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Abstract

Collaborative analysis of videos taken by multiple mo-

tion cameras from different and time-varying views can help

solve many computer vision problems. However, such col-

laborative analysis usually requires the videos to be tem-

porally synchronized, which can be inaccurate if we solely

rely on camera clock. In this paper, we propose to address

this problem based on video content. More specifically, if

multiple videos cover the same moving persons, these sub-

jects shall exhibit identical pose and pose change at each

aligned time point across these videos. Based on this idea,

we develop a new Synchronization Network (SynNet) which

includes a feature aggregation module, a matching cost vol-

ume and several classification layers to infer the time offset

between different videos by exploiting view-invariant hu-

man pose features. We conduct comprehensive experiments

on SYN, SPVideo and MPVideo datasets. The results show

that the proposed method can accurately synchronize mul-

tiple motion-camera videos collected in real world.

1. Introduction

Motion cameras, such as wearable cameras of Google

Glass and GoPro, provide a new perspective to video infor-

mation collection and analysis and has found many impor-

tant civil, military, security and law-enforcement applica-

tions [38, 40, 39, 37]. On one hand, motion cameras can

flexibly cover more areas that are not pre-specified than tra-

ditional fixed cameras. On the other hand, by moving to

the right positions and view angles with the holder or cam-

era wearer, they may better capture the subjects and activ-

ities of interest. By combining the videos taken by mul-

tiple motion cameras, e.g., several camera-wearing police

officers work together to process an incident, video infor-

mation processing capability can be significantly enhanced

by collaboratively exploring these videos that may record

the same subjects or scene from different and time-varying

∗Co-corresponding authors.

Figure 1. An illustration of two synchronized videos with con-

sistent human poses. Blue and red rectangles indicate the time-

varying view angles of the two wearable cameras, respectively.

views [3, 40].

Collaborative analysis of multiple videos usually

requires accurate temporal synchronization of these

videos [14, 3, 40], since frames taken at different and

unknown time do not show information correspondence

and therefore cannot be well integrated for video analy-

sis. For example, motion features extracted from non-

synchronized videos may correspond to different stages of

the subject’s activity and therefore could not be combined

for better human activity recognition. Another example is

that non-synchronized videos may capture the moving sub-

jects’ shapes at different time. Since they do not follow

epipolar geometry, they could not be used for facilitating

multi-view 3D human reconstruction [6, 12].

While the temporal synchronization of fixed cameras can

be easily solved by wired connection and shared clock,

motion-camera synchronization is a very challenging prob-

lem. Clearly, with limited time accuracy, we could not di-

rectly rely on the built-in clock in the camera for accurate

synchronization. Using WiFi and Bluetooth for camera-

connection and clock sharing may suffer from communica-

tion delays and interruptions, as well as limited ranges. In

this paper, we propose to synchronize multiple motion cam-

eras based on their video contents. The basic idea is to iden-

tify a moving person or multiple moving persons, which we

call subjects in this paper, that are present in all the videos.



If these videos are synchronized, their time-varying poses

should be consistent in 3D space at any frame across the

videos, as shown in Figure 1, and in the ideal cases, we can

extract human pose in 3D space frame by frame on each

video and then perform cross-video pose matching for syn-

chronizing them. The effectiveness of this idea has been

verified in previous works where accurate human pose is

constructed by manually annotating joints [27, 31, 30].

However, the effectiveness of this idea is still unknown

when using automatically estimated poses. 3D pose estima-

tion from an image or a video itself is a very difficult prob-

lem and even the state-of-the-art algorithms may produce

large pose estimation errors [7, 17, 22, 5]. The main goal

of this paper is to find out whether such inaccurately esti-

mated poses can still be used for accurately synchronizing

videos, by integrating multiple-frame information and em-

ploying advanced deep-learning techniques. More specif-

ically, we propose a new Synchronization Network (Syn-

Net) which exploits view-invariant 2D human pose features

of the subjects and then develop a feature aggregation mod-

ule, consisting of deep feature extraction, global feature en-

coding and temporal encoding, to encode the pose features

along the videos. Finally, we build a matching cost vol-

ume to learn the view-invariant pose features across two

videos and perform classification to identify the time off-

set between the two videos.

