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Abstract

Domain Adaptation (DA), the process of effectively adapt-

ing task models learned on one domain, the source, to other

related but distinct domains, the targets, with no or mini-

mal retraining, is typically accomplished using the process

of source-to-target manifold alignment. However, this pro-

cess often leads to unsatisfactory adaptation performance,

in part because it ignores the task-specific structure of the

data. In this paper, we improve the performance of DA

by introducing a discriminative discrepancy measure which

takes advantage of auxiliary information available in the

source and the target domains to better align the source and

target distributions. Specifically, we leverage the cohesive

clustering structure within individual data manifolds, asso-

ciated with different tasks, to improve the alignment. This

structure is explicit in the source, where the task labels are

available, but is implicit in the target, making the problem

challenging. We address the challenge by devising a deep

DA framework, which combines a new task-driven domain

alignment discriminator with domain regularizers that en-

courage the shared features as task-specific and domain

invariant, and prompt the task model to be data structure

preserving, guiding its decision boundaries through the low

density data regions. We validate our framework on stan-

dard benchmarks, including Digits (MNIST, USPS, SVHN,

MNIST-M), PACS, and VisDA. Our results show that our

proposal model consistently outperforms the state-of-the-art

in unsupervised domain adaptation.

1. Introduction

Domain adaptation refers to the problem of leveraging

labeled task data in a source domain to learn an accurate

model of the same tasks in a target domain where the la-

bels are unavailable or very scarce [7]. The problem be-

comes challenging in the presence of strong data distribu-

tion shifts across the two domains [35, 11], which lead to

high generalization error when using models trained on the

source for predicting on target samples. Domain adapta-

tion techniques seek to address the distribution shift prob-

lem. The key idea is to bridge the gap between the source

and target in a joint feature space so that a task classifier

trained on labeled source data can be effectively transferred

to the target [29, 4, 2, 28]. In this regard, an important

challenge is how to measure the discrepancy between the

two domains. Many domain discrepancy measures have

been proposed in previous DA studies, such as the moment

matching-based methods [25, 4, 30, 42, 41], and adversarial

methods [40, 3, 34, 43, 13]. Moment matching-based meth-

ods use Maximum Mean Discrepancy (MMD) [36] to align

the distributions by matching all their statistics. Inspired

by Generative Adversarial Networks (GAN) [14], adversar-

ial divergences train a domain discriminator to discern the

source from the target, while an encoder feature extractor is

simultaneously learned to create features indistinguishable

across the source and the target, confusing the discriminator.

Existing discrepancy approaches, reviewed in the next

section, mainly focus on aligning domain-level feature distri-

butions without considering category-level alignment. Thus,

the alignment enforced by such discrepancy measures does

not guarantee a good target performance as it ignores the

cluster structure of the samples, aligned with their task la-

bels. The assumption that the source features exhibit a well-

defined cluster structure naturally transfers to the target:

target features indicative of the same tasks as the source

should manifest a similar cluster structure. In other words,

when optimally aligned, the target features should amass

around the source clusters such that the decision boundaries

of the learned task classifiers do not induce partitioning of

smooth clusters of target features. However, the aforemen-

tioned domain discrepancy measures only focus on global

feature overlap, ignoring the finer task-aligned structure in

the data. Consequently, they may inaccurately match the

clusters and also cause the source features to form weakly

separable clusters, as illustrated in Fig.1, b, c.

To alleviate the limitations of existing discrepancy mea-

sures for domain adaptation, we introduce a task (e.g.,

classification)-specific adversarial discrepancy measure that

extends the discriminator output over the source classes, in

order to additionally incorporate task knowledge into the ad-

versarial domain alignment. The new discrepancy measure



(a) Original (b) MMD distance [24]

(c) Adversarial Divergence [13] (d) Task-specific Divergence

Figure 1: Feature visualization, via t-SNE, of Digit datasets when adapting SVHN (source) to MNIST (target). The target features in

(b) and (c) are in close proximity of the source features but only weakly aligned to them. Source clusters are imperfectly delineated,

demonstrating that the learned source features are insufficiently discriminative. Our new discrepancy measure in (d) leads to improved

separation of source features and better alignment between the source and the target, which adheres to the structure of the data in both

domains.

helps the feature extractor (encoder) make discriminative

source/target features by considering the decision boundary

information. Consequently, source-target alignment not only

takes into account the domain-level feature densities but also

the category-conditioned clusters-of-features information to

produce an improved overlap, evident in Fig. 1, part d.

