolu-

tion is expansion layer, and the second 1x1 convolution is

projection layer. The input and output are connected with a

residual connection if and only if they have the same num-

ber of channels. The expansion convolution will be skipped

if expand factor is 1. Each convolution layer is followed

by a Batch Normalization [19] layer, and linear activation

is applied after the first depthwise convolution and the last

pointwise convolution. We set the stride of last depthwise

convolution to 2 when needed. The difference is that, FR-

MBConv employ three 3x3 depthwise convolutions without

hyperparameter of kernel size.

Compared with MBConv in Figure 2 (a) and (b), FR-

MBConv has the following advantages: (1) Less parameters

and computation with the same receptive field; (2) More

depth and nonlinearity inside block; (3) From the respect

of feature generation mechanism, FR-MBConv can be re-

garded as more regular convolutions; (4) FR-MBConv is

much easier to train from scratch, and deployment friendly,

without additional optimization on 5x5 and 7x7 depth-

wise convolutions. In addition, our FR-MBConv is a



Figure 2. Blocks of MBConv and FR-MBConv. (a) and (b): The structures of MBConv block with stride 1 and 2, in which k is kernel size,

and default nonlinearity is ReLU or swish. (c) and (d): Thee structures of our FR-MBConv block with stride 1 and 2, in which default

nonlinearity is PReLU. SE refers to SE model with ratio 0.25.

generic block, which can be used to replace MBConv in

MobileNetV2-like networks, or directly inserted in search

space of NAS.

The main idea of FR-MBConv is factorizing and recon-

stituting large-kernel MBConv. In this section, we will dis-

cuss the advantages of factorization and reconstitution.

Factorization makes mobile block more efficient. For

regular convolution, a large-kernel convolution can be fac-

torized into several small-kernel convolutions with the same

receptive field (RF), but the later has less computation and

parameters, and could insert more nonlinearity. However,

permitted to use different kernel size, networks searched

tend to use large kernels in the deep layers. Inspired by

regular convolution, we bring out a question: Why didn‘t

NAS factorize large kernels in the search process?

For an MBConv, both the expansion layer and the pro-

jection layer are pointwise convolutions, which cannot in-

crease receptive field. The receptive field of the middle

depthwise convolution is equal to the whole MBConv. For-

mally, given the input tensor with shape (H,W,C), e and k

represent expansion factor and kernel size of the depthwise

layer of an MBConv. The FLOPs of pointwise layers denote

as PWF :

PWF = 2e ·H ·W · C2 (1)

The FLOPs of depthwise layer denote as DWF :

DWF = k2 · e ·H ·W · C (2)

The total FLOPs of MBConv are the sum of PWF and

DWF . Large kernel size delivers larger receptive field,

but more FLOPs. The ratio of PWF and DWF is 2C
k2 ,

which means pointwise layers have heavier burden in com-

putation. It’s worth noting that kernel size only affects the

computation of depthwise layer.

Figure 3. Comparison of different factorization strategy. (a): Orig-

inal large-kernel MBConv. (b): Factorizing it outside block. (c):

Factorizing it inside block. DW3x3 refers to 3x3 depthwise con-

volution.

In search space of modern NAS, MBConv is regarded

as a complete component. As shown in Figure 3, a 7x7

MBConv can be factorized into three 3x3 small-kernel MB-

Conv as shown in (b), and we call it outside factorization.

On the contrary, inside factorization means only factorize

the large-kernel depthwise convolution inside MBConv, as

shown in (c). Table 1 shows the computation of each struc-

ture in Figure 3. Comparing (a) and (b), the total FLOPs of

outside factorization is much higher than original MBConv,

but DWF of the former is 0.55 times of the later, which

means factorization works in depthwise layer. However,

the PWF of outside factorization are 3 times of original

MBConv, that’s the reason why NAS don‘t factorize large

kernels in search process.

Comparing (a) and (c), the PWF of inside factoriza-

tion is equal to original MBConv, but its DWF is signifi-

cantly reduced by 45%. It’s worth noting that the number

of parameters in depthwise layer is reduced as equal. In ad-

dition, inside factorization makes block deeper so that we

can attach more nonlinearity units. This reduction means



Block MBConv Outside-fact Inside-face

RF 7 7 7

PWF 2e · H · W · C
2 6e · H · W · C

2 2e · H · W · C
2

PWF 49e · H · W · C 27e · H · W · C 27e · H · W · C

Table 1. Comparison of structures in Figure 3. MBConv corre-

sponds to structure (a), Outside-Fact and Inside-Fact mean outside

factorization and inside factorization, corresponding to structure

(b) and structure (c) respectively.

