
Input and Weight Space Smoothing for Semi-supervised Learning

Safa Cicek, Stefano Soatto

UCLA Vision Lab

University of California, Los Angeles, CA 90095

{safacicek,soatto}@ucla.edu

Abstract

We propose regularizing the empirical loss for semi-

supervised learning by acting on both the input (data)

space, and the weight (parameter) space. We propose a

method to perform such smoothing, which combines known

input-space smoothing with a novel weight-space smooth-

ing, based on a min-max (adversarial) optimization. The re-

sulting Adversarial Block Coordinate Descent (ABCD) al-

gorithm performs gradient ascent with a small learning rate

for a random subset of the weights, and standard gradient

descent on the remaining weights in the same mini-batch. It

is simple to implement and achieves state-of-the-art perfor-

mance.

1. Introduction

In vision, we have no shortage of data, but manual anno-

tation is costly, which has prompted interest in methods that

leverage unlabeled data. In semi-supervised learning, we

are given N l labeled samples xl ∈ X l with corresponding

labels yl ∈ Y l and Nu unlabeled samples, xu ∈ Xu. The

entire training dataset is X with cardinality N = N l +Nu.

For a discriminative model to exploit unlabeled data, there

has to be some prior on the model parameters or on the

unknown labels [5]. Such a prior can be realized through

a regularization functional acting on either the parameters

(weight space) or the data (input space). Both input-space

regularization, or “smoothing” ([20, 12, 28, 8]) and weight-

space smoothing ([18, 6]) have been shown to improve both

supervised (SL) and semi-supervised learning (SSL). The

first question we address is whether the two are, in some

sense, equivalent. Although the two couple linearly in deep

networks, composition of non-linearities complicates the

analysis beyond analytical feasibility.

To answer the question, we conduct experiments that

show that, for nonlinear and/or over-parametrized classi-

fiers, input and weight smoothing are not only not equiv-

alent, but they are complementary, suggesting that apply-

ing both may be beneficial. The second question we ad-

dress, therefore, is whether this can be done efficiently to

yield performance improvements relative to methods that

only address one of the two.

To this end, we propose a new algorithm for weight

smoothing called Adversarial Block Coordinate Descent

(ABCD), which we combine with a standard input-

smoothing algorithm (VAT), and test the result on SSL

benchmarks on the CIFAR10 and SVHN datasets. ABCD

combined with VAT achieves state-of-the-art performance

with minimal data augmentation (translation and reflec-

tion), without complex architectures (e.g. ResNet [16]).

While in this section our method is motivated heuristi-

cally, there are theoretical groundings for performing joint

regularization in weight- and input-space, which we discuss

in Section 4.2. There, we show that the two are not equiva-

lent, and in fact are complementary, one affecting the min-

imality of the resulting representation, the other insensitiv-

ity to nuisance variability. In the next two subsections we

describe input and weight smoothing, and in the following

subsection, we show them to not be equivalent. In the next

section we describe the proposed algorithm ABCD, and in

the following one, we put it to the test on visual SSL bench-

marks.

1.1. Input smoothing

We call a classifier “input smooth” when its predictions

are robust to small perturbations in the input space. So,

input smoothing can be enforced with the following opti-

mization problem:

min
w

∑

xi∈X

ℓ(f(xi;w), f(xi +∆xi;w))

subject to ∆xi = arg max
||∆xi||<ǫx

ℓ(f(xi;w), f(xi +∆xi;w))

∀xi ∈ X (1)

where ℓ(·) can be cross-entropy, Kullbach-Liebler (KL) di-

vergence or the mean-square error. f(x;w) ∈ R
K is the

network output with weights w and K is the number of

classes. This problem can be solved along with minimiz-

ing the objective function designed for the task, for instance

the cross-entropy loss for classification. In other words, a

desirable classifier should not change its predictions for any

local perturbation within a ball of small radius ǫx for any

input xi. This idea is also known as max-margin or low-

density assumptions in the SSL literature, championed by

TSVM [20]. Although the perturbations to which we seek

insensitivity are unstructured, in imaging data the largest

perturbations are often due to structured nuisance variability

(e.g.. changes in illumination, vantage point, or visibility).

A popular way of attacking this min-max problem is

through the use of adversarial examples. The underlying

idea is to add a (regularization) term to the loss function,

that penalizes the difference between network outputs for

clean samples, and samples with added adversarial noise.

Adversarial training [12] applies this idea to supervised

learning where they change the problem to being robust

against noise by moving predictions away from the ground

truth labels:

min
w

∑

xi∈X

ℓ(f(xi;w), f(xi +∆xi;w))

subject to ∆xi = arg max
||∆xi||<ǫx

ℓ(P (yi|xi), f(xi +∆xi;w))

∀xi ∈ X (2)

For this supervised setting, ground truth labels P (y|x) can

be used in calculating the adversarial noise ∆x. Instead

of finding the exact ∆x for each input x, [12] calculates the

first order approximation of adversarial perturbation leading

to maximum change in the classifier predictions f(x;w):

∆x ≈ ǫx
g

||g||2

subject to g = ∇xℓ(P (y|x), f(x;w)) (3)

where P (y|x) is the ground truth label for sample x. A nat-

ural extension of this idea to SSL is introduced by [29, 28].

Since SSL algorithms do not have access to ground truth

labels P (y|x), their adversarial noise attempts to maximize

ℓ(f(x;w), f(x + ∆x;w)). But, in the SSL case, the first-

order approximation is not useful, because the first deriva-

tive of ℓ(f(x;w), f(x+∆x;w)) is always zero at ∆x = 0.

