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Abstract

To improve the discriminative and generalization abil-

ity of lightweight network for face recognition, we propose

an efficient variable group convolutional network called

VarGFaceNet. Variable group convolution is introduced by

VarGNet to solve the conflict between small computational

cost and the unbalance of computational intensity inside a

block. We employ variable group convolution to design our

network which can support large scale face identification

while reduce computational cost and parameters. Specif-

ically, we use a head setting to reserve essential informa-

tion at the start of the network and propose a particular

embedding setting to reduce parameters of fully-connected

layer for embedding. To enhance interpretation ability, we

employ an equivalence of angular distillation loss to guide

our lightweight network and we apply recursive knowledge

distillation to relieve the discrepancy between the teacher

model and the student model. The champion of deepglint-

light track of LFR (2019) challenge demonstrates the ef-

fectiveness of our model and approach. Implementation of

VarGFaceNet will be released at https://github.com/zma-c-

137/VarGFaceNet soon.

1. Introduction

With the surge of computational resources, face recog-

nition using deep representation has been widely ap-

plied to many fields such as surveillance, marketing and

biometrics[3, 17]. However, it is still a challenging task to

implement face recognition on limited computational cost

system such as mobile and embedded systems because of

the large scale identities needed to be classified.

Many work propose lightweight networks for common

computer vision tasks such as SqueezeNet[15], MobileNet

[12], MobileNetV2 [20], ShuffleNet [26]. SqueezeNet[15]

extensively uses 1 × 1 convolution, achieving 50× fewer

parameters than AlexNet[16] while maintains AlexNet-level

accuracy on ImageNet. MobileNet[12] utilizes depthwise

separable convolution to achieve a trade off between latency

and accuracy. Based on this work, MobileNetV2[20] pro-

poses an inverted bottleneck structure to enhance discrim-

inative ability of network. ShuffleNet[26] uses pointwise

group convolution and channel shuffle operations to further

reduce computation cost. Even though they cost small com-

putation during inference and achieve good performance

on various applications, optimization problems on embed-

ded system still remain on embedded hardware and corre-

sponding compilers [25]. To handle this conflict, VarGNet

[25] proposes a variable group convolution which can ef-

ficiently solve the unbalance of computational intensity in-

side a block. Meanwhile, we explore that variable group

convolution has larger capacity than depthwise convolution

with the same kernel size, which helps network to extract

more essential information. However, VarGNet is designed

for general tasks such as image classificaiton and object de-

tection. It decreases spatial area to the half in the head set-

ting to save memory and computational cost, while this set-

ting is not suitable for face recognition task since detailed

information of face is necessary. And there is only an av-

erage pooling layer between last conv and fully connected

layer of the embedding, which may not extract enough dis-

criminative information.

Based on VarGNet, we propose an efficient variable

group convolutional network for lightweight face recogni-

tion, shorted as VarGFaceNet. In order to enhance the dis-

criminative ability of VarGNet for large scale face recog-

nition task, we first add SE block [13] and PReLU [8] on

blocks of VarGNet. Then we remove the downsample pro-

cess at the start of network to preserve more information.

To decrease parameters of network, we apply variable group



(a) Normal block (b) Down sampling block

(c) Head setting (d) Embedding setting

Figure 1. Settings of VarGFaceNet. a) is the normal block of VarGFaceNet. We add SE block on normal block of VarGNet. b) is the down

sampling block. c) is head setting of VarGFaceNet. We do not use downsample in first conv in order to keep enough information. c) is

the embedding setting of VarGFaceNet. We first expand channels from 320 to 1024. Then we employ variable group convolution and

pointwise convolution to reduce the parameters and computational cost while remain essential information.

convolution to shrink the feature tensor to 1×1×512 before

fc layer. The performance of VarGFaceNet demonstrates

that this embedding setting can preserve discriminative abil-

ity while reduce parameters of the network.

To enhance the interpretation ability of lightweight net-

work, we apply knowledge distillation during the training.

