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Abstract

Visual features designed for image classification have

shown to be useful in zero-shot learning (ZSL) when gen-

eralizing towards classes not seen during training. In this

paper, we argue that a more effective way of building visual

features for ZSL is to extract them through captioning, in

order not just to classify an image but, instead, to describe

it. However, modern captioning models rely on a massive

level of supervision, e.g. up to 15 extended descriptions per

instance provided by humans, which is simply not available

for ZSL benchmarks. In the latter in fact, the available an-

notations inform about the presence/absence of attributes

within a fixed list only. Worse, attributes are seldom anno-

tated at the image level, but rather, at the class level only:

because of this, the annotation cannot be visually grounded.

In this paper, we deal with such a weakly supervised regime

to train an end-to-end LSTM captioner, whose backbone

CNN image encoder can provide better features for ZSL.

Our enhancement of visual features, called “VisEn”, is

compatible with any generic ZSL method, without requir-

ing changes in its pipeline (a part from adapting hyper-

parameters). Experimentally, VisEn is capable of sharply

improving recognition performance on unseen classes, as

we demonstrate thorough an ablation study which encom-

passes different ZSL approaches. Further, on the challeng-

ing fine-grained CUB dataset, VisEn improves by margin

state-of-the-art methods, by using visual descriptors of one

order of magnitude smaller.

1. Introduction

Zero-shot learning (ZSL) is the problem of multi-class

classification when no training data is available for some

of the classes1. Being motivated by the well known “long

1Precisely, this is the case of inductive ZSL as opposed to (the eas-

ier) transductive ZSL case, in which un-annotated instances from the test

classes are used for training.

Figure 1. Top. In Zero-shot learning, class-related attributes are

matched with visual features, the latter being usually extracted

from a CNN trained for classification (represented in orange). Bot-

tom. Differently, to get visual embeddings for ZSL, we exploit

the CNN encoder (represented in green) of a CNN+LSTM cap-

tioner which predicts attributes at the image level. Our enhanced

visual embeddings (VisEn) can replace default ones without mod-

ifications in the metric learning pipeline. Since containing more

semantic patterns (see Figure 3), VisEn is capable of boosting ZSL

recognition performance (see Section 4).

tail distribution” [24], ZSL has recently attracted a vibrant

interest inside the computer vision community (see [33] for

a survey). In order to recognize unseen test classes, ZSL

typically leverages auxiliary information, such as attributes,

which is required to be both discriminative and shared with

the seen training classes.

The seminal papers [16, 14] first solved zero-shot recog-

nition (for image classification) by jointly predicting at-

tributes. Recently, attributes prediction was replaced by

metric learning [35, 27, 4, 6, 12, 11, 26, 20, 25, 13, 23]

to implicitly infer the degree of compatibility between se-

mantic embeddings - encoding attributes at the class level -

and visual embeddings which encodes images.



Circumventing attributes prediction in ZSL is practi-

cally reasonable. In fact, to reliably predict attributes in

the zero-shot setup, modern approaches exploit natural lan-

guage processing and captioning techniques, both requiring

a strong level of supervision. In fact, in zero-shot caption-

ing [21, 5, 3, 31, 17, 30, 29], each training instance is anno-

tated by humans with multiple detailed descriptions (e.g., 15

each in [21]). Such wealth of annotations is unfortunately

not available in ZSL benchmarks, where, instead, attributes

are annotated at the instance level by registering the pres-

ence or absence of attributes within a pre-determined list

(as in CUB [28]). Moreover, in some cases, attributes are

annotated the class level only (as in AWA2 [15]) by pro-

viding a measure of coherence between each attribute and

each class. This makes semantic embeddings not visually

grounded: e.g., we can expect a strong semantic coherence

between the attribute “quadrapedal” and the class “zebra”.

But, crucially, such information can fool a ZSL model when

recognizing an image of a zebra, only depicting its upper

body, whose legs are not visible (as in Figure 1).

In order to tackle this problem, in this paper, we propose

to enhance the semantic content of visual embeddings by

extracting them from the CNN image encoder of a LSTM

captioner which predicts attributes. To do so, we convert a

captioner to operate in the weakly supervised regime which

is common to ZSL benchmarks. That is, we do not take

advantage of several natural sentences describing each in-

stance as in [21, 5, 3, 31, 17, 30, 29]. Differently, we only

rely on attributes annotated at either the image- or the class-

level. In the latter case, we generate for free image-level su-

pervision by leveraging the following observation: if an at-

tribute is semantically incompatible with a given class, then,

all instance of that class will not show that attributes as well.