Hence, [29, 28] make a second-order approximation for ∆x

and propose the following approximation to the adversarial

noise for each input x:

∆x ≈ ǫx
g

||g||2

subject to g = ∇∆xℓ(f(x;w), f(x+∆x;w))
∣

∣

∣

∆x=ξd

(4)

where d ∼ N(0, 1). Therefore, the regularization loss of

[29, 28] is

ℓV AT (x;w) := ℓ(f(x;w), f(x+ ǫx
g

||g||2
;w))

subject to g = ∇∆xℓ(f(x;w), f(x+∆x;w))
∣

∣

∣

∆x=ξd

(5)

for one input sample x. We will minimize this regularizer as

a way of doing input smoothing in our final SSL algorithm.

1.2. Weight smoothing

Just like input smoothing, weight smoothing can be for-

mulated as a min-max problem. More explicitly,

min
w

∑

xi∈X

ℓ(f(xi;w), f(xi;w +∆w))

subject to ∆w = arg max
||∆w||<ǫw

∑

xi∈X

ℓ(f(xi;w), f(xi;w +∆w))

(6)

Unlike input smoothing, the parameters of both minimiza-

tion and maximization are the same, namely the weights of

the network, w. It is important to note that the maximum is

taken within a ball of small radius ǫw. This appears counter-

intuitive at first.

Just like input smoothing can be associated with insensi-

tivity to nuisance variability in the data (hence bias the rep-

resentation towards invariance), weight smoothing can be

associated with generalization, as it has been observed em-

pirically that so-called “flat-minima” [18, 19] correspond

to solutions that tend to yield better generalization. Recent

methods [6] try to bias solutions towards such flat minima,

including using a conservative penalty [26]:

wt = arg min
w

ℓ(P (y|x); f(x;w)) + γ||w − wt−1||
2

2. (7)

We follow a related, but different, approach: We explicitly

find adversarial directions with respect to random subsets

of the weights, then force the network to be robust against

these directed perturbation using the remaining weights.

This problem of optimizing for the worst case is also

studied in the robust optimization literature [4]. Given all

the possible adversarial ∆w values maximizing the loss,

they suggest an optimization framework for finding descent

directions with second-order cone programming (SOCP)

which would guarantee an optimal solution for a convex ob-

jective. Since finding all possible adversarial perturbations

is not feasible, they find the ones around a ball with gradient

ascent and solve SOCP for local solutions iteratively, which

is related to our method.

1.3. Input smoothing and weight smoothing do not
imply each other

For a linear classifier, the Hessian of the mean-square er-

ror (MSE) loss is the data covariance matrix. The local ge-

Figure 1. Over-parametrized networks are more robust to ad-

versarial noise in the weight space even when they have the

same decision boundary (i.e. the same input smoothness).

Three MLP networks with different number of hidden units trained

with VAT on the half-moon dataset (first panel) have the same de-

cision boundary (second panel). Moreover, the network response

(probability given to one of the classes) is almost identical for

each of the three networks (third panel). Therefore, the robust-

ness of the networks to input perturbation is not just same in the

“error” sense but also the same in the “loss” sense. However, the

larger the network, the more robust it is to adversarial perturba-

tions in weight space. The Fourth panel shows the training loss

versus the number of gradient ascent directions for varying sized

networks. As it can be seen, having a visible increase in the loss

takes more ascent steps for larger networks. This experiment il-

lustrates that networks with the same robustness to input perturba-

tions may have completely different sensitivity to perturbations in

the weight space.

ometry of the loss landscape around the solution where the

weights converged does not depend on the classifier struc-

ture, nor on its parametrization. The number of zero eigen-

values is determined by the dimensionality of the input data

matrix alone. However, it can be easily shown that this is

not necessarily the case for nonlinear classifiers. For in-

stance, [34] shows that the number of zero eigenvalues of

the approximate Hessian of the loss has a lower bound of

|w| − N , where N is the number of training samples and

|w| is the number of weights. This simple Hessian argu-

ment suggests that the robustness of a network to weight

perturbations depends on factors other than its robustness

to input perturbations, like the number of parameters in the

network, for nonlinear classifiers. Even though they also

have empirical evidence for this claim, the spectrum of the

Hessian alone is not necessarily a good measure of flatness

[10]. So, we construct a counterexample to verify that input

smoothness does not necessarily imply weight smoothness.

We use a half-moon toy dataset whereby there are 4 la-

beled (larger circles) and 1000 unlabeled samples from each

cluster (first panel of Fig. 1). We run the VAT algorithm

to find the max-margin decision boundary (second panel of

Fig. 1). We repeat this experiment for 3 multi-layer percep-

tron (MLP) networks each having the same structure 1, ex-

cept for a different number of weights. The decision bound-

ary is the same, as it can be seen in the second panel of Fig.

1, where they show as one as they overlap perfectly. This

implies that for any perturbation in the input space, the in-

crease in the error would be the same for each of these clas-

sifiers. To show that this also the case for the loss, we also

provide the network response and again they are indistin-

guishable (third panel of Fig. 1). Hence, input smoothness

is the same for each of three MLPs.

After training three MLP networks with VAT, we apply

gradient ascent on the converged weights with a small learn-

ing rate to evaluate the robustness of the networks with dif-

ferent number of weights. As it can be seen in the right

panel of Fig. 1, it takes more ascent updates for large net-

works to diverge.2 Thus, over-parametrized networks are

more robust to perturbations in weight space. This experi-

ment shows that input smoothing does not necessarily imply

weight smoothing. That is, there are factors other than in-

put smoothness determining the geometry of the loss around

the converged weight. Another observation is that losses di-

verge suddenly, implying that it takes several iterations to

increase the loss, during which time the landscape is al-

most constant, before the loss increases sharply.3 The as-

cent learning rate chosen in the experiment is 0.005. Dur-

ing ascent, SGD without momentum and weight decay is

used. MLPs are in the form 2 → FC(n) → FC(n) →
FC(n) → FC(n) → 2 where FC(n) is fully connected

layer followed by a RELU and n is number of hidden units.