Motivated by the information-bottleneck principle [39],

whose goal is to improve generalization by ignoring irrele-

vant (domain-variant) distractors present in the original data

features, we also introduce a source regularization loss by

minimizing the information between the source samples and

their features by encouraging the marginal distribution of

the source features to be similar to a prior distribution (the

standard normal distribution) to enforce the model to focus

only on the most discriminative (label-variant) features, less

prone to overfitting. Moreover, an additional target regu-

larization term is imposed on the classifier, trained on the

shared features of the source samples, to encourage it not to

pass through high-density regions of the target data. Previ-

ous DA methods did not explicitly consider these desiderata.

Our ablation study in Sec. 4.4 empirically demonstrates the

importance of the introduced objectives. We also empirically

evaluate the advantages of our proposed method by demon-

strating considerable improvements over the state-of-the-art

methods on several standard domain adaptation benchmarks,

including Digits, PACS and VisDA datasets.

2. Related Work

We summarize DA works most relevant to this paper.

Several types of adversarial learning methods for unsuper-

vised domain adaptation have been shown to match distri-

butions of the features generated from source and target

samples [9, 20, 37, 6, 10, 25].

The domain adversarial neural network (DANN) [13]

first introduced a gradient reversal layer that reversed the

gradients of the domain discriminator in order to encour-

age domain confusion. Other recent proposals [23, 3] have

explored generative models such as GANs [14] to generate

synthetic images for domain adaptation. These approaches

typically train two GANs on the source and target input data

with tied parameters with the goal of translating images be-

tween the domains. Despite being visually compelling, such

image-space models have only been shown to work on small

images and limited domain shifts.

In order to circumvent the need to generate images,

ADDA [40] recently proposed an adversarial framework

for directly minimizing the distance between the source and

target encoded representations (shared features). A discrim-

inator and (target) encoder are iteratively optimized in a

two-player game, where the goal of the discriminator is to

distinguish the target features from the source features, with

the goal of the encoder being to confuse the discriminator.



The DupGAN [17] proposed a GAN-like model with du-

plex discriminators to restrict the latent representation to be

domain invariant, with its category information preserved.

Saito et al. [33] further introduce two classifiers as a discrim-

inator to avoid ambiguous features near the class boundaries.

By deploying two classifiers, the method therein employs the

adversarial learning techniques to detect the disagreement

across classifiers, such that the encoder is able to minimize

this discrepancy on target samples.

In addition to the adversarial distribution matching ori-

ented algorithms, pseudo-labels or conditional entropy regu-

larization are also adopted in literature [32, 35, 43]. Sener

et al. [35] construct a k-NN graph of target points based on

a predefined similarity graph. Pseudo-labels are assigned

to target samples via their nearest source neighbors, which

allows end-to end joint training of the adaptation loss. Saito

et al. [32] employ the asymmetric tri-training, which lever-

ages target samples labeled by the source-trained classifier

to learn target discriminative features. Zhang et al. [43] iter-

atively select pseudo-labeled target samples based on their

proposed criterion and retrain the model with a training set

including pseudo-labeled samples. However, these methods

based on pseudo-labeled target samples have a critical bottle-

neck where false pseudo-labels can mislead learning of target

discriminative features, leading to degraded performance.

3. Method

3.1. Problem Formulation

Without loss of generality, we consider a multi-class (K-

class) classification problem as the running task example.

Consider the joint space of inputs and class labels, X × Y
where Y = {1, . . . ,K} for (K-way) classification. Suppose

we have two domains on this joint space, source (S) and

target (T), defined by unknown distributions PS(x, y) and

PT (x, y), respectively. We are given source-domain training

examples with labels DS = {(xS
i , y

S
i )}

NS

i=1 and target data

DT = {xT
i }

NT

i=1 with no labels. We assume the shared set of

class labels between the two domains. The goal is to assign

the correct class labels {yTi } to target data points DT .