For instance, because zebras do not fly, we can bet on the

fact that, within an (realistic) image of a zebra, wings won’t

be present. Hence, we train our captioner to predict which

attributes are missing at the image level.

As opposed to default visual embeddings designed for

classification, we posit that our captioner-based enhance-

ment is capable of enriching visual features of semantic

content. Consequently, ZSL is expected to be eased since

our enhanced visual embeddings (termed VisEn) are de-

signed to convey visually-grounded semantic cues, whereas

default visual embeddings are not.

Through a broad experimental validation, we assess the

capability of VisEn in capturing semantic patterns by eval-

uating attribute prediction both qualitatively and quantita-

tively. Further, through an ablation study, we show VisEn to

be capable of 1) being superior to classically adopted visual

embeddings (i.e., GoogleNet or ResNet-101 features) and

2) boosting in performance existing ZSL methods.

In practical terms, VisEn is compatible with any generic

technique in ZSL without requiring modifications in its

pipeline (a part from hyper-parameters tuning). Also, a

favorable performance is scored by VisEn when directly

comparing to state-of-the-art methods on AWA2 and CUB

databases.

In summary, the contributions of this paper are threefold.

• We claim that visual embeddings trained for classifi-

cation are sub-optimal in zero-shot learning. Instead,

we use a captioner, predicting attributes at the image-

level, to enhance visual embeddings and allow them to

capture visually-grounded semantic cues.

• With respect to zero-shot captioning [21, 5, 3, 31, 17,

30, 29], we train our captioner in a weaker supervised

regime which is compatible with ZSL benchmarks.

Even when attributes are not annotated at the image-

level, we take advantage of attributes labelled as in-

compatible with a given class to deduct the visual ab-

sence of the same attribute in any image of that class,

generating instance-level supervision for free.

• Our enhanced visual embeddings, called VisEn, can

replace default ones in a plug-and-play fashion, with-

out requiring any change in the computational pipeline

(apart from hyper-parameters tuning). Further, VisEn

is capable of improving the performance of exist-

ing methods, overall scoring a favorable performance

against state-of-the-art methods on AWA2 [15] and

CUB [28] datasets.

The rest of the paper is organized as follows: in Section

2, we present background material and related work, in Sec-

tion 3 we detailed how we trained our captioner and present

results for attributes prediction. In Section 4, we benchmark

our proposed approach against the state-of-the-art. Conclu-

sions will be drawn in Section 5.

2. Background and Related Work

In this Section, we will briefly refer to background ma-

terial and related work to spot the factors of novelty of our

paper with respect to existing works in the literature.

Metric Learning for Zero-Shot Learning. All induc-

tive zero-shot methods by metric learning can be framed as

follows. First, pre-computed visual features v are used to

encode input data. Second, semantic embeddings s anno-

tate the level of coherence in between a list of attributes and

each seen/unseen class to recognize. Third, a metric func-

tion Φ is learnt. Usually called compatibility function, Φ

is optimized in order to match v and s if they correspond

to the same seen class. At the inference stage, Φpṽ, suj q is

computed on top of the test instance ṽ and all semantic em-

beddings s
u

j , where j indexes unseen classes. Hence, the

class j‹ is predicted if Φpṽ, suj‹ q scores better than Φpṽ, suj q
for j ‰ j‹. In order to design the metric Φ for learning,

different approaches have been attempted, by either consid-

ering bilinear functions [1, 9, 2, 32, 22], hidden embeddings



models [35, 27, 4, 6], dictionary learning [12, 11, 26] and

eventually shallow linear networks to project visual onto se-

mantic embeddings [20, 25, 13, 23].

Differently to ZSL by metric learning in which visual

embeddings are pre-trained for classification, here we pre-

trained them by using a captioner to predict attributes. As

a result, our enhanced visual embeddings are expected to

be richer in semantic patterns, easing the metric learning

stage without any change in its computational pipeline (a

part from hyper-parameters tuning).