We report results for n = 1000, n = 2500 and n = 10000.

Note that we choose to make our experiments in two-

dimensional inputs to visualize the decision boundary easily

and verify that they are the same for different classifiers; not

because these results are restricted to small dimensional in-

1By “the same structure“ we mean same number and type of layers with

different number of filters. So networks have the same depth, but different

widths.
2Number of small ascent steps it takes for loss to diverge is not the only

measure for flatness of the converged minima. In Section 3.2, the same

experiment is repeated with different measures. For instance, by plotting

the change in the loss for various values of one ascent step norm.
3This plot implies that for very large networks and small dimensional

inputs, reaching to a considerably high loss level set may require many

ascent iterations. This might seem counter-intuitive when we consider a

typical Hessian histogram of a deep network weights as there are usually

few large positive eigenvalues. But, it is important to note that the MLP

networks we use in this experiment have 4 hidden layers and the largest of

them has 10000 units per layer. So, the size of the network we use for this

experiment is much larger than those for which Hessian histograms can be

calculated. Unfortunately, calculating the Hessian of such a large network

is very expensive computationally. Similarly, it can take many descent

iterations to reach a low-level loss if the data is too complex for the model.

For instance, when training with random labels [7], it takes many epochs

to reduce the loss level even though the loss goes to zero eventually [47].

puts. These results align with those of [11] where they sug-

gest that the amount of uphill climbing for connecting ar-

bitrary weight pairs is correlated to the size of the network.

For more discussion on the effect of over-parametrization

on the loss landscape of DNNs see [33, 35, 2, 40].

1.4. Joint input and weight smoothing

Once established that input smoothness and weight

smoothness are not equivalent, it is natural to try enforc-

ing both. So, the additional regularization we want to have

can be framed as follows:4

min
w

∑

xi∈X

ℓ(f(xi;w), f(xi;w +∆w))+

ℓ(f(xi;w), f(xi +∆xi;w))

subject to ∆w = arg max
||∆w||<ǫw

∑

xi∈X

ℓ(f(xi;w), f(xi;w +∆w))

∆xi = arg max
||∆xi||<ǫx

ℓ(f(xi;w), f(xi +∆xi;w))

∀xi ∈ X (8)

So, the regularization term we want to minimize for one

input x is

L(x;w) = ℓ(f(x;w),

f(x;w + arg max
||∆w||<ǫw

∑

xi∈X

ℓ(f(xi;w), f(xi;w +∆w))))

+ ℓ(f(x;w), f(x+ arg max
||∆x||<ǫx

ℓ(f(x;w), f(x+∆x;w));w))

(9)

Then, the overall problem we want to solve in the super-

vised learning setting becomes

min
w

∑

x

ℓCE(x;w) + λL(x;w) (10)

where

ℓCE(x;w) = −〈P (y|x), log f(x;w)〉 (11)

is the cross entropy loss calculated for label estimates

f(x;w) and ground truth labels P (y|x).

Calculating the exact ∆x for each input is not trivial.

Instead, we will use VAT in Eq. 4 to make our classifier ro-

bust against input space perturbations. For achieving weight

space smoothness, we will use the proposed algorithm de-

scribed next.

Algorithm 1 Adversarial Block Coordinate Descent

(ABCD)

1: Input: Minibatch set Bt, loss function ℓ(·), initial weights w0.

2: Hyper-parameters: Ascent and descent learning rates ηA and ηD .

Number of inner iterations L.

3: Outputs: Final weights wL.

4: for l = 1 : L do

5: Γi sample from {0,−1} for all i ∈ {1, . . . , |w0|}.

6: Γa
i
= Γi for all i ∈ {1, . . . , |w0|}.

7: Γd
i
= Γi + 1 for all i ∈ {1, . . . , |w0|}.

8: // Run stochastic gradient ascent with a small learning rate ηA

9: w
l− 1

2

= wl−1 − ηAΓa ⊙∇wl−1

(

1

|Bt|

∑|Bt|
i=1

ℓ(xi;wl−1)
)

10: // Run stochastic gradient descent with a learning rate ηD ≫ ηA

11: wl = w
l− 1

2

− ηDΓd ⊙∇w
l−

1

2

(

1

|Bt|

∑|Bt|
i=1

ℓ(xi;wl− 1

2

)
)

2. Adversarial Block Coordinate Descent

(ABCD)

Since the parameters of both minimization and maxi-

mization are the weights of the network for the min-max

problem in Eq. (6), we use a subset of the weights w for

finding adversarial directions in weight space and the rest to

impose robust to such additive adversarial perturbations in

weight space. For this, at each update, we randomly choose

half of the weights and take a gradient ascent step along

them with a small learning rate. Then, on the same batch,

we apply gradient descent for the remaining weights with

ordinary (larger) learning rate. We call this algorithm Ad-

versarial Block Coordinate Descent (ABCD), for pseudo-

code, see Alg. 1. ABCD can be considered as an extension

of Dropout [17, 42] and coordinate descent [45]. However,

unlike Dropout, we explicitly regularize our network to be

robust against “adversarial directions” in the weight space;

instead of just being robust to zeroed out weights.

ABCD can be used for SSL in place of vanilla SGD. We

use ABCD for SSL by minimizing the empirical cross en-

tropy for labeled data and the entropy of empirical estimates

for the unlabeled data with ABCD. That is,

ℓE(x;w) = −〈f(x;w), log f(x;w)〉 (12)

for unlabeled data which is a well-known regularizer in the

SSL literature [9, 14, 22, 41].