We evaluate the performance of the proposed method

on SYN, SPVideo and MPVideo dataset with promising re-

sults. The main contributions of this paper are:

• We find that, two motion cameras can be synchronized

by matching the pose features shared in the videos,

even if the estimated pose features are inaccurate.

• We propose a new deep network called SynNet to syn-

chronize multiple motion-camera videos by exploiting

and matching view invariant pose features.

• We collect two new wearable-camera video datasets

that can be used for evaluating the performance of

video synchronization.

2. Related Work

Many methods have been developed to synchronize mul-

tiple fixed cameras by correlating the motion features of

their videos [20, 33, 1]. However, these methods are not

applicable to our task of motion-camera synchronization –

extracted motion features mix inconsistent camera motions

and cannot be correlated across different cameras. In this

paper, we formulate video synchronization as matching the

frames between videos with different temporal offsets and

then finding the optimal one. From this perspective, the

long-line of research work on image/video matching is re-

lated to our work, including the line of video synchroniza-

tion works in computer graphics [9, 29, 32]. However, most

of these methods [9, 29, 10, 32] aim to match frames be-

tween videos using appearance features and cannot well ad-

dress our problem – cameras view difference may make the

appearance similarity of matched frames between synchro-

nized videos much lower than the appearance similarity be-

tween different frames caused by a small temporal offset.

Additional information sources have also been used to

help video synchronization. In [25, 23], flashes or abrupt

light changes present in (or added to) the video are detected

using special sensors or image processing algorithms for

video synchronization. In [15], video synchronization is

achieved by combining visual and auditive elements, when

a video contains an audio channel. Different from these

methods, in this paper we do not use any additional informa-

tion sources which may not be available in real applications.

We synchronize videos only based on their visual content by

assuming that they capture at least one same person simul-

taneously. This is a very reasonable assumption – if there

is no any shared person present in multiple videos, the syn-

chronization and collaborative analysis of these videos may

not be of much interest.

The proposed work is inspired by previous researches

on using pose and pose-trajectory matching for temporally

synchronizing independent motion cameras [27, 31, 30].

But all these methods require manual annotation of the im-

portant body-joints on all or many video frames, which is

clearly not feasible in most applications. The main moti-

vation of this paper is to study whether automatically es-

timated poses, which is clearly not as accurate as manual

annotations [16], can still be used for synchronizing motion

cameras. This is a non-trivial problem – video synchroniza-

tion needs to discriminate the small temporal offsets while

the large pose-estimation error may dominate the pose dif-

ference and prevent the discrimination of small offsets. In

this paper, we will leverage the information redundancy in

multiple videos frames, as well as using deep-learning ap-

proach for deriving pose heatmaps, to address this problem.

Also related are the synchronization of the actions of dif-

ferent people shown in different videos [4, 21, 19], where

2D point trajectories are extracted from each video and then

used to align actions in different videos. This action syn-

chronization is different from our problem of synchronizing

videos of the same subject. In addition, these 2D-trajectory

based methods cannot handle well the motion camera syn-

chronization with large view difference. Our work is also

different from prior works on relating first and third-person

videos [24, 36]. In essence, we are synchronize multiple

third-person videos with at least a shared subject. One goal

of the proposed work, as reported in the later experiments,

is for the task of accurate frame-by-frame 3D reconstruc-

tion of a motion subject, using multiple videos taken from

different views. Prior researches have shown that accurate



video synchronization plays a critical role in this task [2, 8].

Figure 2. Pipeline of the proposed SynNet.

3. Our Approach

Figure 2 shows the pipeline of the proposed SynNet for

synchronizing two motion-camera videos. First, we feed

two video clips into two weight-sharing branches, respec-

tively, each of which consists of a network for pose estima-

tion and a feature-aggregation module. We then construct a

matching cost volume using the obtained features, followed

by final classification to infer the temporal offset between

two input video clips. For pose features, we can use any ex-

isting pose estimation network, e.g., [5], that can produce

a heatmap for each body joint. In the following, we elab-

orate on the feature aggregation module and the matching

cost volume construction.