To tackle the problem in the shared latent space frame-

work, we introduce a shared encoder Q between the source

and the target domains that maps a sample x into a stochas-

tic embedding1 z ∼ Q(z|x), and then apply a classifier h

to map z into the label space y ∼ h(y|z) (h is trained to

classify samples drawn from the encoder distribution). Al-

though one can consider domain-wise different encoders,

more recent DA approaches tend to adopt a shared encoder,

which can prevent domain-specific nuisance features from

being learned, reducing potential overfitting issues. We de-

fine the stochastic encoder E as a conditional Gaussian

1Please see Remark 1 for the benefits of choosing a stochastic encoder

over a deterministic one.

distribution with diagonal covariance that has the form

Q(z|x) = N (z|fµ(x), fΣ(x)) where f· is a deep network

mapping the data point x to the 2p-dimensional latent code,

with the first p outputs from fe encoding fµ, and the remain-

ing p outputs encoding fΣ (in this work, we set p = 256
for all the experiments). The classifier h outputs a K-dim

probability vector of class memberships, modeled as a soft-

max form h(z) = softmax(fc(z)), where fc(z) is a deep

network mapping the latents z to the logits of K classes.

Remark 1. The reason to choose a stochastic encoder over

a deterministic one is two fold. First, it allows one to impose

smoothness (local-Lipschtizness) constraint on the classi-

fier h over target samples; see Sec. 3.1.5 for more details.

Second, adding continuous noise to the inputs of the discrim-

inators has been shown to improve instability and vanish-

ing gradients in adversarial optimization problems through

smoothening the distribution of features [1]. Our stochas-

tic encoder equipped with the reparametarization approach

inherently provides such mechanism to feature distribution

smoothness; see Sec. 3.1.4 and 3.1.2 for more details.

The proposed domain adaptation method can be summa-

rized by the objective function consisting of six terms:

LClass + LDisc + LTeach + LSmooth + LEntropic + LAdv,

(1)

where LClass is the classification loss applied to DS , LDisc

is the domain discrepancy loss measuring the discrepancy

between the source and target distribution, LTeach is the

source-to-target teaching loss, which couples the source clas-

sifier with the target discriminator. The remaining losses,

LSmooth,LEntropic,LAdv will impose different regulariza-

tion constraints on the model: LSmooth will impose Lips-

chitz classifiers in the target space, LEntropic will strive to

drive the classifier towards regions of low density in the same

target space, while LAdv will impose regularization towards

a reference density in the shared space Z . We next discuss

each of the above losses in more detail and then propose an

algorithm to efficiently optimize the desired objective.

3.1.1 Source Classification Loss LClass

Having access to source labels, the stochastic mappings Q

and h are trained on source samples to correctly predict the

class label by minimizing the standard cross entropy loss,

LClass(Q, h) := −Ex,y∼PS(x,y)

[

Ez∼Q(z|x)

[

y⊤ log h(z)
]

]

,

(2)

where y is the K-D one-hot vector representing the label y.

3.1.2 Domain Discrepancy Loss LDisc

Since the stochastic encoder Q is shared between the source

and target samples, to make sure the source and the target



features are well aligned in the shared space and respect

the cluster structure of the original samples, we propose a

novel domain alignment loss, which will be optimized in

adversarial manner.

Rather than using the standard adversarial approach to

minimizing the alignment loss between the source and the

target densities in the shared space Z , i.e., finding the en-

coder Q which ”fools” the best binary discriminator D try-

ing to discern source from target samples, our approach is

inspired by semi-supervised GANs [8] where it has been

found that incorporating task knowledge into the discrim-

inator can jointly improve classification performance and

quality of images produced by the generator. We incorpo-

rate task knowledge by replacing what would be a binary

discriminator with a (K + 1)-way multi-class discriminator

y′ = D(z) = softmax(fd(z)). The first K classes indicate

that a sample z belongs to the source domain and belongs

to a specific classes in Y , while the last (K + 1)-th class ”t”
indicates z belongs to the target domain.