The randomness in ABCD is due to mini-batch optimiza-

tion that we have to use for computational reasons and the

randomness in the mask Γ selection. If we ignore these, it

would be easier to see the loss minimized by ABCD. The

loss minimized by descent in ABCD is the “worst case” of

the nominal loss landscape. By worst case we mean that, at

4Note that here we take each smoothness term separately. I.e. adver-

sarial perturbations in weight space ∆w are calculated for the original im-

ages x; not for perturbed images x + ∆x. Even though it is possible to

formulate the problem such that perturbations in the weight space (∆w)

are functions of perturbations in the input space (∆x), problem would be

even more complicated in that case.

Algorithm 2 SSL algorithm using ABCD as optimizer;

VAT and entropy as regularizers. ℓCE(x;w), ℓE(x;w),
ℓV AT (x;w) are as defined in Eq. 11, Eq. 12, Eq. 5 re-

spectively.

1: for t = 1 : T do

2: // Run ABCD on cross entropy for weight smoothing:

3: Sample Bl
t

// labeled samples

4: wt′ = ABCD(Bl
t
, ℓCE(x;w), wt−1)

5: // Run ABCD on entropy for weight smoothing:

6: Sample Bu
t

// unlabeled samples

7: wt′ = ABCD(Bu
t
, ℓE(x;w), wt′)

8: // Run SGD on VAT loss for input smoothing:

9: wt = SGD(Bu
t
, ℓV AT (x;w), wt′)

each point in the weight space, the loss ABCD minimizes

is the maximum that can be reached from that point with

one small ascent step. In other words, ABCD minimizes

the maximum loss around a small ball at each point.

Finding the minimum norm adversarial perturbation de-

fined in Eqn. 6, is not possible with one ascent step as this

problem is highly non-convex. Therefore, we take L > 1
steps for each mini-batch. Taking multiple ascent steps does

not guarantee to find the minimum-norm adversarial pertur-

bation, but empirically we find that it gives better results.

Moreover, we do not want the last update for any of the

weight parameter to be ascent. So, we do not apply ABCD

in the last few epochs.

Also, note that the coordinate descent mask is essential

for ABCD to work as intended. Assume that true adver-

sarial perturbation ∆w in Eqn. 6 is given. Then, for mini-

mizing the objective in Eqn. 6 locally is all we need to do

is apply the original SGD update. This is because the first

order approximation of ∆w is just the negative direction

of the gradient given by the SGD. So, without block co-

ordinate descent masks, the result of adversarial training in

weight space would only be the change of effective learning

rate. That is why we have dropout-like masks where half of

the weights are trained to be robust when others add adver-

sarial noise. Moreover, instead of first order method, using

a second-order approximation like VAT in finding ∆w for

half of the weights and minimizing the objective in Eqn.

6 with the rest is possible. But, we choose to calculate ∆w

with the first order gradients for faster training. This is done

by ascending in cross entropy and entropy for labeled and

unlabeled cases respectively.

We report the performance of ABCD combined with

VAT to see the effect of applying both input and weight

smoothing. The pseudo-code using VAT as loss function

and ABCD as an optimizer for SSL task is given in Alg.

2. For labeled data, ABCD used as an optimizer to mini-

mize cross entropy to achieve weight smoothing. We do not

minimize ℓV AT (x;w) for labeled data as proposed in the

corresponding paper. For unlabeled data, ABCD is used to

minimize entropy ℓE(x;w) and SGD is used to minimize

ℓV AT (x;w) for weight and input smoothing respectively.

We set ηA = 10−5 for all of our experiments. ηD can be

chosen as usual with a high initial value from {0.1, 0.01}
and is decreased during training. In all the SSL exper-

iments, we only use the network called conv-large from

[28, 43]. Only translation and horizontal flipping are used

as data augmentations to allow a fair comparison with some

of the previous SSL algorithms. Horizontal flipping is only

used in CIFAR10. Cosine learning schedule of [27] is used

for annealing the learning rate and momentum. Initial learn-

ing rates for SVHN and CIFAR10 with ZCA are 0.1 and

0.04 respectively. We decrease learning rate up to final

learning rate of ηD = 10−4. In CIFAR10 task, we ap-

ply ZCA. Before applying ZCA, we standardize the dataset.

ZCA transformation is DZCA = DU(S−0.5+ ǫI)UT where

S and U are eigenvalue and eigenvector matrices of covari-

ance of data matrix D respectively.

3. Evaluation

3.1. Performance of ABCD in SSL Benchmarks

In Table 1,2 we compare the performance of ABCD with

state-of-the-art SSL algorithms. We report performance of

the proposed algorithm on SVHN [30] and CIFAR10 [23]

in SSL setting. SVHN consists of 32× 32 images of house

numbers. We use 73, 257 samples for training, rather than

the entire 600, 000 images; 26, 032 images are separated

for evaluation. CIFAR10 has 60, 000 32 × 32 images, of

which 50, 000 are used for training and 10, 000 for test-

ing. We choose labeled samples randomly. We also choose

them to be uniform over the classes as it is done in previ-

ous works [28]. In CIFAR10, 4, 000 and in SVHN 1, 000
of training samples are labeled. Except [36], all the meth-

ods use modest augmentations (translation and horizontal

flipping) and do not exploit recent deep learning models

like ResNet [15]. We report ABCD with entropy minimiza-

tion alone and combined with VAT. In CIFAR10, when we

run ABCD only with entropy minimization, it yields bet-

ter performance than previous ensemble methods [24, 43].

Combining ABCD with VAT improves the scores in both

datasets verifying that they are complementary.

In our implementation of VAT [28], we set ǫx in Eq. 4 to

be 128 for CIFAR10 and 0.25 for SVHN. Even though we

search ǫx in a fine grid, we could not get to the performance

reported in their paper for CIFAR10; possibly because we

use a different optimizer (SGD instead of ADAM), differ-

ent whitening and different learning rate scheme. The per-

formance of our VAT implementation is given in Table 1,2.