3.1. Feature aggregation

The feature aggregation module combines the heatmaps

of all the joints over all the frames of the input videos. As

shown in Figure 4, this module consists of deep feature ex-

traction, global feature encoding and temporal feature en-

coding.

Deep Feature Extraction By using the pose estimation

method in [5], we extract 19 heatmap channels, one for each

of 18 joints and the remaining one is for the background.

These 18 joints are three on each of the limbs, five on the

head, and another one on the neck. In this paper, we only

use 18 heatmap channels by excluding the one for the back-

ground. As illustrated in Figure 4, we first use the ResNet-

50 [13] to encode the 18 channels of heatmap on each frame

of the video clip for deep feature extraction. The features

extracted by ResNet-50 have dimension c × w × h, where

c is the number of channels, and w and h are the width and

height of the ResNet-50 output. The parameters of the deep

feature extraction are shared across all the frames in the clip.

Global Feature Encoding Inspired by previous methods

which have incorporated full image encoders for improving

depth estimation and semantic segmentation [11, 18], we

further add a global feature encoding for processing pose

features, by using the Convolution-ReLU-Pooling layers.

Specifically, we use the 3 × 3 convolutional layer and the

max pooling layer with the kernel size 2×2 and stride 2×2
to reduce the spatial dimensions. In total, five Convolution-

ReLU-Pooling structures are used to get the output with a

dimension of F = 256. The parameters of global feature

encoding are shared across all the frames in the clip.

Temporal feature encoding To take advantage of the

spatio-temporal information between adjacent frames, we

further add a bi-directional convolutional LSTM layer [35,

26] to encode the pose features along each video clip, and

then convert the output feature into a vector with the size

of F = 256 for every frame. The convolutional LSTM

which contains convolution operation in its transitions can

encode the temporal information while preserving the spa-

tial information. The bi-convLSTM structure doesn’t have

any information exchange between each pair of two direc-

tional LSTM units and the output features produced from

the forward and the backward units are then combined to be

the final output for each frame.

Figure 3. An illustration of constructing the matching cost volume.

(a) The two rectangles represent the features of two video clips. (b)

Matching cost volume is formed by concatenating features shown

in (a) under different offsets.

3.2. Matching cost volume

We concatenate the dimension-F global feature vector

from global feature encoding and the dimension-F tempo-

ral feature vector from temporal feature encoding on every

frame, and then an FC-layer is used to convert the dimen-

sion of the concatenated feature to F . The converted fea-

tures on each frame are finally concatenated to form the

video-clip feature of dimension n×F , where n is the num-

ber of the frames in a video clip.

We construct a matching cost volume to comprehen-

sively represent the pose information across two video clips

by traversing all possible offsets. As shown in Figure 3, we

concatenate the blue and red matrices ((n×F )-dimensional

features for two input video clips, respectively), with one on

the top of the other, by an offset m. This will produce a ma-

trix of dimension n×2F , if we fill m blank columns (white

rectangles in Figure 3(b)) with zero and prune m columns

in the other end. By varying m in [−M,M − 1], we obtain

2M such concatenated matrices, which are stacked sequen-

tially to construct a 3D matching cost volume as shown in



Figure 4. An illustration of the proposed feature aggregation sub-network.

Figure 3(b). The dimension of the matching cost volume is

2M × n× 2F .

3.3. Classification

By quantifying the possible temporal off-

set to a set of pre-specified integer values,

{−M,−M + 1, · · · , 0, · · · , 1, · · · ,M − 1}, where

M > 0, we can formulate the problem of video synchro-

nization into a classification problem with 2M class labels.

Figure 5 gives an illustration of all possible ways to align

two videos with M = 4. Note that, the selection of a

different value for M ’s requires retraining the SynNet in

our method because of the change of class definitions. For

classification, the matching cost volume is fed to a batch

normalization layer, and then we empirically add three

FC-layers to output the probability vector with the size of

2M for every possible temporal offset.