Since we have the class label for the source samples, the

discriminator is trained to classify source features correctly,

hence creating crisp source clusters in the feature space. On

the other hand, the new discriminator seeks to distinguish

the samples from the target domain from those of the source

by assigning them to the (K + 1)-th, ”target” class.

LDisc(Q,D) := −Ex∼PT (x)

[

Ez∼Q(z|x)

[

[0, 1]⊤ logD(z)
]]

− Ex,y∼PS(x,y)

[

Ez∼Q(z|x)

[

[y, 0]⊤ logD(z)
]]

, (3)

where [0, 1] is a one-hot vector indicating a point from the

target domain and [y, 0] stands for a point from the source

domain, labeled according to class label y.

3.1.3 Teacher Target-Source Loss LTeach

Here, we seek the encoder Q to generate a feature represen-

tative of one of the first K task-specific classes for target

samples preserving their cluster structure and aligning them

to the source clusters in the feature space. However, the

target data points are unlabeled, and the encoder will not

have the chance to enforce the desired clustering structure of

the target points, where points within a cluster would have

the same predicted label. To ”teach” the encoder, we ask

the classifier h(·) to provide pseudo soft labels for the target

points to our new discriminator using the following loss:

LTeach(Q,D, h) :=

− Ex∼PT (x)

[

Ez∼Q(z|x)[[h(z), 0]
⊤ logD(z)]

]

. (4)

Intuitively, the encoder tries to fool the discriminator by

assigning one of the first K classes to target features, lever-

aging on the output of the classifier h (augmented with 0 for

the K + 1-th dimension) as pseudo-labels for target features.

Remark 2. The proposed task-specific domain discrimina-

tor can be used to improve any domain adaptation method

that has an adversarial domain alignment component. In-

deed, we observe (see Sec. 4.3) that the proposed discrim-

inator significantly improves upon the standard binary dis-

criminator.

3.1.4 Source Domain Regularization Loss

One of the standard goals in representation learning is to find

an encoding of the data point x that is maximally expressive

about its label y while being maximally compressive about

x—finding a representation z which ignores as many details

of x as possible. This is specifically useful for domain adap-

tation where we require a representation to be domain invari-

ant. Essentially, we want z to act like a minimal sufficient

statistic of x for predicting y in order to generalize better

for samples form unseen domains. To do so, we introduce a

regularizer that acts on the aggregated posterior of the shared

features of the source samples Qz(z) = Ex∼PS(x)[Q(z|x)].
The regularizer encourages z to be less informative about x

in the form of mutual information by matching the aggre-

gated posterior of the shared features with a factorized prior

distribution Pz(z)
2, which in turn constrains the implicit

capacity of z and encourages it be factorized:

D
[

Pz(z)||Qz(z)
]

, (5)

where D(·||·) is an arbitrary distribution divergence measure.

As the proxy for this divergence, we define an auxiliary

loss which will be adversarially optimized. We introduce an

a binary discriminator F in the latent space trying to separate

true points sampled from Pz and fake ones sampled from Qz .

The encoder Q ensures the aggregated posterior distribution

Qz can fool the binary discriminator into thinking that the

source features comes from the distribution Pz:

LAdv(Q,F ) = −Ex∼PS(x)

[

Ez∼Q(z|x)

[

logF (z)
]]

− Ez∼P (z)

[

log(1− F (z))
]

. (6)

Remark 3. We empirically observed that imposing such

regularization on target samples could be harmful to perfor-

mance. We conjecture this is due to the lack of true class

labels for the target samples, without which the encoder

would not preserve the label information of the features,

leading to unstructured target points in feature space.