Our implementation (13.01%) of VAT without entropy min-

imization is about 1.5 percent worse than what is reported in

[28] (11.36%) for CIFAR10. But, we still use the numbers

reported in [28] for comparison purposes in Table 1,2.

SSL Method Test error rate (%)

VAT+EntMin [28] 10.55
Stochastic Transformation [36] 11.29

Temporal Ensemble [24] 12.16
GAN+FM [37] 15.59

Mean Teacher [43] 12.31
VAdD [31] 9.22

EntMin (*) 15.29 ± 0.23
VAT without EntMin (*) 13.01 ± 0.14

VAT+EntMin (*) 11.63 ± 0.12

ABCD+EntMin 11.96 ± 0.06
ABCD+EntMin+VAT 9.28 ± 0.21

Table 1. Comparison with the state-of-the-art on CIFAR10

SSL task. Error rates on the test set are given for CIFAR10.

CIFAR10 is trained using 4,000 labeled and 46,000 unlabeled

samples. Results are averaged over three random labeled sets.

We report performance of ABCD alone and combined with VAT.

ABCD+EntMin+VAT refers to algorithm in Alg. 2 where ABCD

is used as an optimizer; entropy and VAT are used as reg-

ularizers in the loss function. ABCD+EntMin uses only en-

tropy for unlabeled data to report performance of ABCD without

VAT. SSL baselines. Baseline algorithms are EntMin, VAT and

VAT+EntMin. EntMin minimizes the entropy of estimates for un-

labeled data with standard SGD. Similarly, VAT minimizes ℓV AT

from Eq. 5 and VAT+EntMin minimizes both on unlabeled data.

Note that (*) means our own implementation.

SSL Method Test error rate (%)

VAT+EntMin [28] 3.86
Stochastic Transformation [36] NR

Temporal Ensemble [24] 4.42
GAN+FM [37] 5.88

Mean Teacher [43] 3.95
VAdD [31] 3.55

EntMin (*) 5.68 ± 0.03
VAT without EntMin (*) 5.36 ± 0.22

VAT+EntMin (*) 4.01 ± 0.07

ABCD+EntMin 4.52 ± 0.15
ABCD+EntMin+VAT 3.53 ± 0.24

Table 2. Comparison with the state-of-the-art on SVHN SSL

task. Same as Table 1 except results are given for SVHN. NR

stands for “not reported.” SVHN is trained using 1,000 labeled

and 72,257 unlabeled samples. Proposed algorithm achieves the

state-of-the-art performance on SVHN SSL task.

3.2. Robustness of ABCD to weight perturbations

First, we report Hessian histograms to see the curva-

ture of the point converged by ABCD. We calculate the

histograms of Hessian spectra for random weights, SGD-

trained weights and ABCD-trained weights in Fig. 2.

Figure 2. Hessian spectra of 1 hidden layer convolutional network

with 1476 parameters for the loss calculated in MNIST. Left panel

is for random weights, middle panel is for SGD trained weights

and the right panel is for ABCD trained weights. The number of

almost-zero eigenvalues is maximum for ABCD-trained networks.

Histograms are cropped for eigenvalues in [−0.01, 0.01].

We use the automatic differentiation package of PyTorch

[32] for calculating Hessians. The number of eigenval-

ues smaller than 10−4 for random weights, SGD trained

weights and ABCD weights are 185, 226, 262 respectively.

So, the number of almost-zero eigenvalues for ABCD-

trained weight network is larger than that of SGD-trained

weights. This implies that ABCD converges to wider min-

ima than SGD. A small convolutional network with one hid-

den layer is trained on MNIST dataset for this experiment

due to computational constraints.

To evaluate the robustness of ABCD-trained weights to

adversarial weight space perturbations, we report the num-

ber of ascent updates necessary for the loss to diverge. In

Fig. 3 (left), the plot of training loss v.s. the number of as-

cent updates is given for SGD and ABCD-trained weights.

As can be seen, the number of ascent updates needed for the

loss to diverge for ABCD is more than for SGD.

Another way of comparing the local geometrical prop-

erties of the weights is by visualizing the loss landscape

around the converged weights. As the deep networks we

use have very high dimension, several visualization tricks

have been suggested to visualize the loss landscapes in 1-

or 2-dimensional subsets of the weight space [25, 13, 21].

We employ the technique suggested in [13] in Fig. 3 (right):

we plot the loss on the curve α∗wSGD +(1−α)∗wABCD

where α ∈ [−0.2, 1.2]. wSGD and wABCD are the weights

converged when training with SGD and ABCD respectively.

As it can be seen, the loss does not increase around ABCD

trained weights. To be consistent with Hessian experiments,

these experiments are also conducted on MNIST dataset

with the same network.

Figure 3. Robustness of ABCD vs SGD trained networks to as-

cent updates. Starting from the ABCD and SGD trained weights,

we apply gradient ascent with learning rate 0.001 on the cross en-

tropy loss. This plot shows the increase in the training loss ver-

sus the number of ascent steps. Both weights diverge quickly, but

ABCD trained network diverges later than that of SGD verifying

the robustness of ABCD to weight space perturbations. 1D visual-

ization of loss landscapes of SGD and ABCD trained weights.

Training and test losses over the curve α ∗ wSGD + (1 − α) ∗
wABCD are given as suggested by [13] where α ∈ [−0.2, 1.2].
α = 0 and α = 1 correspond to the weights of ABCD and SGD

trained networks respectively. This method compares the flatness

of two methods in one direction only and in that direction, ABCD

seems much more robust to weight perturbations.

Figure 4. ABCD vs VAT+ABCD-trained networks for the toy

example in Fig. 1: VAT+ABCD trained network is much more

robust to weight perturbations than VAT-trained network for all

sizes of networks. Here, we only report results for two networks

of the same type: one with 2500 filters (left), another with 10000

filters (right).