Block MBConv F-MBConv FR-MBConv

RF 7 7 7

PWF 2e · H · W · C
2 2e · H · W · C

2 2e · H · W · C
2

PWF 49e · H · W · C 27e · H · W · C (18e + 9) · H · W · C

Table 2. Comparison of structures in Figure 4. MBConv corre-

sponds to structure (a), Outside-Fact and Inside-Fact mean outside

factorization and inside factorization, corresponding to structure

(b) and structure (c) respectively.

inside factorization works just like regular convolution. In

summary, we can utilize inside factorization to make mobile

block more efficient.

Reconstitution makes mobile block stronger. As men-

tioned above, after factorization of a 7x7 large-kernel MB-

Conv, we obtain three 3x3 depthwise convolutions, thus

we can insert three nonlinearities into block (refers to F-

MBConv). However, for whole network consist of F-

MBConv, the two pointwise layers are adjacent and three

depthwise layers are adjacent, causing monotonous and re-

dundant operation. In this section we introduce reconstitu-

tion to make block crisscross and make the utmost of both

kinds of layers.

As shown in Figure 4, we first factorize the 7x7 depth-

wise convolution into three 3x3 depthwise convolutions in-

side the MBConv, as shown in (b) and (c). Table 2 lists the

computation of each block in Figure 4.

From the view of feature generation mechanism, a reg-

ular convolution layer can be factorized into a depthwise

layer following a pointwise layer. The middle depthwise

layer and following pointwise layer in structure (b) can be

factorized inversely to a regular convolution as structure (a).

However after factorization, there is only one depthwise

layer following a pointwise layer as before. To make block

crisscross, the first depthwise convolution in structure (c) is

moved to the font of the first pointwise layer, as shown in

(d), which is the core structure of our FR-MBConv. We call

this process as reconstitution. This reconstitution has two

advantages. Firstly, after reconstitution the first and third

depthwise layers are both followed by a pointwise layer,

therefore we can factorize them inversely to regular convo-

lutions, as shown in structure (e). Our FR-MBConv makes

fully use of heavy pointwise convolutions for exchanging

information across channels, indicating stronger ability of

feature representation. Secondly, the first depthwise convo-

lution was moved from expansion feature space to compact

feature space, reducing its computation. As shown in Ta-

ble 2, factorization and reconstitution both reduce DWF ,

while avoiding changing PWF . If expansion factor is 3

or 6, though factorization and reconstitution, DWF were

reduced by 43% and 40% respectively.

To sum up, inside factorization and feature generation

mechanism guided reconstitution are two useful tricks to

promote the efficiency of large-kernel MBConv.

3.2. Lightweight Face Recognition

Our FR-MBConv is generic so that it is possible to

replace MBConv with this block in any network. In

this section, based on a SOTA hardware-aware efficient

MobileNetV3-large, we built a lightweight face recogni-

tion model. To meet the requirements of the Track 1 of

Lightweight Face Recognition Challenge [21], we made

some modifications to the model. First, we fixed the input

face image to 112x112, and substitute the first three layers

of MobileNetV3-large [16] by a 3x3 regular convolution

with 24 channels and stride 2. Then, all MBConv blocks

are replaced by FR-MBConv with the same channels. We

adjusted expansion factor of each block, and used PReLU

as nonlinear activation. After that, the lightweight model

was scaled up to match the FLOPs and model size request

of Track 1. Different from EfficientNet [38], we kept the

resolution of the input image, and only scaled up width and

depth of model (α = 1.2, β = 1.1, γ = 1). Our lightweight

face recognition network is shown in Table 3.

In order to better deploy our lightweight network on

resource-constrained mobile devices, we optimized the

model size in two sides: (a) Feature embedding mod-

ule. We proposed a DW3x3-BN-FC-BN structure to get the

512-D embedding feature, where DW3x3 is a 3x3 depth-

wise convolution with stride 2 and no padding. Our new

feature embedding module achieves better computation-

parameter trade-off than the embedding module of Mobile-

FaceNet [32] and ArcFace [22]. The rest layers after last

FR-MBConv were replaced by our feature embedding mod-

ule. (b) Squeeze-and-excited module integration strat-

egy. MobileNetV3 put SE module in expansion feature

space, which leads to 8MB larger than MobileNetV2 in

model size. We used PReLU and sigmoid as nonlinearity

instead of ReLU and hard-sigmoid in MobileNetV3 block,

and we find this setting make model easier convergence.