3.4. Loss function

Based on the above formulation of the multi-

classification problem, we propose a new loss function

Loss for SynNet. By combining the cross-entropy loss and

a penalty term, this loss function is defined by

Loss = αLc−entropy + (1− α)Lpenalty, (1)

where 0 ≤ α ≤ 1 is the weighting parameter for balancing

the two loss terms. The first term is the classical cross-

entropy loss:

Lc−entropy (x, l) = −wl log
exl

∑
M
j=1

e
xj

(2)

where x = (x0, x1, · · · , x2M−1)
T ∈ R

2M is the proba-

bility vector from the final FC-layer, the class label l takes

value in [0, 2M − 1] where each label represents a possible

offset. wl is the weight for each class label and we directly

set wl = 1 for all labels, because we have no prior knowl-

edge on which offset may occur more often than the others.

The second loss term Lpenalty is designed to penalize

all offset misclassifications according to the difference be-

tween the predicted result and the ground truth and it is de-

fined by

Lpenalty = 1

2M−1
|l − x|, (3)

where x is the label with the maximum probability in the

final FC-layer.

Figure 5. An illustration of possible offsets between two videos.

The blue sequence stands for the reference video, and the red one

stands for the other video. There are in total eight possible ways

to align these two video clips by setting M = 4.

4. Experiments

In this section, we evaluate the proposed SynNet on three

datasets. One is SYN dataset [39] collected for cross-video

person identification. The other two are the SPVideo and

MPVideo datasets which we newly collected for this work.



We perform ablation studies using these datasets to investi-

gate the influence of feature types, the number of joints in

heatmaps and the video down-sampling rates on the perfor-

mance of SynNet. We also show comparison results with

other existing methods. To show the importance of accurate

video synchronization, we finally apply synchronization re-

sults for video-based 3D human reconstruction.

4.1. Datasets

SYN [39] SYN contains 208 pairs of temporally synchro-

nized videos taken by two GoPro cameras with different and

time-varying views. It has 14 subjects and all the subjects

in the dataset are wearing dark jacket. Each video has 120

frames. We choose a total of 70 synchronized video pairs,

temporally down-sample them and then select 70× 23 syn-

chronized pair of subsequences with different starting frame

for training data construction. The typical setting is to use

a down-sampling rate of 4, i.e., keeping 1 frame for every

4 frames, and a subsequence length of 8 as shown in Fig-

ure 5. Given M being the range of offset, we construct

70 × 23 × 2M video-clip pairs with ground-truth tempo-

ral offsets for training. We then select 56 other video pairs

in SYN, follow the same processing as in training set con-

struction. This way, we construct 56× 2M video-clip pairs

for testing.

SPVideo We collect a new dataset SPVideo, in which

each video only contain one subject. It contains 120 pairs of

synchronized videos taken by two GoPro cameras mounted

on two wearers’ head. Compared to SYN, SPVideo has

much more complicated human movement, including play-

ing the smartphone while walking, taking photos, picking

up the phones, jumping, taking off the jacket, and walk-

ing. The videos are taken in an outdoor environment near a

building and each video has 120 frames. Follow the way we

did for SYN dataset, we construct 10× 23× 2M video-clip

pairs for training and 8× 2M video-clip pairs for testing.

MPVideo MPVideo is another dataset we collect for ex-

periments. There are three or four people present in each

video. We use this dataset to evaluate the proposed SynNet

in the case of multiple subjects shared in different videos.

This dataset contains 4 long synchronized videos taken by

two GoPro cameras mounted on two wearers’ head. The

videos are taken in an outdoor environment with 240fps. We

construct 38×2M video-clip pairs for training and 15×2M
video-clip pairs for testing.

4.2. Evaluation criteria

We introduce two criteria, the accuracy rate and the Syn-

Error, for performance evaluation. The accuracy rate is

used to measure the proportion of the correctly synchro-

nized video pairs in the testing set:

Accuracy = Nc/N, (4)

where Nc is the number of test video pairs with correctly

identified offset and N is the total number of the test video

pairs. The higher the value of Accuracy, the better the per-

formance. The synchronization error (in seconds) is used to

measure the time deviation between the predicted offset and

the true offset for the test video pairs:

SynError =

(

1

N

N
∑

i=1

|Ri − Ti|

)

×
r

fps
, (5)

where Ri is the offset predicted from the final classification

for the i-th video pair, Ti is the true offset for that video pair,

r is the video down-sampling rate and fps is the number of

frames per second for the input videos. The smaller the

value of SynError, the better the performance.