There are several approaches aim at making the deep net-

work smaller and cost-efficient, such as model pruning,

model quantization and knowledge distillation. Among

them, knowledge distillation is being actively investigated

due to its architectural flexibility. Hinton[11] introduces

the concept of knowledge distillation and proposes to use

the softmax output of teacher network to achieve knowl-

edge distillation. To take better advantage of information

from teacher network, FitNets[19] adopts the idea of fea-

ture distillation and encourages student network to mimic

the hidden feature values of teacher network. After FitNets,

there are variant methods attempt to exploit the knowledge

of teacher network, such as transferring the feature activa-

tion map[10], activation-based and gradient-based Atten-

tion Maps[24]. Recently ShrinkTeaNet [6] introduces an

angular distillation loss to focus on angular information

of teacher model. Inspired by angular distillation loss we

employ an equivalent loss with better implementation effi-

ciency as the guide of VarGFaceNet. Moreover, to relieve

the complexity of optimization caused by the discrepancy

between teacher model and student model, we introduce

recursive knowledge distillation which treats the model of

student trained in one generation as pretrained model for

the next generation.

We evaluate our model and approach on LFR challenge

[4]. LFR challenge is a lightweight face recognition chal-

lenge which requires networks whose FLOPs is under 1G

and memory footprint is under 20M. VarGFaceNet achieves

the state-of-the-art performance on this challenge which is

shown in Section 3. Our contributions are summarized as

follows:

• To improve the discriminative ability of VarGNet [25]

in large-scale face recognition we employ a different

head setting and propose a new embedding block. In

embedding block, we first expand channels to 1024 by

1×1 convolution layer to reserve essential information,

then we use variable group conv and pointwise conv to

shrink the spatial area to 1 × 1 while saving compu-

tational cost. These settings improve the performance

on face recognition tasks which shown in Section 3.

• To imporve the generalization ability of lightweight

models, we propose recursive knowledge distillation

which relieves the generalization gap between teacher

models and student models in one generation.

• We analyse the efficiency of variable group convolu-

tion and employ an equivalence of angular distillation

loss during training. Experiments conducted to show

the effectiveness of our approach.



2. Approach

2.1. Variable Group Convolution

Group Convolution was first introduced in AlexNet [16]

for computational cost reduction on GPUs. Then, the car-

dinality of group convolution demonstrated a better perfor-

mance than the dimensions of depth and width in ResNext

[22]. Designed for mobile device, MobileNet [12] and Mo-

bileNetV2 [20] proposed depthwise separable convolution

inspired by group convolution to save computational cost

while keep discriminative ability of convolution. However,

depthwise separable convolution spends 95% computation

time in Conv 1 × 1, which causes a large MAdds gap be-

tween two consecutive laysers (Conv 1 × 1 and Conv DW

3×3) [12]. This gap is unfriendly to embedded systems who

load all weights of the network to perform convolution[23]:

embedded systems need extra buffers for Conv 1× 1.

To keep the balance of computational intensity inside a

block, VarGNet [25] sets the channel numbers in a group

as a constant S. The constant channel numbers in a group

lead to the variable number of groups ni in a convolution,

named variable group convolution. The computational cost

of a variable group convolution is:

k2 × hi × wi × S × ci+1 (1)

S =
ci

ni

(2)

The input of this layer is hi × wi × ci and the output of

that is hi × wi × ci+1. k is the kernel size. When variable

group convolution is used to replace depthwise convolution

in MobileNet [12], the computational cost of pointwise con-

volution is:

12 × hi × wi × ci+1 × ci+2 (3)

The ratio of computational cost between variable group con-

volution and pointwise convolution is k2S
ci+2

while that be-

tween depthwise convolution and pointwise convolution is
k2

ci+2
. In practice, ci+2 ≫ k2, S > 1, so k2S

ci+2
> k2

ci+2
.

Hence, it will be more computational balanced inside a

block when employs variable group convolution on the bot-

tom of pointwise convolution instead of depthwise convo-

lution.

Moreover, S > 1 means variable group convolution has

higher MAdds and larger network capacity than depthwise

convoluiton (with the same kernel size), which is capable of

extracting more information.

2.2. Blocks of Variable Group Network

Communication between off-chip memory and on-chip

memory only happens on the start and the end of block com-

puting when a block is grouped and computed together on

embedded systems [23]. To limit the communication cost,

VarGNet sets the number of output channels to be same as

the number of input channels in the normal block. Mean-

while, VarGNet expands the C channels at the start of the

block to 2C channels using variable group convolution to

keep the generalization ability of the block. The normal

block we used is shown in Fig. 1(a), and down sampling

block is shown in Fig. 1(b). Different from the blocks in

VarGNet [25], we add SE block in normal block and em-

ploy PReLU instead of ReLU to increase the discriminative

ability of the block.