Zero-shot captioning. Natural language processing

(NLP) has been shown to successfully generate human-like

captions for object and categories never seen before. It was

successfully applied to both images [21, 5, 3, 31, 17] and

videos [30, 29]. Far from providing a complete literature

review on this topic, for our scope, it is sufficient to remind

that the mainstream approaches leverage recurrent neural

networks with long-short memory units (LSTM), due to

their remarkable effectiveness in NLP. The LSTM is usu-

ally fed with some intermediate representation learnt from

an encoder which process raw data in an end-to-end fash-

ion (for images, CNN are usually adopted). Crucially, the

common operative setup in zero-shot captioning is the an-

notation of each instance with many alternative extended

description (i.e., up to 15 sentences provided by annotators)

[21, 5, 3, 31, 17, 30, 29].

Differently, in this paper, we train a captioner in the

weaker supervised regime available in ZSL benchmarks:

when available, we utilize the instance-level guidance about

the presence/absence of attributes within a fixed list. Even

when attributes are not visually grounded (since annotated

at the class level only), we are still capable of training our

captioner despite this extremely weakly supervised regime.

We do so by using the semantic incompatibility of an at-

tribute and a class to get for free the visual absence of the

same attributes in all instances of that class. In doing so,

we can find an example of self-supervision [8, 19, 10]. In

fact, we exploit an auxiliary task (here, captioning) which

1) is solved with no need of additional supervision and 2) is

preparatory for the original task of interest (here, ZSL).

3. Weakly Supervised Captioner for ZSL

In this Section, we present how we trained a captioner

to predict attributes at the instance level in the weakly su-

pervised setup of ZSL benchmarks, relaxing the strict su-

pervised regime which is commonly adopted in zero-shot

captioning methods [21, 5, 3, 31, 17, 30, 29].

In Section 3.1, we describe the datasets we used, while

implementation details are available in Section 3.2. In Sec-

tion 3.3, we present results in attributes’ prediction.

3.1. Datasets

Caltech-UCSD Birds 200 (CUB) [28]. It is a fine-

Figure 2. Architecture of our weakly supervised captioner.

grained dataset of 200 bird species, most of which are typ-

ical in North America. In this paper, coherently with the

ZSL literature, we adopted the 2011 release in which 11788

images are available. For each, up to 5 Amazon Mechani-

cal Turkers annotated a list of 312 attributes which provides

an expert level characterization of each image, specifying

minute details (such as colored spots on the neck/wings)

which are fundamental to disambiguate between classes,

i.e., bird species.

Animals with Attributes 2 (AWA2) [15]. It is a coarse

dataset composed of 50 different classes of animals (such

as “polar bear”, “zebra”, “giraffe”, “otter”, etc. . . . ). To

describe each class, a list of 85 attributes is provided by

following Osherson’s matrix (OM) [14] for class/attributes

correspondence. Some values in the OM are not specified

(and set to -1, like “black-colored” for the class “antelope”).

The remaining entries of the OM contain a value scaled in

the range [0,100], to rank how much an attribute is proto-

typical for that class (e.g., the attribute “spots” for the class

“dalmatian” has a value of 100 in the OM).

3.2. Implementation Details

As similarly done in [21, 5, 3, 31, 17], we employed an

end-to-end trainable captioner which is composed by two

modules: the first encodes image information in a feature

vector, the second generates the caption. As first mod-

ule, here we used a ResNet-152 Convolutional Neural Net-

work, pre-trained on the Imagenet ILSVRC2012: the 2048-

dimensional fully connected (FC) layer - right before logits

in ResNet-152 architecture - is linearly transformed into a

256-dimensional FC layer. This latter encoding is then used

as the initial state for our uni-directional LSTM captioner

(256-dimensional hidden state), which is our second mod-

ule. A visualization of the adopted architecture is provided

in Figure 2.

Since CUB dataset provides attributes annotated

at the image level, we directly used those annota-

tions for training by considering one attribute to be

present if at least one Turker annotated it. For in-

stance, “has bill shape::spatulate”, “has wing color::brown”,

“has wing color::grey”, “has wing color::buff”,

“has upperparts color::brown” and “has upperparts color::buff”

are some of the ground truth attributes for the image

Black Footed Albatross 0089 796069.jpg

which is depicted in Figure 2.