4.3. Model specifications

The proposed SynNet was implemented using PyTorch.

Specifically, we first run the widely-used human pose es-

timator [5] to obtain heatmaps for human joints on each

frame. We train SynNet using SGD for 500 epochs for

all the following experiments with a batch size of 1 and a

constant learning rate of 0.0001. Once that we have pre-

computed the heatmaps for every video clip pairs, it takes

approximatively 2 days to finish the training on the training

data constructed from SYN, SPVideo and MPVideo respec-

tively on an NVIDIA GTX 1080 GPU.

4.4. Ablation study

Choices of the features In the proposed SynNet, we first

use a network for extracting pose features. We also try the

use of appearance and motion features instead of pose fea-

tures as the input. Specifically, for using appearance fea-

tures, we simply remove the pose estimation subnetwork by

directly feeding input RGB images to the encoder. For us-

ing motion features, we compute the optical flow [28] on

each frame and feed directly to the encoder. We can also

combine all three or any two of these features and evaluate

their influence to the final synchronization. In this experi-

ment, we set M = 4 and temporally down-sample all the

videos by rate 4 before feeding to SynNet. The evaluation

results on the test set constructed from SYN and SPVideo

after training for 500 epochs from scratch are numerically

reported in Table 1.

For the SYN dataset, we observe that the use of pose

features as the input attained the highest accuracy rate of

92.63% and the lowest Syn-error of 0.022s at the same time,

which gives the best performance. This result indicates that

the proposed SynNet can capture the view-invariant infor-

mation to synchronize the motion-camera videos. For the

SPVideo dataset, the performance of using pose features is

also better than the use of other features. In both of the two

datasets, it shows that the use the appearance features leads



to very poor performance. This verifies our analysis in Sec-

tion 2 that appearance features, which many of the previous

image/video matching methods are based on, are not suit-

able for our task. The use of optical flow also leads to very

poor performance. We conjecture this is due to the mixture

of person’s movements and the camera movements. Such

mixture movement makes it very difficult for the network

to learn view-invariant motion features for video synchro-

nization. In the remaining experiments, we only use the

pose features for SynNet.

Table 1. Comparison of the accuracy rate and SynError of the pro-

posed SynNet with different input features after training for 500

epochs and M is set to 4. A, F & P represent appearance, optical

flow & pose features respectively.

SYN SPVideo

Features Accuracy SynError Accuracy SynError

A 13.26% 0.2915 10.94% 0.2833

F 26.78% 0.2438 17.18% 0.3227

P 92.63% 0.0220 67.19% 0.1042

A+F 6.34% 0.3661 9.38% 0.3122

P+F 50.52% 0.1820 28.13% 0.2486

P+A 36.63% 0.2241 21.88% 0.2764

P+A+F 30.62% 0.2525 14.06% 0.2949

Different down-sampling rate In the above experi-

ment, we temporally down-sample the videos by rate 4 to

construct the training and testing videos from SYN and

SPVideo. We also try different down-sampling rates r and

Table 2 reports the resulting accuracy rate and SynError

on the testing data constructed from SYN and SPVideo

datasets. With different down-sampling rates, a unit of off-

set represents different number of frames in the original

video – with down-sampling rate of k, one unit of offset

represents a possible maximum of (k − 1)-frame offset for

the original video pair before down-sampling. Based on

these results, in the following experiments, we always set

down-sampling rate to 4 when M is set to 4.

Table 2. Comparison of accuracy rate and SynError of the pro-

posed SynNet by varying down-sampling rate for training and test-

ing and M is set to 4.