In the toy example of Fig. 1, we compared the robust-

ness of different sized networks to weight perturbations.

Now, we introduce ABCD, we can compare VAT-trained

networks with VAT+ABCD trained networks in the same

setting. As it can be seen in Fig. 4, VAT+ABCD trained

network diverges later than VAT-trained network for two

different sizes of networks. We do not plot ABCD be-

cause ABCD alone is not enough to converge to 0 training

loss. This is because perfect classification in SSL setting

of half-moon clusters requires a regularizer encouraging in-

put smoothing. Since ABCD and VAT trained networks are

not in the same loss level, weight smoothness comparison

between them is not straightforward. Also, note that the ex-

periment in Fig. 1 is in the SSL setting where there are 4
labeled samples from each class. Hence, there is no way for

SGD to exploit the unlabeled data. So, we do not include

SGD into the comparison.

In Fig. 1 and 3-left, we measure the robustness by com-

Figure 5. Different robustness criteria for the experiments in

Fig. 1 and 3-left. Here, we plot loss vs. learning rate of one

ascent step. Over-parameterized networks are again more robust

to perturbations in the toy example (left). ABCD trained network

in Fig. 3-left is also more robust than SGD trained network (right).

paring the losses for the increasing number of small ascent

steps. In Fig. 5-left, we repeat the experiment in Fig. 1

with a different criterion for measuring the robustness of

algorithms to weight perturbations. This time, we plot the

loss after one ascent step for various ascent learning rates.

When we compare losses for different learning rate of one

ascent steps, over-parametrized networks are again more ro-

bust. Similarly, in Fig. 5-right, we repeat Fig. 3-left with

this criterion and again ABCD trained network is more ro-

bust to weight perturbations than SGD. So, whether we take

the number of ascent steps or the length of one ascent step

to diverge as a measure of flatness, ABCD-trained networks

systematically find wider solutions.

4. Related Work and Discussion

4.1. Related Work

Next, we discuss our contribution in the context of re-

lated and recent work in SSL. Input smoothing in SSL. In

addition to work referenced earlier, there are graph-based

methods ([39, 46, 49]) that penalize having different la-

bels for similar input pairs. For instance, given that sij is

the measure of similarity for input samples xi and xj , they

minimize the energy sij(f(xi;w)− f(xj ;w))
2 performing

label propagation under the constraint of fitting to labeled

data. This forces the discriminant to change little in re-

sponse to different inputs with large sij . The generative

model by [41] suggests that they maximize the margin with

the help of fake samples.

Weight smoothing in SSL. Teacher-student methods

[24, 43] average over many predictions or weights in a way

that the teacher network can attract student networks to-

wards itself. A similar algorithm is suggested by [48] for

parallel computing under communication constraint where

each replica is attracted to the reference system. [3] stud-

ies such algorithms for models with discrete variables and

they argue that they find robust local minima. Thus, one

can relate the success of teacher-student models of state-of-

the-art deep SSL algorithms for their ability to converge to

robust weights. Recent work of [31] also combines VAT

with Virtual Adversarial Dropout (VAdD) and, like us, im-

prove upon the VAT baseline as a result. VAdD finds a zero

mask of dropout adversarially at each update rather than try-

ing to be robust against adversarial “directions”. VadD is

not motivated with the flat-minima [18] and there is no ex-

periment supporting whether it is able to find wide valleys.

In this work, we establish that input smoothing and weight

smoothing are complementary and applying both is useful

for SSL tasks. We achieve state-of-the-art results by com-

bining VAT of [28] with the proposed algorithm ABCD. We

conduct many experiments to verify that ABCD-trained net-

works are indeed robust against adversarial perturbations in

the weight space.

Effect of noise on generalization. Adding random

noise to gradients is known to improve the generalization

[44]. [19] analyzes the effect of the inherent noise due to

mini-batch usage in the properties of point converged by

SGD. They conclude that for larger noise, the network fa-

vors wider minima under the assumption that the noise is

isotropic. ABCD differs from these works by adding adver-

sarial noise to weights instead of random noise.

4.2. Theoretical Grounding

Our algorithm yields a function (discriminant) f(x;w)
that maps a (test) datum x onto a class label y. More pre-

cisely, f maps x onto a vector f(x;w) ∈ R
K with K the

number of labels, which can be evaluated for each class hy-

pothesis y = k ∈ {1, . . . ,K} to yield a positive real num-

ber f(x;w)[k] where [k] denotes the k-th component. Ide-

ally, such a discriminant would be the posterior probability

f(x;w)[k] = P (y = k|x), which is the (Bayesian) opti-

mal discriminant. If we could compute and minimize the

expected cross-entropy loss ℓCE(x;w) within a universally

approximating family of functions f(·;w), we would obtain

just that. Unfortunately, we only have a finite sample of the

true distribution D
.
= {(x, y) ∼ p(x, y)}Ni=1

, from which

we can only compute and minimize the empirical cross en-

tropy ℓDCE(x;w). Nevertheless, we can construct a proxy

loss that captures the properties of the optimal discriminant

even with a finite sample, as we discuss next.

The posterior P (y|x) is a function of the test datum that

is minimal, sufficient and invariant [38]. It is sufficient (in-

formationally equivalent to the data) for the task of classi-

fication; it is invariant to nuisance variability in the data;

and it is minimal in the sense of having smallest (informa-

tion) complexity, which relates to generalization [1]. On the

other hand, the learned discriminant f(·;w) is a function of

the dataset D that does not know anything about the test da-

tum x. If, however, we could construct f to be any minimal,

sufficient, and invariant function of the training set D, con-

structed with a deep neural network, then the Emergence

Theory of [1] guarantees that the resulting discriminant is

also a minimal sufficient invariant of the test datum. The

key question then is: What is the loss function that is com-

putable from the training set that would yield a minimal,

sufficient invariant?