3.1.5 Target Domain Regularization Losses

In order to incorporate the target domain information into

the model, we apply the cluster assumption, which states that

the target data points DT contains clusters and that points

in the same cluster have homogeneous class labels. If the

cluster assumption holds, the optimal decision boundaries

2In this work, we consider Pz(z) = N (0, I)



Figure 2: Proposed architecture includes a deep feature extractor f(x) and a deep label predictor h(z), which together form a standard

feed-forward architecture. Unsupervised domain adaptation is achieved by adding a task-specific discriminator D(z) connected to the

feature extractor distinguishing the source from target features. The training proceeds standardly and minimizes the label prediction loss (for

source examples) LClass, the domain discrepancy losses (for all samples) LDisc and LTeach, the source domain regularization loss LAdv ,

and the target domain regularization losses LSmooth and LEntropic.

should occur far away from data-dense regions in the feature

space z. We achieve this by defining an entropic loss,

LEntropic(h,Q) :=

− Ex∼PT (x)

[

Ez∼Q(z|x)

[

h(z)⊤ log h(z)
]

]

. (7)

Intuitively, minimizing the conditional entropy forces the

classifier to be confident on the unlabeled target data, thus

driving the classifiers decision boundaries away from the

target data. In practice, the conditional entropy must be

empirically estimated using the available data.

However, Grandvale [15] suggested this approximation

can be very poor if h is not locally-Lipschitz smooth. With-

out the smoothness constraint, the classifier could abruptly

change its prediction in the neighborhood of training sam-

ples, allowing decision boundaries close to the training sam-

ples even when the empirical conditional entropy is mini-

mized. To prevent this, we take advantage of our stochastic

encoder and propose to explicitly incorporate the locally-

Lipschitz constraint in the objective function,

LSmooth(h,Q) :=

Ex∼PT (x)

[

Ez1,z2∼Q(z|x)||h(z1)− h(z2)||1

]

, (8)

with ‖ · ‖1 the L1 norm. Intuitively, we enforce classifier

consistency over proximal features of any target point x.

Remark 4. We empirically observed that having such con-

straints for source features would not improve performance.

This is because access to the source labels and forcing the

classifier to assign each source feature to its own class would

already fulfill the smoothness and entropy constraints on the

classifier for the source samples.

3.2. Model Learning and Loss Optimization

Our goal, as outlined in Sec. 3.1, is to train the task-

specific discriminator D, binary discriminator F , classifier

h, and encoder Q to facilitate learning of the cross-domain

classifier h. By approximating the expectations with the sam-

ple averages, using the stochastic gradient Descent (SGD),

and the reparametarization approach [19], we solve the op-

timization task in the following four subtasks. The overall

algorithm is available in the Supplementary Material (SM).

3.2.1 Optimizing the encoder Q

Q∗ = argmin
Q

LClass(Q, h∗) + LDisc(Q,D∗, h∗)

+ λQ

[

LAdv(Q,F ∗)
]

, (9)

where λQ is a weighting factor. Intuitively, The first term

in Eq. 9 encourages Q to produce discriminative features

for the labeled source samples to be correctly classified by

the classifier h. The second term simulates the adversarial

training by encouraging Q to fool the task-specific discrim-

inator D by pushing the target features toward the source

features, leveraging the soft pseudo-labels provided by the

classifier. Through the last term, the encoder seeks to fool

the binary discriminator F into treating the source features

as if they come from the fully-factorized P (z) to produce

domain-invariant source features.

3.2.2 Optimizing the classifier h

h∗ = argmin
h

λh[LClass(Q
∗, h)]

+ λ′
h

[

LEntropic(Q
∗, h) + LSmooth(Q

∗, h)
]

, (10)



where λh and λ′
h are the trade-off factors. Intuitively, we

enforce the classifier h to correctly predict the class labels

of the source samples by the first term in Eq. 10. We use

the second term to minimize the entropy of h for the target

samples, reducing the effects of ”confusing” labels of target

samples. The last term guides the classifier to be locally

consistent, shifting the decision boundaries away from target

data-dense regions in the feature space.

3.2.3 Optimizing the task-specific discriminator D

D∗ = argmin
D

LDisc(Q
∗, D). (11)

The loss in Eq. 11 prompts D to shape its decision boundary

to separate the source features (according to their class label)

and target features from each other.