Down-samp. SYN SPVideo

r Accuracy SynError Accuracy SynError

5 89.29% 0.0435 57.81% 0.1172

4 92.63% 0.0220 67.19% 0.1042

3 83.93% 0.0350 35.94% 0.1125

2 74.55% 0.1510 21.88% 0.1218

1 14.29% 0.0938 12.50% 0.0966

Number of joints We also examine the impact of the

number of joints (channels) selected for the joint heatmaps

to the performance of SynNet. For this purpose, we also

try the cases of using 5 channels (hips, shoulders and neck),

9 channels (neck, shoulders, wrists, hips, ankles) and 13

channels (all the joints except for those on the face) for

joint heatmaps and the results are shown in Table 3. We

can see that the use of more joints usually lead to better per-

formance of video synchronization. In this paper, we use all

18 joints.

Table 3. Comparison of accuracy rate and SynError of the pro-

posed SynNet by using different number of joints and M is set to

4.

SYN SPVideo

# Joints Accuracy SynError Accuracy SynError

5 71.56% 0.0669 21.88% 0.2437

9 87.05% 0.0375 35.94% 0.1499

13 91.52% 0.0303 57.81% 0.0937

18 92.63% 0.0220 67.19% 0.1042

Model variants We compare a number of model variants

of SynNet by removing one key component at a time and

the results are shown in Table 4. These results show that all

our proposed components in SynNet contribute positively

to the final performance.

Table 4. Performance of SynNet variants. For SynNet without bi-

convLSTM, we use a one direction convLSTM instead. For Syn-

Net without matching cost volume, we use simple feature concate-

nation instead. For the variant of ‘Without the penalty term’, we

simply use the cross-entropy loss for optimization.

SYN

Method Accuracy SynError

w/o bi-convLSTM 85.04% 0.0303

w/o temporal feature encoding 69.87% 0.0345

w/o global feature encoding 79.42% 0.0301

w/o global & temporal encoding 26.04% 0.2833

w/o matching cost volume 76.79% 0.0529

w/o the penalty term 87.50% 0.0333

SynNet 92.63% 0.0220

4.5. Comparison with other methods

We choose two correlation-based methods [32, 15] for

comparison study. For [32], we implement its feature em-

bedding network to extract features from both input videos.

Then we implement its correlation operation to compute the

correlation between the features of the two videos by apply-

ing different offsets. Finally, the offset with the maximum

correlation is taken for synchronization. For [15], we use

its video subnetwork to encode the two input video clips,

and then use its objective contrastive loss to minimize the

distance of their encoded features by applying different off-



sets. Finally, the offset with the minimum loss is taken for

synchronization. The results are shown in Table 5.

Table 5. Comparison results between the proposed SynNet and two

correlation-based methods on SYN dataset.

Method Accuracy SynError

Wieschollek et al. [32] 26.04% 0.2883

Korbar et al. [15] 22.15% 0.2816

SynNet 92.63% 0.0220

We can see that the proposed method is more accurate for

video synchronization by exploring view-invariant pose fea-

tures, while the correlation-based methods do not work very

well by feature correlation, especially when the two input

videos are taken from significantly different view angles,

leading to very large difference on appearance and back-

ground. Figure 6 (a-c) show the frame-by-frame cost matrix

between the features extracted from two synchronized video

clips, each of which consists of 8 frames, by using the pro-

posed SynNet and the feature extraction methods in [32],

and [15], respectively. The ij-th element in the cost ma-

trix is the Euclidean distance between the feature extracted

from frame i of the first video and the feature extracted from

frame j of the second video. We can see the pose-based fea-

tures extracted by SynNet lead to better matching of the two

input videos by highlighting more on the diagonal elements

of the cost matrix. However, this diagonal highlighting is

not perfect and we further build matching cost volume for

better classifying their offset in SynNet.

4.6. Real-world videos

To further evaluate the proposed SynNet, we extend our

experiments to real-world videos, including 1) the presence

of multiple subjects (using the MPVideo dataset), and 2)

longer video clips with more frames. For 1), for each sub-

ject shared between two videos, we apply SynNet to com-

pute their temporal offset. Then we compute the average

offset over all shared subjects for final synchronization.