2.3. Lightweight Network for Face Recognition

2.3.1 Head setting

The main challenge of face recognition is the large scale

identities involved in testing/training phase. It requires dis-

criminative ability as much as possible to support distin-

guishing millions of identities. In order to reserve this abil-

ity in lightweight networks, we use 3 × 3 Conv with stride

1 at the start of network instead of 3 × 3 Conv with stride

2 in VarGNet. It is similar to the input setting of [3]. The

output feature size of first conv in VarGNet will be down-

sampled while ours remains the same as input size, shown

in Fig. 1(c).

2.3.2 Embedding setting

To obtain the embedding of faces, many work [3, 17] em-

ploy a fully-connected layer directly on the top of last con-

volution. However, the parameters of this fully-connected

layer will be huge when output features from last con-

voluiton are relatively large. For instance, in ResNet 100 [3]

the output of last conv is 7× 7× 512, and the parameters of

fc layer (embedding size is 512) are 7×7×512×512. The

overall parameters of fc layer for embedding are 12.25M,

and the memory footprint is 49M (float32)!

In order to design a lightweight network (memory foot-

print is less than 20M, FLOPs is less than 1G), we employ

variable group convolution after last conv to shrink the fea-

ture maps to 1 × 1 × 512 before fc layer. Consequently,

the memory footprint of fc layer for embedding is only 1M.

Fig.1(d) shows the setting of embedding block. Shrinking

the feature tensor to 1 × 1 × 512 before fc layer for em-

bedding is risky since information contains by this feature

tensor is limited. To avoid the derease of essential informa-

tion, we expand channels after last conv to retain as much

information as possible. Then we employ variable group

convolution and pointwise convolution to decrease the pa-

rameters and computational cost while keep information.

Specifically, we first use a 1×1 Conv to expand the chan-

nels from 320 to 1024. Then we employ a 7 × 7 variable

group convolution layer (8 channels in a group) to shrink the

feature tensors from 7× 7× 1024 to 1× 1× 1024. Finally,



Layer Output Size KSize Stride Repeat Output Channels

Image 112x112 3

Conv 1 112x112 3x3 1 1 40

Head Block 56x56 2 1 40

Stage2
28x28 2 1

80
28x28 1 2

Stage3
14x14 2 1

160
14x14 1 6

Stage4
7x7 2 1

320
7x7 1 3

Conv 5 7x7 1x1 1 1 1024

Group Conv 1x1 7x7 1 1 1024

Pointwise Conv 1x1 1x1 1 1 512

FC 512

Table 1. Overall architecture of VarGFaceNet. It only has 1G FLOPs and 5M parameters (memory footprint is 20M saved as float32).

pointwise convolution is used to connect the channels and

output the feature tensors to 1× 1× 512. The new embed-

ding block setting only takes up 5.78M while the original fc

layer takes up 30M (7× 7× 320× 512) on the disk.

Experiments of comparison between our network and

VarGNet in Section 3.3 demonstrate the efficiency of our

network on face recognition tasks.

2.3.3 Overall architecture

The overall architecture of our lightweight network

(VarGFaceNet) is illustrated in Table 1. The memory foot-

print of our VarGFaceNet is 20M and FLOPs is 1G. We

set S = 8 in a group empirically. Benefit from variable

group convolution, head settings and particular embedding

settings, VarGFaceNet can achieve good performance on

face recognition task with limited computational cost and

parameters. In Section 3, we will demonstrate the effective-

ness of our network on a million distractors face recognition

task.

2.4. Angular Distillation Loss

Knowledge distillation has been widely used in

lightweight network training since it can transfer the in-

terpretation ability of a big network to a smaller network

[12]. Majority tasks that used knowledge distillation are

close set tasks [19, 11]. They apply scores/logits or em-

beddings/feature magnitude to compute l2 distance or cross

entropy as loss. However, for open set tasks, scores/logits

of training set contain limited information of testing set and

the exact match of featuers maybe over-regularized in some

situations. To extract useful information and avoid over-

regularization, [6] proposes an angular distillation loss for

knowledge distillation:

La(F
i
t , F

i
s) = −

1

m

m∑

i=1

||1−
F i
t

||F i
t ||

∗
F i
s

||F i
s ||

||22 (4)

F i
t is the ith feature of teacher model, F i

s is ith features

of student model. m is the number of samples in a batch.

Eq. 4 first computes cosine similarity between features of

teacher and student, then minimizes the l2 distance between

this similarity and 1. Inspired by [6], we propose to use Eq.

5 to enhance the implementation efficiency. Since cosine

similarity is less than 1, minimize Eq. 4 is equivalent to

minimize Eq. 5.