On the contrary, on AWA2, attributes are only annotated

at the class level and, consequently, we do not have the

guidance about which attributes are effectively present in

which images. In fact, we are only given a confidence value

for each attributes (like “quadrupedal”) and each class (like

“zebra), but this score is not capable of telling which images

of the AWA2 dataset depict a zebra with visible legs.

Differently, it is advantageous to consider attributes which

are semantically incoherent with a certain class (such as

“black-colored” for the class “polar bear”). Then, we can

assume that those incoherent attributes will be visually ab-

sent in all instances of that specific class (since none realis-

tic photo will depict a black polar bear). This consideration

is crucial to cast semantic attributes provided at the class

level into (absence of) visual attributes annotate at the im-

age level. Attributes that are annotated as incoherent with

respect to a certain class2 are labelled as missing for each

instance of that class. On the contrary, for the remaining at-

tributes, since we can not draw a better conclusion from the

available annotations, we assume them to be always present

in the corresponding instances. This is the weak supervision

which negatively relies on the absence of attributes only and

that we can generate for free from AWA2 benchmark for the

sake of training our captioner.

On both CUB and AWA2, consistently to the ZSL setup,

training is done only on the images belonging to the seen

classes, accordingly to the proposed splits of [34].

3.3. Attribute Prediction: Results

In this Section, we validate the performance of our

weakly supervised captioner for attribute prediction, in both

quantitative and qualitative terms.

Quantative Results. We adopted the same binary clas-

sification framework of earlier ZSL models [14, 1]. That

is, on CUB database, attributes by Turkers are used as

ground truth and compared with instance-level predictions.

The final reported performance is averaged across all 312

attributes and all training/testing images. Differently, on

AWA2, we compare the binary predictions of our captioner

(on top of a certain image I) with a binarization of the class-

level attributes related to I . As in CUB, classification per-

formance are averaged across the 85 attributes and all in-

stances (in both training and testing).

Table 1 reports such classification accuracy values: our

captioner is able to sharply improve in performance both

[14] (+22.12% on CUB and +8.96% on AWA2) and [1]

(+27.52% on CUB and +8.96% on AWA2). The sharper

margin is registered on CUB dataset: in fact, on AWA2, we

do not have a precise instance-level attributes supervision to

train our captioner, whereas on CUB we do.

Qualitative Results. To visualize the image features

2On average, 28.6% of attributes per class on AWA2.

Training Set Test Set

Captioner Captioner [14] [1]

CUB 87.26% 86.92% 64.8% 59.4%

AWA2 98.98% 81.66% 72.7% 72.7%

Table 1. Attribute prediction in CUB and AWA2 datasets. The

performance of the captioner on the training set is in italic, we

highlighted in bold the best testing accuracy in attribute prediction

among the captioner and the ZSL paradigms [14] and [1].

learnt from the CNN module of our captioner, we take ad-

vantage of t-SNE [18].

t-SNE is the state-of-the-art technique to obtain a bi-

dimensional visualization of an arbitrary feature encodings.

We run t-SNE on top of the 256-dimensional feature vector

extracted from the CNN-module of our captioner trained on

CUB database: the result is a set of bi-dimensional points

pxi, yiq P R
2, each of which corresponding to the image

Ii of CUB, i “ 1, . . . , 11788. Then, we used pxi, yiq as

anchor points where to plot Ii: in this way, we can embed

all CUB images into a planar representation such that two

nearby images correspond to features that are close to each

other in the visual space (according to t-SNE).

To do so, we quantized pxi, yiq into a grid of integers

point pri, ciq P Z
2, the latter being used to align the first

pixel of Ii while plotting it. Images Ii have been spa-

tially rescaled to 50ˆ50, preserving the original RGB color

space. In order to handle overlap between images, we op-

erated a stretching along the ci-th coordinate of all our an-

chors.

The results of this visualization are provided in Figure 3,

where we compare against the analogous procedure applied

to the usual visual embeddings adopted for ZSL [34]: 2048-

dimensional features extracted from a ResNet-101 model

trained for classification over the seen classes.

ResNet-101 seems to encode similarly birds which have

a similar shape, but different colors (and, therefore, differ-

ent species - Figure 3 (b), orange box). In addition, when

using the same descriptor, sometimes, birds appears to be

clustered together accordingly to the sky on the background

(Figure 3 (b), blue box).