Table 6 reports the synchronization results on MPVideo

dataset with multiple subjects. For 2), we can apply syn-

chronized temporal sliding windows with step length of 1

frame on both input videos. On each pair of corresponding

windowed video clips, we can apply SynNet to identify the

offset. Finally we compute the average offset over all the

windows for final synchronization. Figure 7 shows a pair

of longer video clip (25s for each) that are synchronized by

SynNet and Figure 6 (d) shows the (normalized) confusion

matrix in terms of predicted and ground-truth offsets over

all the short (8 frames) clips windowed from the original

25s videos. In general, we can see that the presence of more

subjects and using longer videos provide richer information

that can further improve video synchronization.

(a) (b)

(c) (d)

Figure 6. (a-c) Feature cost matrices of two synchronized videos

from the proposed SynNet, [15] and [32], respectively. (d) (Nor-

malized) confusion matrix in terms of predicted and ground-truth

offsets over all the short (8 frames) clips windowed from a pair of

25s’ long videos constructed from the SYN dataset.

Table 6. Synchronization results of multi-subject videos in

MPVideo dataset.

Subjects Accuracy SynError

Person 1 43.53% 0.1574

Person 2 53.61% 0.1162

Combined 61.81% 0.0742

4.7. Evaluation on 3D human reconstruction

Accurate video synchronization is particularly impor-

tant for reconstructing 3D moving subjects, where different

videos represent different views [8]. Without knowing the

camera parameters and poses (cameras are moving), multi-

view 3D reconstruction is difficult. In this paper, we use

SC-GAN [34] to estimate the depth map of a video frame by

combining information from its adjacent frames. We then

combine the depth maps of the aligned frames in synchro-

nized videos by converting them into point clouds and then

manually assembling them in 3D space. Sample results are

displayed in Figure 8. We can see that, with accurate syn-

chronization, the point clouds from two videos can be well

assembled to reconstruct larger areas of the human body. If

two videos are not well synchronized, even with very small

temporal offset, the point clouds sampled from correspond-

ing frames in two videos imply different human poses and

cannot be well assembled for 3D reconstruction.



Figure 7. Synchronization of a pair of long videos (25s each) in SYN dataset by the proposed SynNet. For each video we highlight here a

windowed clip of 8 frames.

View 1 View 1

Unsync View 2 Sync View 2 Unsync View 2 Sync View 2

3D reconstruction

Figure 8. Sample results of 3D human reconstruction by combin-

ing two views (corresponding frames of two videos). Top row

shows two images selected for the first view image. Second row

shows the corresponding second-view images – we try both the

one synchronized and the one unsynchronized with the first-view

image, and the corresponding 3D reconstructions are shown in the

bottom row.

4.8. WiFi-based camera synchronization

To get an idea of motion-camera synchronization accu-

racy by using WiFi, we build a simple networked system

consisting of two GoPro cameras, three smartphones, and

a millisecond clock, as shown in Figure 9. The test con-

sists of the following steps: 1) Two GoPros GA & GB

are connected to two smartphones SA & SB respectively

through WiFi, which enables the display of what GoPro

sees on the screen of its connected smartphone. 2) Let

the two GoPros shoot at the same millisecond clock. 3)

The third smartphone SC shoots at the the screens of the

two GoPro-connected smartphones. From the image taken

by SC , we can compute the synchronization error between

videos taken by GoPro cameras if they are WiFi-connected.

We use camera SC to take 100 images and the average syn-

chronization error is 0.662 seconds with variance of 0.729.

From Table 4, we can see that our proposed SynNet can get

an average synchronization error of 0.022 seconds, which

is much lower than using WiFi for synchronization, not to

mention that the WiFi network may experience more delays

with crowded users.

Figure 9. An illustration of WiFi-based test for camera synchro-

nization.

5. Conclusion

In this paper, we proposed a SynNet to temporally syn-

chronize multiple motion-camera videos based on moving

subjects shared in these videos. We reformulate this video

synchronization problem to a classification problem by

identifying underlying temporal offset between two videos.

Using a deep neural network structure, SynNet starts with

a pose estimation subnetwork to extract view-invariant pose

features, which are then encoded using a feature aggrega-

tion module. Encoded features from two videos are com-

bined into a matching cost volume to traverse all possible

temporal offsets, followed by final classification layers. Ex-

periments on the three datasets, including two new datasets

we collected for the proposed work, showed that the use of

pose features leads to better video synchronization than the

use of appearance and motion features.
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