Ls(F
i
t , F

i
s) = −

1

m

m∑

i=1

||
F i
t

||F i
t ||

−
F i
s

||F i
s ||

||22 (5)

Compared with previous l2 loss of exact features, Eq. 4

and Eq. 5 focus on angular information and the distribution

of embeddings.

In addition, we employ arcface [3] as our classification

loss which also pays attention to angular information:

LArc = −
1

m

m∑

i=1

log
es(cos(Θyi

+m))

es(cos(Θyi
+m)) +

∑n

j=1,j �=yi
escosΘj

(6)

To sum up, the objective function we used in training is:

L = LArc + αLs (7)

We empirically set α = 7 in our implementation.

2.5. Recursive Knowledge Distillation

Knowledge distillation with one generation is sometimes

difficult to transfer enough knowledge when large discrep-

ancy exists between teacher models and student models.



Figure 2. The process of recursive knowledge distillation. We apply the first generation of student to initialize the second generation of

student while the teacher model is remained. Angular distillation loss and arcface loss are used to guide training.

Network LFW CFP-FP AgeDB-30 deepglint-light (TPR@FPR=1e-8) Flops

y2 0.99700 0.97829 0.97517 0.803 933M

VarGFaceNet 0.99683 0.98086 0.98100 0.855 1022M

Table 2. VarGFaceNet vs. y2. Performance is recorded within the same epoch. The validation performance of VarGFaceNet is 0.6% and

0.2% higher than y2 on AgeDB-30 and CFP-FP respectively. Testing result of VarGFaceNet is 5% higher than y2.

For instance, in our implementation, the FLOPs of teacher

model is 24G while that of student model is 1G. And the

number of parameters of teacher model is 108M while that

of student model is 5M. Moreover, the different architec-

ture and block settings between teacher model and student

model increase the complexity of training as well. To im-

prove the discriminative and generalization ability of our

student network, we propose recursive knowledge distilla-

tion, which employs the first generation of student to ini-

tialize the second generation of student, as shown in Fig.

2.

In recursive knowledge distillation, we employ the same

teacher model in all generations. That means the angular

information of samples which guides the student model is

invariable. There are two merits if we use recursive knowl-

edge distillation:

1 It will be easier to approach guided direction of teacher

when apply a good initialization.

2 The conflicts between margin of classification loss and

guided angular information in the first generation will

be relieved in the next generation.

The results of our experiments in Section 3 illustrate the

performance of recursive knowledge distillation.

In this section, we first introduce the datasets and evalu-

ation metric. Then, to demonstrate the effectiveness of our

VarGFaceNet, we compare our network with y2 network(a

deeper mobilefacenet[2, 3]). After that, the investigation for

the effect of different teacher models in knowledge distilla-

tion is revealed. Finally, we show the competitive perfor-

mance of VarGFaceNet using recursive knowledge distilla-

tion on LFR2019 Challenge.

3. Experiments

3.1. Datasets and Evaluation Metric

We employ the dataset(clean from MS1M[7]) pro-

vided by LFR2019 for training. All face images in this

dataset are aligned by five facial landmarks predicted from

RetinaFace[5] then resized to 112 × 112. There are 5.1M

images collected from 93K identities. For test set, Trillion-

pairs dataset [1] is used. It contains two parts: 1) ELFW:

Face images of celebrities in the LFW name list. There are

274K images from 5.7K identities; 2) DELFW: Distractors

for ELFW. There are 1.58 M face images from Flickr. All

test images are preprocessed and resized to 112× 112. We

refer deepglint-light to trillionpairs testing set in the follow-

ing. During the training, we utilize face verification datasets

(e.g. LFW[14], CFP-FP[21], AgeDB-30[18]) to validate

different settings using 1:1 verification protocol. Moreover,

we employ the TPR@FPR=1e-8 as evaluation metric for

identification.



Method LFW CFP-FP AgeDB-30 deepglint-light (TPR@FPR=1e-8)

teacher 0.99683 0.98414 0.98083 0.86846

student 0.99683 0.98171 0.97550 0.84341

teacher 0.99817 0.98729 0.98133 0.90231

student 0.99733 0.98200 0.98100 0.85461

teacher 0.99833 0.99057 0.98250 0.93315

student 0.99783 0.98400 0.98067 0.88334

Table 3. Performance of VarGFaceNet with the guide of different teacher models. Performance is recorded within the same epoch. Results

of CFP-FP(validation set) and deepglint-light(TPR@FPR=1e-8) (testing set) show that the higher performance of teacher model leads to

the better results of student model.