3.2.4 Optimizing the binary discriminator F

F ∗ = argmin
F

LAdv(Q
∗, F ). (12)

Intuitively, the loss in Eq. 12 encourages F to separate the

source features from the features generated from the fully-

factorized distribution Pz(z) by assigning label 1 and 0 to

the source feature samples and Pz(z) samples, respectively.

3.3. Target Class Label Prediction

After model training, to determine the target class-label

yt of a given target domain instance xt, we first compute

the distribution of yt given xt by integrating out the shared

feature zt. Then, we select the most likely label as

ŷt = argmaxyt∈{1,...,K} P (yt|xt), (13)

where P (yt|xt) can be computed as

P (yt = k|zt) = Ez∼Q(z|xt)=N (fµ
e (xt),fΣ

e (xt))[hk(z)],

(14)

where hk(.) is the k-th entry of the classifier output. Since

the above expression cannot be computed in a closed form,

we approximate it with its mean value. Using this approxi-

mation, we compute yt as:

ŷt = argmaxk∈{1,...,K} hk(zt), zt = fµ
e (xt). (15)

Remark 5. We empirically observed that estimating the

expectation in Eq. 14 with Gibbs sampling from the posterior

Q(z|xt) instead of its mean would not boost the performance.

We conjecture this is due to the smoothness constraint we

impose on the classifier through Eq. 8, enforcing consistency

over proximal target samples drawn from Q(z|x).

4. Experimental Results

We compare our proposed method with state-of-the-art

on three benchmark tasks. The Digit datasets embody the

digit cross-domain classification task across four datasets:

(a) Digits. (b) PACS (c) VisDA.

Figure 3: Example images from benchmark datasets.

MNIST, MNIST-M, SVHN, USPS, which consist of K =
10 digit classes (0-9). We also evaluated our method on

VisDA object classification dataset [31] with more than

280K images across twelve categories. Finally, we report

performance on PACS [21], a recently proposed benchmark

which is especially interesting due to the significant domain

shift between different domains. It contains images of seven

categories extracted from four different domains:Photo (P),

Art paintings (A), Cartoon (C), and Sketch (S). The details

of the datasets are available in SM. Fig. 3 illustrates image

samples from different datasets and domains. We evalu-

ate the performance of all methods with the classification

accuracy metric. We used ADAM [18] for training; the

learning rate was set to 0.0002 and momentums to 0.5 and

0.999. Batch size was set to 16 for each domain, and the

input images were mean-centered/rescaled to [−1, 1]. All

the used architectures replicate those of state-of-the-art meth-

ods, detailed in SM. We followed the protocol of unsuper-

vised domain adaptation and did not use validation set to

tune the hyper-parameters λQ, λh, λ
′
h. Full hyper-parameter

details for each experiment can be found in SM. We com-

pare the proposed method with several related methods, in-

cluding CORAL [38], DANN [12], ADDA [40], DTN [44],

UNIT [22], PixelDA [3], DIAL [5], DLD [27], DSN [4],

and MCDA [33] on digit classification task (Digit datasets),

and the object recognition task (VisDA and PACS datasets).

4.1. Results On Digits Recognition

In this evaluation, we follow the same protocol across all

methods. Specifically, we use the network structure similar

to UNIT [22]. See SM for more details.

We show the accuracy of different methods (averaged

over five different runs) in Tab. 1. The proposed method out-

performed the competing methods in five out of six settings,

confirming consistently and significantly better generaliza-

tion of our model over target data.