Sufficiency is captured by empirical cross entropy: Any

function that minimizes it (possibly by overfitting) is a suf-

ficient representation of the training set.

Invariance is captured by minimizing the sensitivity to

nuisance variability in the data. This can be done by con-

sidering the (worst-case) perturbations that do not modify

the class (hence they are, by definition, nuisance factors).

This is precisely the criterion we have used to define input-

space smoothing.

Minimality is measured not by the dimension of the

weights, but by their information content. While in the

Emergence theory this is measured in the sense of Shannon

[1], measuring information in the sense of Fisher yields,

under suitable approximation, the second-order criterion.

As we verify with our Hessian histograms, the proposed

method finds flat minima in this sense.

Thus, although derived heuristically, the loss function we

construct by imposing both input and space smoothing, in

addition to the small empirical loss, captures precisely the

three defining properties of the optimal (Bayesian) discrimi-

nant, grounded in recent theoretical work [1]. Of course, the

approximation of the optimal discriminant is only as good

as the given data, so there is no (finite-sample) guarantee on

the approximation of the posterior, but at least the loss func-

tion we adopt better captures the properties of the posterior

than the raw empirical loss, which affords no invariance and

no minimality.

4.3. Conclusion

We propose an adversarial training algorithm for SSL

tasks to be robust against adversarial perturbations in both

input and weight spaces where we combine the known in-

put smoothing algorithm with a novel weight smoothing

algorithm. We establish with a toy example that input

and weight smoothing are complementary. In SSL bench-

marks, combining input and weight smoothing algorithms

resulted in a performance better than applying either al-

gorithms alone. This further verifies that smoothing in

input and weight spaces are complementary for high di-

mensional data as well. As a result, the proposed algo-

rithm achieves competitive results in semi-supervised learn-

ing benchmarks. Furthermore, we conduct extensive exper-

iments proving the robustness of the proposed algorithm to

the adversarial perturbations in weight space.

Acknowledgment

Research supported by ONR - N00014-17-1-2072 and ARO

MURI - W911NF-17-1-0304.

References

[1] A. Achille and S. Soatto. On the emergence of invariance

and disentangling in deep representations. arXiv preprint

arXiv:1706.01350, 2017. 8

[2] M. Baity-Jesi, L. Sagun, M. Geiger, S. Spigler, G. B. Arous,

C. Cammarota, Y. LeCun, M. Wyart, and G. Biroli. Compar-

ing dynamics: Deep neural networks versus glassy systems.

arXiv preprint arXiv:1803.06969, 2018. 4

[3] C. Baldassi, C. Borgs, J. T. Chayes, A. Ingrosso, C. Lu-

cibello, L. Saglietti, and R. Zecchina. Unreasonable

effectiveness of learning neural networks: From acces-

sible states and robust ensembles to basic algorithmic

schemes. Proceedings of the National Academy of Sciences,

113(48):E7655–E7662, 2016. 7

[4] D. Bertsimas, O. Nohadani, and K. M. Teo. Robust opti-

mization for unconstrained simulation-based problems. Op-

erations research, 58(1):161–178, 2010. 2

[5] O. Chapelle, B. Scholkopf, and A. Zien. Semi-supervised

learning (chapelle, o. et al., eds.; 2006)[book reviews]. IEEE

Transactions on Neural Networks, 20(3):542–542, 2009. 1

[6] P. Chaudhari, A. Choromanska, S. Soatto, and Y. LeCun.

Entropy-sgd: Biasing gradient descent into wide valleys.

arXiv preprint arXiv:1611.01838, 2016. 1, 2

[7] S. Cicek, A. Fawzi, and S. Soatto. Saas: Speed as a supervi-

sor for semi-supervised learning. In The European Confer-

ence on Computer Vision (ECCV), September 2018. 3

[8] S. Cicek and S. Soatto. Unsupervised domain adapta-

tion via regularized conditional alignment. arXiv preprint

arXiv:1905.10885, 2019. 1

[9] Z. Dai, Z. Yang, F. Yang, W. W. Cohen, and R. Salakhutdi-

nov. Good semi-supervised learning that requires a bad gan.