Network LFW CFP-FP AgeDB-30 Flops

r100(teacher) 0.9987 0.9917 0.9852 24G

VarGNet(student) 0.9977 0.9810 0.9810 1029M

VarGFaceNet(student) 0.9985 0.9850 0.9815 1022M

Table 4. VarGFaceNet vs. VarGNet. We show the highest performance of every validation dataset. The performance of VarGFaceNet is

higher than VarGNet on LFW, AgeDB-30 and CFP-FP.

3.2. VarGFaceNet train from scratch

To validate the efficiency and effectiveness of

VarGFaceNet, we first train our network from scratch,

and compare the performance with mobilefacenet(y2)

[2, 3]. We employ arcface loss as the objective function of

classification during training. Tabel 2 presents the compar-

ison results of VarGFaceNet and y2. It can be observed that

under the limitation of 1G FLOPs, VarGFaceNet is able

to reach better face recognition performance on validation

sets. Compared with y2, our verification results of AgeDB-

30 , CFP-FP have increased 0.6% and 0.2% respectively,

testing result of deepglint-light (TPR@FPR=1e-8) has

increased 5%. There are two intuitions for the better

performance: 1. our network can contain more parameters

than y2 when limit FLOPs because of variable group

convolution. The biggest number of channels is 256 in

y2 while ours is 320 before last conv. 2. Our embedding

setting can extract more essential information. y2 expands

the number of channels from 256 to 512 then use 7 × 7
depthwise convolution to get the feature tensor before fc

layer. We expand the number of channels from 320 to

1024 then use variable group convolution and pointwise

convolution which have larger network capacity.

3.3. VarGFaceNet guided by ResNet

In order to achieve higher performance than train from

scratch, bigger networks are applied to perform knowledge

distillation using angular distillation loss. Moreover, we

conduct experiments to investigate the effect of different

teacher models on VarGFaceNet. We employ ResNet 100

[9] with SE as our teacher model. The teacher model has

24G FLOPs and 108M parameters. The results are illus-

trated in Tabel 3. It can be observed that 1. even though

the architectures of teacher and student are quite different,

VarGFaceNet still approaches the performance of ResNet;

2. the performance of VarGFaceNet is highly correlated

with teacher model. The higher performance teacher model

has, the better interpretation ability VarGFaceNet will learn.

To validate the efficiency of our settings, we con-

duct comparison experiments between our network and

VarGNet. Using the same teacher network, we change the

head setting of VarGNet to our head setting for fair com-

parison and use the same loss function as above. In Tabel

4, the plain VarGNet has lower accuracy in LFW, CFP-FP,

AgeDB-30. There is only an average pooling between last

conv and fc layer in VarGNet. The results illustrate that our

embedding setting is more suitable for face recognition task

since it can extract more essential information.

3.4. Recursive Knowledge Distillation

As we discuss in Section 2.5, when there is a large

discrepancy between teacher model and student, knowl-

edge distillation for one generation may not enough for

knowledge transfer. To validate it, we use ResNet 100

model as our teacher model, and conduct recursive knowl-

edge distillation on VarGFaceNet. A performance im-

provement shown in Table 5 when we train the model in

next generation. The varification result of LFW and CFP-

FP is increased by 0.1% while testing result of deepglint-

light(TPR@FPR=1e-8) is 0.4% higher than pervious gen-

eration. Furthermore, we believe that it will lead to better

performance if we continue to conduct training in more gen-

erations.



Method LFW CFP-FP AgeDB-30 deepglint-light (TPR@FPR=1e-8)

recursive=1 0.99783 0.98400 0.98067 0.88334

recursive=2 0.99833 0.98271 0.98050 0.88784

Table 5. Performance of recursive knowledge distillation. Performance is recorded within the same epoch.

Verification results of LFW, AgeDB-30 are increased in the second generation. Performance of testing set deepglint-

light(TPR@FPR=1e-8) is increased by 0.4% the same time.

4. Conclusion

In this paper, we propose an efficient lightweight net-

work called VarGFaceNet for large scale face recognition.

Benefit from variable group convolution, VarGFaceNet is

capable of finding a better trade-off between efficiency and

performance. The head setting and embedding setting spe-

cific to face recogniton help preserve information while

reduce parametes. Moreover, to improve the interpreta-

tion ability of lightweight network, we employ an equiv-

alence of angular distillation loss as our objective func-

tion and present a recursive knowledge distillation strategy.

The state-of-the-art performance on LFR challenge demon-

strates the superiority of our method.
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