The higher performance of the proposed model com-

pared to other methods is mainly attributed to the proposed

task-specific alignment method, which not only encourages

the source features to be well-separated, according to their

class label, but also aligns the target to source features in

a cluster-wise manner, ”matching” the source and target

clusters. This is in contrast to the standard domain-wise

alignment, which ignores the source/target inherent cluster



Table 1: Mean classification accuracy on digit classification. M:

MNIST; MM: MNIST-M, S: SVHN, U: USPS. The best is shown

in red. The superscript shows the standard deviation. *UNIT trains

with the extended SVHN (> 500K images vs ours 72K). *PixelDA

uses (≈ 1, 000) of labeled target domain data as a validation set for

tuning the hyper-parameters.

method S → M M → MM M → U MM → M MM → U U → M

Source Only 62.10 55.98 78.30 84.46 80.43 50.64

1-NN 35.86 12.58 41.22 82.13 36.90 38.45

CORAL [38] 63.100.8 57.700.7 81.050.6 84.90 87.54 85.010.5

DANN[13] 73.800.6 77.40 81.600.4 61.05 85.34 77.400.4

ADDA[40] 77.681.5 91.470.6 90.510.3 92.820.6 80.700.6 90.100.8

DTN[44] 81.400.6 85.700.4 85.800.4 88.800.5 90.680.4 89.040.3

PixelDA[3] – 98.10∗ 94.10∗ – – –

UNIT[22] 90.6∗ – 92.90 – 90.60

DSN[4] 82.700.3 83.200.4 91.650.3 90.200.3 89.950.2 91.400.3

MCDA[4] 96.200.4 – 96.500.7 – – 94.100.3

Ours 94.670.5 98.010.3 99.050.3 99.110.2 99.160.3 97.850.3

S-->M M-->MM M-->U MM-->M MM-->U U-->M
84

87

90

93

96

99

Ours (Adversarial Discriminator) Ours (Task-specific Discriminator)

Figure 4: Comparison of proposed task-specific discriminator with

the standard adversarial discriminator on Digit dataset.

structure. This superiority also benefits from the proposed

source and target domain regularizers, which improve the

source feature domain-invariance and the classifier’s robust-

ness respectively. See Sec. 4.4 for more details.

4.2. Results on Object Recognition

We also evaluate our method on two object recognition

benchmark datasets VisDA [31] and PACS [21]. We follow

MCDA [33], and use ResNet101 [16] as the backbone net-

work which was pretrained on ImageNet dataset, and then

finetune the parameters of ResNet101 with the source only

VisDA dataset according to the procedure described in [33].

For the PACS dataset, we also follow the experimental pro-

tocol in [27], using ResNet18 [16] pretrained on ImageNet

dataset, and training our model considering 3 domains as

sources and the remaining as target, using all the images of

each domain. For these experiments, we set the learning rate

of resnets to 10−9. We choose this small learning rate for

ResNet parameters since the domain shift for both VisDA

and PACS are significant, the training procedure benefits

from a mild parameter updates back-propagated from the

loss. Results for this experiment are summarized in Tab. 2

& Tab. 3. We observe that our model achieved, on average,

the best performance compared to other competing methods

for both datasets. The higher performance of our method

is mainly attributed to incorporating the category-level in-

formation into the domain alignment through the proposed

task-specific discriminator, which is beneficial to boost the

discriminability of the source/target features.

4.3. Analysis of the task-specific discriminator

To measure how effective the new task-specific discrimi-

nator is, we conducted an experiment to compare the task-

specific discriminator with the standard adversarial discrim-

inator (training a logistic function on the discriminator by

assigning labels 0 and 1 to the source and target domains

respectively and training the encoder with inverted labels).

The results are shown in Fig. 4. As is evident from the figure,

there is a substantial increase in accuracy over all adaptation

scenarios on switching from the standard adversarial dis-

criminator to our task-specific discriminator. The superiority

of the performance is mainly due to explicitly accounting

for task knowledge in the proposed discriminator during ad-

versarial training that encourages the discriminativity of the

source/target samples in the feature space.

We further visualize the distribution of the learnt shared

features to investigate the effect of task-specific discrimina-

tor (Task-d) and its comparison to adversarial discriminator

(Adv-d). We use t-SNE [26] on SVHN to MNIST adap-

tation to visualize shared feature representations from two

domains. Fig. 5 shows shared features from source (SVHN)

and target (MNIST) before adaptation (a,d), after adaptation

with Adv-d (b,e), and after adaptation with Task-d (c,f).