Then we put SE module after projection layer with SE ratio

fixed to 0.25, within compact feature space. The number of

parameters in SE module could be decreased by 97% when

expansion factor was 6. We employed SE module in every

FR-MBConv owing its high efficiency.



Figure 4. Comparison of different structures of blocks with the same receptive field. (b): A 7x7 MBConv. (c) and (d): The results after

factorization and further reconstitution. (a) and (e): Equal structures of (b) and (d) in the respect of feature generation mechanism. We

ignored all BN, SE, nonlinearity and shotcut connections.

Input Block Output e n s

112
2
× 3 Conv3x3 56

2
× 32 - 1 2

56
2
× 32 FR-MBConv 56

2
× 32 1 2 1

56
2
× 32 FR-MBConv 28

2
× 48 4 5 2

28
2
× 48 FR-MBConv 14

2
× 104 6 6 2

14
2
× 104 FR-MBConv 14

2
× 144 6 3 1

14
2
× 144 FR-MBConv 7

2
× 200 6 5 2

7
2
× 200 DW3x3 3

2
× 200 - 1 2

3
2
× 200 FC 512 - 1

Table 3. Lightweight face recognition network proposed in this

paper. The expansion factor of each block is e. Each line describes

a stage, in which the block repeat n times. The first block of each

stage has a stride s and all others use stride 1. DW3x3 is depthwise

convolution with stride 2 and padding 0.

4. Experiments

4.1. Databases

Training set: MS-Celeb-1M [41] dataset contains 10M

face images of 100k identities. A cleaned version of original

MS-Celeb-1M with 5.1M face images of 93k identities is

provided by Lightweight Face Recognition Challenge [21],

where all face images are preprocessed to 112x112 by Reti-

naFace [23]. In this work we directly use this cleaned ver-

sion, denote as MS1Mt1, as training set without any modi-

fication for a fair comparison.

Test set: Three small-scale face verification dataset

LFW [12], CFP [31] and AgeDB [30], and two large-scale

face recognition dataset IJB-B [8], IJB-C [2] and MegaFace

[17] are utilized.

4.2. Implementation details

All experiments in this work are implemented based on

Insightface [18] by MXNet [35]. We use ArcFace loss [22]

with s = 64 and m = 0.5. All models in experiments use

the weight initialization strategy described in [24] and were

trained from scratch. We use SGD with a mini-batch size

of 1024 on 8 GPUs (128 per GPU). The weight decay is

0.00005 and the momentum is 0.9. The learning rate starts

from 0.1 and is divided by 10 at 260K, 340K and 360K it-

erations. The training process is finished at 380K iterations.

All our convolutional layers use Batch- Normalization lay-

ers with average decay of 0.99. We only use horizontal flip

augmentation at both training and testing stage.

4.3. Evaluation results

Results on LFW, CFP, AgeDB. In Table 4, we compare

our model with other lightweight face recognition models.

MobileNetV1 and MobileNetV2 are lightweight networks

directly used for face recognition. MobileFaceNet-1G is

a depth scaling version of MobileFaceNet with 1G FLOPs

(y2 of insightface [18]). MobileNetV3-1G is a depth and

channel scaling version of MobileNetV3 with 1G FLOPs,

which is similar with our model except blocks are 3x3

and 5x5 MBConv, and nonlinear activations are ReLU and

swish. We find that original MBConv is hard to train, and

MobileNetV3 even cannot converge. On the contrary, our

FR-MBConv-based networks converge quickly even though

training from scratch.

As shown in Table 4, on the LFW, CFP and AgeDB, our

network achieves best performance. The verification rate of

our network is boosted to 98.54%, 3.4% higher than distil-

lation model ShrinkTeaNet-MFNR on CFP dataset, which

means the error rate is reduced by 70%. With similar



Method Size Train-Set LFW CFP AgeDB

Res50+SphereFace [39] 167 CASIA 99.11 94.38 91.70

Res50+CosFace [15] 167 CASIA 99.51 95.44 94.56

Res50+ArcFace [22] 167 CASIA 99.53 95.56 95.15

MobileNetV1 [1] 14.1 MSIMv2 99.53 93.81 96.30

MobileNetV2 [26] 8.6 MSIMv2 99.42 91.67 95.28

MobileFaceNet [32] 4.8 MSIMv2 99.45 92.11 96.17

ShrinkTeaNet [10] 14.9 MSIMv2 99.77 95.14 97.63

MobileFaceNet-1G 8.25 MSIMt1 99.73 97.73 97.33

MobileNetV3-1G 21.5 MSIMt1 - - -

Our 19.8 MSIMt1 99.80 98.54 98.11

Table 4. Verification performance (%) of SOTA models on LFW,

CFP and AgeDB. Results of the first three are from ArcFace [22].