Differently, using the 256-dimensional embedding of our

captioner, we can better capture semantic patterns: in fact,

we can observe a nice clustering effect of birds with green

wings (Figure 3 (a), red box). Also, our enhanced visual

embeddings seem to cluster birds with similar shape (long

tail and neck, elongated body) accordingly to their coloriza-

tion and the respective class as well (Figure 3 (a), green

box).

In summary, even if using a visual embedding that is one

order of magnitude smaller than a baseline one (ResNet-

101), we are capable of capturing more semantic patterns.
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Figure 3. t-SNE visualizations of enhanced versus default semantic embedding for ZSL. (a). Our enhanced visual embeddings finely learn

the attribute “having-green-wings” (red box) and cluster birds with “long beack”+“long neck”+“long tail” in a color-consistent manner,

so preserving species. (b). Classical visual embeddings used in ZSL seems fooled by “contours”, mixing up different species which very

different colors (orange box). Sometimes, the sky in the background compromises a correct embedding for species (blue box).



4. Enhancing Visual Embeddings: Bench-

marking the State-of-the-Art in ZSL

In this Section, we provide quantitative results to assess

the effectiveness of our proposed enhancement of visual

embeddings (VisEn). Precisely, on AWA2 and CUB bench-

marks, we prove that three popular approaches in zero-shot

learning [6, 13, 11] are sharply boosted in performance

when replacing classical visual embeddings with ours. A

part from hyper-parameters tuning, such replacement does

not require changes in ther computational pipeline. Further,

in Section 4.2, we setup a broad comparison between VisEn

and the state-of-the-art performance in ZSL.

4.1. Ablation study

For our ablation, we considered the following ap-

proaches for ZSL:

‚ Synthesized Classifiers (SynC) [6] learns a latent em-

bedding in which to combine visual and semantic embed-

dings in a max margin sense, by means of three different

hinge losses: one-versus-one (OVO), Crammer and Singer

(CS) [7] and a structured output SVM loss (struct).

‚ Semantic Auto-Encoder (SAE) [13] proposes a shal-

low linear encoder-decoder network to project visual em-

beddings into semantic ones (through a trainable projection

matrix W) and then reconstruct the visual embeddings from

the semantic ones (through W
J). By using either the pro-

jection learnt from the encoder or the decoder, the compat-

ibility function is the Frobenius norm between ground truth

and predictions.

‚ Coupled Dictionary Learning (CDL) [11] learns a la-

tent embedding in which semantic embeddings are pro-

jected and, by means of a synchronous dictionary learning

pipeline, visual embeddings are mapped onto the latent ones

and vice-versa. All such projections can be combined (or

even separately used) at the inference stage which is config-

ured as an Euclidean nearest neighbours search.

For SynC, SAE and CDL, we optimized from scratches

their compatibility functions by using publicly available

code3. We used default semantic embeddings (specifically,

the ones provided in [34]) and we compare between differ-

ent visual embeddings. For VisEn, we either alternatively

used the 2048- and 256-dimensional representation learnt

from our captioner and represented in Figure 2. As base-

line, we adopted ResNet-101 (provided by [34]). Also for a

fair comparison with Sync and SAE, we also considered the

1024-dim GoogleNet features which were originally used

from those methods [6, 13].

In addition, we ablate on several factors: the OVO, CS

and struct losses for SynC, all possible combinations of pro-

3SynC: https://github.com/pujols/

zero-shot-learning, SAE: https://github.com/

Elyorcv/SAE CDL: http://vipl.ict.ac.cn/resources/

codes/code/ECCV2018_CDL_code_release.rar

Dataset: AWA2

SVM loss

Visual Embedding d OVO CS struct

GoogleNet 1024 52.6% 53.4% 59.0%

ResNet-101 2048 53.0% 53.7% 59.0%

VisEn (ours) 256 50.7% 51.0% 52.1%

VisEn (ours) 2048 54.6% 54.4% 59.0%

Dataset: CUB

SVM loss

Visual Embedding d OVO CS struct

GoogleNet 1024 53.4% 51.6% 54.5%

ResNet-101 2048 55.6% 49.0% 53.9%

VisEn (ours) 256 59.4% 53.2% 54.6%

Table 2. Comparison with SynC [6]. The performance of our

visual enhancement (VisEn) is in italic, the best performance is in

bold. In this table, we used the proposed split (PS) by [34].

jections that learnt by CDL and the alternative usage of the

encoder or the decoder for SAE. Moreover, for the latter

method, since it is crucial aspect in ZSL [34], we tried dif-

ferent manners of splitting seen and unseen classes: a ran-

dom extraction of 40 classes for training and 10 for test-

ing (as commonly done in literature) in addition to standard

(SS) and proposed splits (PS) from [34].