arXiv preprint arXiv:1705.09783, 2017. 4

[10] L. Dinh, R. Pascanu, S. Bengio, and Y. Bengio. Sharp

minima can generalize for deep nets. arXiv preprint

arXiv:1703.04933, 2017. 3

[11] C. D. Freeman and J. Bruna. Topology and geome-

try of half-rectified network optimization. arXiv preprint

arXiv:1611.01540, 2016. 4

[12] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explain-

ing and harnessing adversarial examples. arXiv preprint

arXiv:1412.6572, 2014. 1, 2

[13] I. J. Goodfellow, O. Vinyals, and A. M. Saxe. Qualitatively

characterizing neural network optimization problems. arXiv

preprint arXiv:1412.6544, 2014. 6, 7

[14] Y. Grandvalet and Y. Bengio. Semi-supervised learning by

entropy minimization. In Advances in neural information

processing systems, pages 529–536, 2005. 4

[15] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

770–778, 2016. 5

[16] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in

deep residual networks. In European conference on com-

puter vision, pages 630–645. Springer, 2016. 1

[17] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and

R. R. Salakhutdinov. Improving neural networks by pre-

venting co-adaptation of feature detectors. arXiv preprint

arXiv:1207.0580, 2012. 4

[18] S. Hochreiter and J. Schmidhuber. Flat minima. Neural

Computation, 9(1):1–42, 1997. 1, 2, 8

[19] S. Jastrzebski, Z. Kenton, D. Arpit, N. Ballas, A. Fischer,

Y. Bengio, and A. Storkey. Three factors influencing minima

in sgd. arXiv preprint arXiv:1711.04623, 2017. 2, 8

[20] T. Joachims. Transductive inference for text classification

using support vector machines. In ICML, volume 99, pages

200–209, 1999. 1, 2

[21] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy,

and P. T. P. Tang. On large-batch training for deep learn-

ing: Generalization gap and sharp minima. arXiv preprint

arXiv:1609.04836, 2016. 6

[22] A. Krause, P. Perona, and R. G. Gomes. Discriminative

clustering by regularized information maximization. In Ad-

vances in neural information processing systems, pages 775–

783, 2010. 4

[23] A. Krizhevsky and G. Hinton. Learning multiple layers of

features from tiny images. 2009. 5

[24] S. Laine and T. Aila. Temporal ensembling for semi-

supervised learning. arXiv preprint arXiv:1610.02242, 2016.

5, 6, 7

[25] H. Li, Z. Xu, G. Taylor, and T. Goldstein. Visualizing the loss

landscape of neural nets. arXiv preprint arXiv:1712.09913,

2017. 6

[26] M. Li, T. Zhang, Y. Chen, and A. J. Smola. Efficient mini-

batch training for stochastic optimization. In Proceedings of

the 20th ACM SIGKDD international conference on Knowl-

edge discovery and data mining, pages 661–670. ACM,

2014. 2

[27] I. Loshchilov and F. Hutter. Sgdr: Stochastic gradient de-

scent with warm restarts. arXiv preprint arXiv:1608.03983,

2016. 5

[28] T. Miyato, S.-i. Maeda, M. Koyama, and S. Ishii. Virtual ad-

versarial training: a regularization method for supervised and

semi-supervised learning. arXiv preprint arXiv:1704.03976,

2017. 1, 2, 5, 6, 8

[29] T. Miyato, S.-i. Maeda, M. Koyama, K. Nakae, and S. Ishii.

Distributional smoothing with virtual adversarial training.

arXiv preprint arXiv:1507.00677, 2015. 2

[30] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y.

Ng. Reading digits in natural images with unsupervised fea-

ture learning. In NIPS workshop on deep learning and unsu-

pervised feature learning, volume 2011, page 5, 2011. 5

[31] S. Park, J.-K. Park, S.-J. Shin, and I.-C. Moon. Adversarial

dropout for supervised and semi-supervised learning. arXiv

preprint arXiv:1707.03631, 2017. 6, 7

[32] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-

Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Auto-

matic differentiation in pytorch. 2017. 6

[33] I. Safran and O. Shamir. On the quality of the initial basin in

overspecified neural networks. In International Conference

on Machine Learning, pages 774–782, 2016. 4

[34] L. Sagun, U. Evci, V. U. Guney, Y. Dauphin, and L. Bottou.

Empirical analysis of the hessian of over-parametrized neural

networks. arXiv preprint arXiv:1706.04454, 2017. 3

[35] L. Sagun, V. U. Guney, G. B. Arous, and Y. LeCun. Ex-

plorations on high dimensional landscapes. arXiv preprint

arXiv:1412.6615, 2014. 4

[36] M. Sajjadi, M. Javanmardi, and T. Tasdizen. Regularization

with stochastic transformations and perturbations for deep

semi-supervised learning. In Advances in Neural Informa-

tion Processing Systems, pages 1163–1171, 2016. 5, 6

[37] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Rad-

ford, and X. Chen. Improved techniques for training gans. In

Advances in Neural Information Processing Systems, pages

2234–2242, 2016. 6

[38] S. Soatto and A. Chiuso. Visual representations: Defin-

ing properties and deep approximations. arXiv preprint

arXiv:1411.7676, 2014. 8

[39] J. Solomon, R. Rustamov, L. Guibas, and A. Butscher.

Wasserstein propagation for semi-supervised learning. In

International Conference on Machine Learning, pages 306–

314, 2014. 7

[40] D. Soudry and Y. Carmon. No bad local minima: Data inde-

pendent training error guarantees for multilayer neural net-

works. arXiv preprint arXiv:1605.08361, 2016. 4

[41] J. T. Springenberg. Unsupervised and semi-supervised learn-

ing with categorical generative adversarial networks. arXiv

preprint arXiv:1511.06390, 2015. 4, 7

[42] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and

R. Salakhutdinov. Dropout: A simple way to prevent neural

networks from overfitting. The Journal of Machine Learning

Research, 15(1):1929–1958, 2014. 4

[43] A. Tarvainen and H. Valpola. Mean teachers are better role

models: Weight-averaged consistency targets improve semi-

supervised deep learning results. 2017. 5, 6, 7

[44] M. Welling and Y. W. Teh. Bayesian learning via stochas-

tic gradient langevin dynamics. In Proceedings of the 28th

International Conference on Machine Learning (ICML-11),

pages 681–688, 2011. 8

[45] S. J. Wright. Coordinate descent algorithms. Mathematical

Programming, 151(1):3–34, 2015. 4

[46] Z. Yang, W. W. Cohen, and R. Salakhutdinov. Revisit-

ing semi-supervised learning with graph embeddings. arXiv

preprint arXiv:1603.08861, 2016. 7

[47] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals.

Understanding deep learning requires rethinking generaliza-

tion. arXiv preprint arXiv:1611.03530, 2016. 3

[48] S. Zhang, A. E. Choromanska, and Y. LeCun. Deep learning

with elastic averaging sgd. In Advances in Neural Informa-

tion Processing Systems, pages 685–693, 2015. 7

[49] X. Zhu, Z. Ghahramani, and J. D. Lafferty. Semi-supervised

learning using gaussian fields and harmonic functions. In

Proceedings of the 20th International conference on Ma-

chine learning (ICML-03), pages 912–919, 2003. 7