MS1Mv2 is another cleaned version of MS1M. The unit of size is

MB.

Method Size Train-Set IJB-B IJB-C

Res50 [29] - VGG2 78.4 82.5

SENet50 [29] - VGG2 80.0 84.0

MN-vc [?] - VGG2 83.1 86.2

Res50+DCN [40] - VGG2 85.0 86.7

ArcFace+Res50 [22] 167 VGG2 89.8 92.1

ArcFace+Res100 [22] 250 MS1Mv2 94.9 96.3

MobileNetV1 [1] 14.1 MSIMv2 90.9 93.0

MobileNetV2 [26] 8.6 MSIMv2 88.3 90.7

MobileFaceNet [32] 4.8 MSIMv2 89.6 91.8

ShrinkTeaNet [10] 14.9 MSIMv2 92.3 94.0

MobileFaceNet-1G 8.25 MSIMt1 92.9 94.6

Our 19.8 MSIMt1 94.5 96.0

Table 5. Verification (%) TAR (@FAR=1e-4) on IJB-B and IJB-C

datasets. Results are from respective papers. The unit of size is

MB.

FLOPs, our network significantly reduces error rate by 36%

and 29% than MobileFaceNet-1G respectively on CFP and

AgeDB. Its worth noting that with similar FLOPs, model

size of our network is 11.55MB large than MobileFaceNet-

1G, among which most parameters spend on SE module.

Results on IJB-B and IJB-C. In Table 5 we com-

pare our network with state-of-the-art models at TAR

(@FAR=1e-4) on large-scale datasets IJB-B and IJB-C. Our

network is 1.6% and 1.4% higher than MobileFaceNet-1,

and achieves best performance among lightweight mod-

els. Our network improves the TAR(@FAR=1e-4) of

lightweight model to 0.945 and 0.960 on IJB-B and IJBC

respectively. Besides, our model is comparable with SOTA

large model ArcFace with ResNet100, which is 13.6 times

larger than our model. In Figure 5, we show the full ROC

curves of our network with MobileFaceNet-1G and ArcFace

on IJB-B and IJB-C.

Results on MegaFace. In Table 6 we compare our net-

work on MegaFace dataset under the large protocol. Our

network achieves the best performance among lightweight

networks, 6.3% higher verification rate than MobileFaceNet

on the original dataset, and 2.2% higher identification rate

than newly distillation based ShrinkTeaNet-MFNR on the

Figure 5. ROC curves of 1:1 verification protocol on the IJB-B and

IJB-C dataset.

Method Train-Set Id(%) Ver(%)

FaceNet [11] - 70.49 86.47

CosFace [15] - 82.72 96.65

R100+CosFace [22] MS1Mv2 80.56 96.56

R100+ArcFace [22] MS1Mv2 81.03 96.98

MobileFaceNet [32] MS1Mv2 - 90.16

Our MS1Mt1 80.29 96.47

R100+CosFace(R) [22] MS1Mv2 97.91 97.91

R100+ArcFace(R) [22] MS1Mv2 98.35 98.48

MobileFaceNet(R) [32] MS1Mv2 - 92.59

ShrinkTeaNet(R) [10] MS1Mv2 95.64 -

Our(R) MSIMt1 97.80 97.94

Table 6. Face identification and verification on MegaFace. Results

are from respective papers. “Id” refers to the rank-1 face identifi-

cation accuracy with 1M distractors, and “Ver” refers to the face

verification TAR at 10-6 FAR. “R” refers to the refined version of

MegaFace (according to [22]). The unit of size is MB.

refined dataset. In addition, our model is also comparable

with ResNet-100-based ArcFace model, showing great po-

tential of lightweight models.

4.4. Ablation study

In Table 7, we first compare our FR-MBConv with MB-

Conv. MBConv with different kernel size directly replace

FR-MBConv in Table 3. It’s worth noting that we use MB-

Conv with the same kernel size and SE settings in each net-

work for simplicity. FR-MBConv kxk denotes the struc-

ture of MBConv kxk after factorizing and reconstituting.

Obviously FR-MBConv 7x7 is the base block in this pa-

per. Comparing with original 7x7 MBConv, our 7x7 FR-

MBConv reduces FLOPs and model size by 11% and 50%

respectively. It’s clear that our FR-MBConv has a better

performance-efficiency trade-off than MBConv. As shown

in Figure 6, FR-MBConv 3x3 is the same block as MBConv

3x3 except the location of SE module, which leads to half of

model size smaller and 0.2% lower verification rate. Large-

kernel MBConv requires more computations and parame-

ters, but notably hurt performance on face recognition task.