Results are reported in Table 2 (for Sync), Table 3 (for

SAE) and Table 4 (for CDL). In all of them, d denotes the

size of the adopted visual embedding.

Discussion. In Table 2, VisEn exactly matches the per-

formance of GoogleNet and ResNet-101 features on AWA2

with the OVO loss, while in all other cases is superior to

both descriptors: the mean average improvement is 1.7%

and 1.8% over them, respectively. In Table 3, VisEn im-

proves SAE on the PS for AWA2 and in all splits for CUB.

Finally, with respect to CDL , while accounting for all dif-

ferent projections setup (the different rows in Table 4), the

256-dimensional VisEn improves ResNet-101 features in 6

cases out of 7 (AWA2) and in 7 cases out of 7 on CUB.

More in details, on the AWA2 benchmark, despite the

captioner was trained by only using a negative supervision

about the absence of attributes, VisEn was frequently able

to match the performance of descriptors which trained (for

classification) with full supervision. When using SAE En-

coder and Decoder (with 40/10 split), GoogleNet features

are +1.8% and +2.7 better than 2048-dim VisEn, respec-

tively. In turn, in the very same setup, 2048-dim VisEn

improves ResNet-101 features by +1.3% and by +3.3% on

the PS splits, when usind the SAE Decoder and SAE En-

coder, respectively. Often, the 2048-dimensional VisEn are

slightly superior to both GoogleNet and ResNet (SynC-

OVO, SynC-CS, SAE Encoder SS, SAE Encoer PS, SAE

Decoder PS, and CDL settings) guaranteeing a improve-

ment of about one/two percentage points. For both SynC



Dataset: AWA2 Dataset: CUB

Visual Embedding d 40/10 SS [34] PS [34] 40/10 SS [34] PS [34]

Encoder

GoogleNet 1024 84.7% 78.5% 63.5% 61.4% 44.4% 46.2%

ResNet-101 2048 79.6% 80.0% 64.0% 57.0% 54.4% 57.9%

VisEn (ours) 256 77.3% 77.3% 57.3% 62.5% 65.4% 58.6%

VisEn (ours) 2048 82.9% 80.3% 65.7% - - -

Decoder

GoogleNet 1024 84.0% 80.1% 63.1% 60.9% 44.2% 46.2%

ResNet-101 2048 79.0% 79.0% 63.4% 57.5% 54.8% 58.6%

VisEn (ours) 256 77.4% 77.4% 57.8% 63.2% 66.2% 59.2%

VisEn (ours) 2048 80.3% 78.3% 64.1% - - -

Table 3. Comparison with SAE [13]. The performance of our visual enhancement (VisEn) is in italic, the best performance is in bold. In

this case, we report the separate performance of the encoder and the decoder. Also, we ablate on several splits of seen and unseen classes:

we consider the standard (SS) and proposed splits (PS) provided by [34] and the same 40/10 split (10 random classes as unseen ones, the

remaining as seen ones) used in [13].

Dataset: AWA2 Dataset: CUB

ResNet-101 VisEn (ours) VisEn (ours) ResNet-101 VisEn (ours)