While a significant distribution gap is present between

non-adapted features across domains (a), the domain discrep-

ancy is significantly reduced in the feature space for both

Adv-d (b) and Task-d (c). On the other hand, adaptation

with Task-d led to pure and well-separated clusters in fea-

ture space compared to the adaptation with Adv-d, and leads

to superior class separability. As supported by the quantita-

tive results in Fig. 4, this implies that enforcing clustering in

addition to domain-invariant embedding was essential for re-

ducing the classification error. This is depicted in (f), where

the points in the shared space are grouped into class-specific

subgroups; color indicates the class label. This is in contrast

to Fig. 5e, where the features show less class-specificity.

4.4. Ablation Studies

We performed an ablation study for our unsupervised do-

main adaptation approach on Digit dataset. Specifically, we

considered training without source regularization, denoted

as Ours (w/o-s), training without target regularization, Ours

(w/0-t), and training by excluding both the source and the

target regularization, Ours (w/o-st).

The results are shown in Fig. 6. As can be seen, removing

one or more of the objectives results in noticeable perfor-

mance degradation. The more parts are removed, the worse

the performance is. More precisely, disabling the source reg-

ularizer results in an average ≈ 3.5% drop in performance.

That demonstrates that the source regularizer can improve the

generalization over target samples by encouraging the source



Table 2: Accuracy of ResNet101 model fine-tuned on the VisDA dataset. Last column shows the average rank of each method over all

classes. The best in bold red, second best in red.

Method plane bcycl bus car horse knife mcycl person plant sktbrd train truck mean Ave. ranking

Source Only 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4 4.91

MMD [24] 87.1 63.0 76.5 42.0 90.3 42.9 85.9 53.1 49.7 36.3 85.8 20.7 61.13 3.08

DANN [12] 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.42 3.00

MCDA [33] 87.0 60.9 83.7 64.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.90 2.41

Ours 88.2 78.5 79.7 71.1 90.0 81.6 84.9 72.3 92.0 52.6 82.9 18.4 74.03 1.83

(a) Original (by domain) (b) Adversarial discriminator (c) Task-specific discriminator

(d) Original (by classes) (e) Adversarial discriminator (f) Task-specific discriminator

Figure 5: Feature visualization for embedding of digit datasets for adapting SVHN to MNIST using t-SNE algorithm. The first and the

second rows show the domains and classes, respectively, with color indicating domain and class membership. (a,d) Original features. (b,e)

learned features for Ours with (binary) adversarial discriminator. (c,f) learned features for Ours with task-specific discriminator.

features to be domain-invariant, less informative about the

Table 3: Mean classification accuracy on PACS dataset. The first

row indicates the target domain, while all the others are considered

as sources. The best (in bold red), the second best (in red).

method Sketch Photo Art Cartoon Mean

Resnet18 (Source Only) 60.10 92.90 74.70 72.40 75.00

DIAL [5] 66.80 97.00 87.30 85.50 84.20

DLD [27] 69.60 97.00 87.70 86.90 85.30

Ours 71.69 96.81 89.48 88.91 86.72

S-->M M-->MM MM-->U U-->M
90

93

96

99

Ours(full) Ours(w/0-t) Ours(w/0-s) Ours(w/o-st)

Figure 6: Ablation of the proposed method on Digit dataset. The

regularization terms contribute to the overall performance.

identity of either of the domains. Immobilizing the target

regularizer leads to ≈ 2.0% average drop in performance.

These results strongly indicate that it is beneficial to make

use of the information from unlabeled target data the dur-

ing classifier learning process, which further strengthens the

feature discriminability in the target domain. Finally, the

average performance drop that stems from disabling both the

source and the target regularizer is ≈ 5.5%. This suggests

that the two components operate in harmony with each other,

forming an effective solution for domain adaptation.

5. Conclusion

We proposed a method to boosts the unsupervised do-

main adaptation by explicitly accounting for task knowledge

in the cross-domain alignment discriminator, while simul-

taneously exploiting the agglomerate structure of the unla-

beled target data using important regularization constraints.

Our experiments demonstrate the proposed model achieves

state-of-the-art performance across several domain adapta-

tion benchmarks.
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