On the contrary with factorization and reconstitution, our

FR-MBConv can benefit from additional depthwise convo-

lutions.



Method FLOPs Size LFW CFP AgeDB

MB3x3 1019 38.6 99.82 98.74 98.15

MB5x5 1087 39.4 99.80 98.53 98.07

MB7x7 1205 40.6 99.73 97.84 97.78

FR3x3 1009 19.0 99.80 98.46 98.10

FR7x7 1022 19.8 99.80 98.54 98.11

Table 7. Comparison of different blocks version of our network.

“MB kxk” refers to MBConv with kernel kxk. “FR kxk” refers

to FR-MBConv corresponding to MBConv kxk. FLOPs are com-

puted following Lightweight Face Recognition Challenge. The

unit of size and FLOPs are MB and M respectively.

Figure 6. FLOPs vs. Ver. on CFP dataset. Each point rep-

resents our lightweight face recognition network with different

block, where model size is represented by point size. Blue points

denote MBConv with kernel size k, and each model size is 40MB.

Red points denote FR-MBConv, and each model size is 20MB.

In Table 8, we compare different feature embedding

module with our network. FC, GDC and S2FC indicate the

feature embedding module of ArcFace, MobileFaceNet and

our network respectively. It is worth noting that dropout

layer of ArcFace is removed for fast convention. The

FLOPs of network with our module is less than FC and

GDC, and number of parameters is 44% of network with

FC. FC gets best result on CFP with most parameters and

FLOPs. Although with lowest model size, computation of

GDC is comparable with FC. Furthermore, GDC is much

worse than our S2FC on more challenge dataset CFP and

AgeDB, indicating the drawback of compact feature dimen-

sion. It is obvious to see that our S2FC achieves better

accuracy-model size trade-off than FC and GDC.

Finally, we compare SE integration strategies on face

recognition task and results are reported in Table 9. SE-Pre

denotes projection layer followed by SE module just like

MobileNetV3, while SE-Post denotes SE module followed

by projection layer, as our network. On LFW and AgeDB,

performance of SE-Pre and SE-Post is comparable. On CFP

dataset, SE-Pre achieve better recognition rate than SE-Post

with 50% more parameters and slightly higher FLOPs. It’s

clear to see that our SE-Post integration strategy can reduce

model size significantly with minor performance degrada-

Design FLOPs Size LFW CFP AgeDB

FC-512 1030 35.4 99.77 98.66 97.95

GDC-128 1030 17.0 99.82 98.39 98.02

S2FC-512 1022 19.8 99.80 98.54 98.11

Table 8. Comparison of different feature embedding module. FC

denotes BN-FC-FB structure of ArcFace. GDC denotes Conv1x1-

BN-GDC7x7-FC-BN structure. S2FC denotes our DW3x3-FC-

BN structure. FLOPs are computed following Lightweight Face

Recognition Challenge. The unit of size and FLOPs are MB and

M respectively.

Design FLOPs Size LFW CFP AgeDB

SE-Pre 1032 39.4 99.78 98.66 98.10

SE-Post 1022 19.8 99.80 98.54 98.11

Table 9. Comparison of different feature embedding module. FC

denotes BN-FC-FB structure of ArcFace. GDC denotes Conv1x1-

BN-GDC7x7-FC-BN structure. S2FC denotes our DW3x3-FC-

BN structure. FLOPs are computed following Lightweight Face

Recognition Challenge. The unit of size and FLOPs are MB and

M respectively.

tion.

5. Conclusion

In this paper, we research the effect of factorization

and reconstitution on large-kernel MBConv. We discover

that factorizing inside block and feature generation mech-

anism guided reconstitution achieves more efficient than

naı̈ve large-kernel MBConv. Thus, we proposed a simple

and efficient block, namely FR-MBConv, to replace MB-

Conv. Compared to MBConv, at same receptive field, FR-

MBConv has less parameters and computational cost, con-

siderably increased depth and more nonlinearity. It is also

easier to be trained and deployed. We combined generic

FR-MBConv with MobileNetV3 to build a lightweight face

recognition model. In order to decrease model size, we fur-

ther explored feature embedding module and squeeze-and-

excite integration strategy. Extensive experiments on both

small-scale and large-scale datasets demonstrated that our

lightweight face recognition network has achieved state-of-

the-art performance.
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