d = 2048 d = 2048 d = 256 d = 2048 d = 256

v 63.8% ˘ 4.3% 59.6% ˘ 6.8% 62.0% ˘ 2.9% 40.0% ˘ 2.3% 57.6% ˘ 1.5%

a 61.4% ˘ 1.9% 62.6% ˘ 2.1% 63.1% ˘ 1.2% 50.2% ˘ 1.8% 51.5% ˘ 0.8%

l 53.9% ˘ 2.7% 51.4% ˘ 3.2% 57.4% ˘ 1.0% 40.3% ˘ 2.2% 50.5% ˘ 2.7%

v + a 66.8% ˘ 2.7% 65.3% ˘ 2.9% 63.9% ˘ 1.6% 54.6% ˘ 1.9% 58.3% ˘ 0.9%

a+l 59.1% ˘ 1.7% 55.6% ˘ 2.4% 61.4% ˘ 0.7% 46.3% ˘ 2.0% 51.9% ˘ 1.2%

v+l 62.5% ˘ 1.7% 66.5% ˘ 3.0% 62.0% ˘ 0.7% 49.5% ˘ 2.0% 57.1% ˘ 1.1%

v+a+l 62.6% ˘ 1.5% 59.5% ˘ 2.4% 62.7% ˘ 0.8% 50.7% ˘ 1.9% 56.5% ˘ 0.9%

Table 4. Comparison with CDL [11]. The performance of our visual enhancement (VisEn) is in italic, the best performance is in bold. In

this table, we adopted the proposed splits (PS) by [34] and compare different visual embeddings (whose densionality d is reported beneath

for completeness). Also, we ablate on which combination of the three projection (visual embedding v, attributes a or latent embedding

l) is used for the nearest neighbor search during inference. Since CDL leverages an iterated optimization, we provide mean and standard

deviation of testing accuracy across iterations (whose number was fixed to 50 for AWA2 and 100 for CUB, as in [11]).

and SAE, 256-dimensional VisEn seems sub-optimal but,

interestingly, the very same descriptor is able to score a re-

markable performance in conjunction with CDL: despite

one order of magnitude less, it is capable of improving

ResNet-101 and GoogleNet features on the a, l, a+l and v+a+l

settings, even by 3.5%.

Further, on AWA2, we can observe a that for both

Sync and SAE, 2048-dimensional VisEn are always better

than 256-dimensional ones, whereas, for CDL, the oppo-

site trend is registered. This seems to suggest that CDL

(which adopts dictionary learning) is capable of optimally

perform even when fed with a relatively low-dimensional

visual embedding. Differently, by either performing a la-

tent embedding (Sync) or a direct mapping in between vi-

sual and semantic embeddings (SAE), a bigger dimensional

visual embedding is required.

On CUB, the performance is undoubtedly coherent in its

trend: 256-dim VisEn is always superior to GoogleNet and

ResNet-101 features. In Table 2, while averaging across

OVO, CS and struct losses, the average improvement of

VisEn is +2.9% with respect to ResNet-101 features and

+2.6% with respect to GoogleNet ones. In Table 3, across

the 40/10, SS and PS splits and the usage of the Encoder

or Decoder, SAE is improved by +12.0% with respect to

GoogleNet features and by +5.9% with respect to ResNet-

101 features. Finally, in Table 4, across all combinations of

projections with CDL, ResNet-101 features are improved

by +7.4% on average. All such systematic improvement on

CUB are even more impressive if considering that they were

achieved with a visual embedding of one order of magni-

tude less than baseline ones.

4.2. Comparison with the State-of-the-Art in Induc-
tive ZSL by Metric Learning

In this Section, we directly compare the proposed en-

hancement of visual embeddings (VisEn) with state-of-the-

art approaches in inductive zero-shot learning via metric

learning.

Precisely, we compare VisEn - fed into a SAE encoder

[13] - with direct and indirect attributes’ prediction (DAP

and IAP) [14], the cross-modal transfer (CMT) [25], the hy-

brid semantic and visual embedding (DEVISE) proposed in



Dataset: AWA2 Dataset: CUB

SS PS SS PS

DAP [14] 58.7 46.1 37.5 40.0

IAP [14] 46.9 35.9 27.1 24.0

CMT [25] 66.3 37.9 37.3 34.6

DEVISE [9] 68.6 59.7 53.2 52.0

ConSE [20] 67.8 44.5 36.7 34.3

SSE [35] 67.5 61.0 43.7 43.9

SJE [2] 69.5 61.9 55.3 53.9

ALE [1] 80.3 62.5 53.2 54.9

ESZSL [22] 75.6 58.6 55.1 53.9

LatEM [32] 68.7 55.8 49.4 49.3

SynC [6] 75.4 59.7 53.0 54.6

SAE [13] 80.7 54.1 33.4 33.3

expZSL [27] 79.3 63.8 53.0 49.3

LDA [12] - 56.6 - -

CDL [11] - 69.9 - 54.5

VdSA [23] - - 56.7 -

PSR [4] - 63.8 - 56.8

VisEn (ours) 80.3 65.7 65.4 58.6

Table 5. Comparison with the state-of-the-art in inductive ZSL

by metric learning. First and second best accuracy values are

highlighted in bold and underlined, respectively.

[9], the convex combination of semantic classifiers (ConSE)

[20], the semantic similarity-preserving embedding (SSE)

of [35], the Structured Joint Embedding (SJE)[2], label em-

bedding for zero-shot image classification (ALE) [1], the

regularized least square method for ZSL (ESZSL) [22], the

latent embedding model which solves ZSL through ranking

(LATEM) [32], the synthesized classifiers learnt in a max

margin sense (SynC) [6]. Among the most recent ones, we

considered the shallow semantic autoencoder (SAE) [13],

the approach of ZSL which uses exponential family distri-

butions (expZSL) [27], the discriminative learning of latent

attributes (LDA) [12], the coupled dictionary learning ap-

proach (CDL) [11], the visually-driven semantic augmenta-

tion [23] and the metric learning approach which preserves

semantic relations (PSR) [4].

Results of this extended comparison are reported in Ta-

ble 5. For AWA2 and CUB, we utilized the standard (SS)

and proposed splits (PS) of [34]. By doing so, we can lever-

age the work of the survey [33] which reported the per-

formance of DAP, IAP, CMT, DEVISE, ConSE, SSE, SJE,

ALE, ESZSL, LatEM, Sync, SAE and expZSL for those

splits while using ResNet-101 features as visual embed-

dings. Also for LDA, CDL, VdSA and PSR, we are report-

ing published classification accuracy values extracted from

the respective publications.

Discussion. Overall, our proposed approach scores a

solid performance, so that VisEn locates itself as the second-

best scoring method on AWA2 and the best one on CUB.

On AWA2, VisEn sets a second-best performance on

both SS and PS. The performance is still notable due to

the following aspect. Existing state-of-the-art methods ex-

tract their visual embeddings in a fully supervised regime,

whereas, differently, our captioner was forced to operate in

a more challenging setting in which only a negative weak

supervision was provided (absence of attributes). Despite

this make the comparison more demanding for us, still, our

proposed enhancement of visual embedding scores a favor-

able performance with respect to the state-of-the-art.

Instead, on CUB, due to the availability of visually

grounded attributes, VisEn can express its full potential and

proves the effectiveness of doing metric learning by com-

bining the coherence score of an attribute for a class (seman-

tic embedding) and the visually-grounded predicted pres-

ence of an attribute inside an image of that class (VisEn). In

fact, on CUB, our proposed enhancement registers an im-

provement over the previous best scoring method of +2.2%

(on PS) and +9.7% (on SS).

5. Conclusions

In this paper, we propose to replace usual visual embed-

dings in ZSL (which are trained for fully supervised clas-

sification) with the intermediate representation of an end-

to-end captioner which predicts attributes at the instance-

level. Without the usage of the usual supervision adopted

in zero-shot captioning (multiple extended descriptions per

instance), we still proved the effectiveness of training a

captioner in the weakly supervised regime which is typ-

ical of zero-shot recognition (list of attributes). In fact,

even when attributes are annotated at the class level, we

can rely on the semantic incompatibility between a given

attribute and a certain class: all instances of that class

do not contain the specific attribute. Leveraging this ob-

servation, we generate for free visually-grounded supervi-

sion to train our captioner, using it to extract visual em-

beddings which are richer in semantic content with respect

to baseline ones (ResNet-101 features). Our proposed en-

hancement of visual embeddings VisEn is compatible with

any generic ZSL method, without requiring changes in its

pipeline (a part from hyper-parameter tuning). We proved

that VisEn systematically improves the recognition perfor-

mance of three popular approaches in ZSL [6, 13, 11], even-

tually outperforming classical GoogleNet and ResNet-101

features. Experimentally, VisEn achieves the second-best

performance on AWA2 benchmark despite VisEn were ob-

tained by means of negative weak supervision. Differently,

on CUB, leveraging clean instance-level annotations, we

sharply boosted the best scoring methods on CUB by +2.2%

and +9.7%, on both standard/proposed splits of [34].
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