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Abstract

We study object recognition under the constraint that

each object class is only represented by very few obser-

vations. Semi-supervised learning, transfer learning, and

few-shot recognition all concern with achieving fast gener-

alization with few labeled data. In this paper, we propose

a generic framework that utilize unlabeled data to aid gen-

eralization for all three tasks. Our approach is to create

much more training data through label propagation from

the few labeled examples to a vast collection of unanno-

tated images. The main contribution of the paper is that

we show such a label propagation scheme can be highly

effective when the similarity metric used for propagation

is transferred from other related domains. We test various

combinations of supervised and unsupervised metric learn-

ing methods with various label propagation algorithms. We

find that our framework is very generic without being sensi-

tive to any specific techniques. By taking advantage of unla-

beled data in this way, we achieve significant improvements

on all three tasks. Code is availble at http://github.

com/Microsoft/metric-transfer.pytorch.

1. Introduction

We address the problem of object recognition from a

very small amount of labeled data. This problem is of par-

ticular importance when limited labels can be collected due

to either time or financial constraints. Though this is a dif-

ficult challenge, we are encouraged by evidence from cog-

nitive science suggesting that infants can quickly learn new

concepts from very few examples [21, 1].

Many recognition problems in computer vision are con-

cerned with learning on few labeled data. Semi-supervised

learning, transfer learning, and few-shot recognition all aim

to achieve fast generalization from few examples, by lever-

aging unlabeled data or labeled data from other domains.

The fundamental difficulty of this problem is that naive

supervised training with very few examples results in severe
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Figure 1: Overview of the approach. Often, object cate-

gories are represented by very few images. We transfer a

metric learned from another domain and propagate the la-

bels from the few labeled images to a vast collection of

unannotated images. We show this can reliably create much

more labeled data for the target problem.

over-fitting. Because of this, prior work in semi-supervised

learning rely on strong regularizations such as augmenta-

tions [10], temporal consistency [20], and adversarial exam-

ples [27] to improve performance. Some related works in

few-shot learning do not even refine an online classifier. In-

stead, they simply apply the similarity metric learned from

training categories to new categories without adaptation.

Meta-learning [8] seeks to optimize an online parametric

classifier with few samples, but under the assumption that

just a few steps of optimization will lead to effective gener-

alization with less overfitting. These approaches indirectly

address the inherent problem of limited training data.

In this paper, we propose a new framework of label prop-

agation via metric transfer to tackle the problem of limited

training data. We propagate labels to an unlabeled dataset,

so that training a supervised model with great learning ca-



pacity no longer faces over-fitting. This approach is related

to work on “pseudo-labeling” [22, 31], where the model

is bootstrapped from limited data and trained on the new

data/label pairs it infers. However, that is unlikely to work

well when the labeled data is scarce, since the initial model

is likely to be poor. Instead of bootstrapping, our work

transfers the metric learned from another related domain,

and thus provides a much better generalization ability.

Our approach works with three data domains: a source

domain to learn a similarity metric, few labeled examples

to define the target problem, and an unlabeled dataset in

which to propagate labels. As in Figure 1, we first learn a

similarity metric on the source domain, which can be either

labeled or unlabeled. Supervised learning or unsupervised

(self-supervised) learning is used to learn the metric accord-

ingly. Then, given few observations of the target problem,

we propagate the labels from these observations to the un-

labeled dataset using the metric learned in the source do-

main. This creates an abundance of labeled data for learning

a classifier. Finally, we train a standard supervised model

using the propagated labels.

The main contribution of this work is the metric trans-

fer approach for label propagation. By studying different

combinations of metric pretraining methods (e.g. unsuper-

vised, supervised) and label propagation algorithms (e.g.

nearest neighbors, spectral clustering), we find that our met-

ric transfer approach on unlabeled data is general enough

to work effectively for many settings. For semi-supervised

learning on CIFAR10 and ImageNet, we obtain an absolute

20% improvement over the state-of-the-art when labeled

data is limited (5−10 labels per category). We also achieve

a 10% improvement on transferring representations from

ImageNet to CIFAR10 for transfer learning, and 6% im-

proved performance for few-shot recognition on the mini-

ImageNet benchmark.

Due to this generic framework, our work also brings in-

dividual insights into the respective tasks we studied: 1) for

semi-supervised learning, algorithms may better develop

from unsupervised learning, as opposed to using unlabeled

data for regularization. 2) for transfer learning, we propose

an alternative method for transferring knowledge other than

the dominant finetuning approach. 3) for few-shot recog-

nition, in certain scenarios, unlabeled data in the target do-

main is more beneficial than labeled data in the source do-

main.

2. Related Work

Large-scale Recognition. To solve a computer vision prob-

lem, it has become a common practice to build a large-scale

dataset [6, 3] and train deep neural networks [19, 34] on

it. This philosophy has achieved unprecedented success

on many important computer vision problems [6, 24, 32].

However, constructing a large-scale dataset is often time-

consuming and expensive, and this has motivated work on

unsupervised learning and problems defined on few labeled

samples.

Semi-supervised Learning. Semi-supervised learning [39]

is a problem that lies in between supervised learning and un-

supervised learning. It aims to make more accurate predic-

tions by leveraging a large amount of unlabeled data than

by relying on the labeled data alone. In the era of deep

learning, one line of work leverages unlabeled data through

deep generative models [17, 29]. However, training of gen-

erative models is often unstable, making it tricky to work

with recognition tasks. Recent efforts on semi-supervised

learning focus on regularization by self-ensembling through

consistency loss, such as temporal ensembling [20], ad-

versarial ensembling [27], teacher-student distillation [36],

and cross-view ensembling [2]. The pseudo-labeling ap-

proach [22, 31] initializes a model on a smalled labeled

dataset and bootstraps on the new data it predicts. This

tends to fail when the labeled set is small.

Our work is most closely related to the transductive ap-

proaches [16, 45]. Prior work [7] in computer vision shows

that label propagation can work well with handcrafted GIST

descriptors. We bring it to the context of deep learning, and

demonstrate that metric transfer may further improve the

accuracy of label propagation.

Few-shot Recognition. Given some training data in train-

ing categories, few-shot recognition [1] requires the clas-

sifier to generalize to new categories from observing very

few examples, often 1-shot or 5-shot. A body of work ap-

proaches this problem by offline metric learning [37, 35,

40], where a generic similarity metric is learned on the train-

ing data and directly transferred to the new categories using

simple nearest neighbor classifiers without further adapta-

tion. Recent works on meta-learning [8, 23, 26] take a

learning-to-learn approach using online algorithms. In or-

der not to overfit to the few examples, they develop meta-

learners to find a common embedding space, which can be

further finetuned with fast convergence to the target prob-

lem. Recent works [30, 9] using meta-learning consider the

combined problem of semi-supervised learning and few-

shot recognition, by allowing access to unlabeled data in

few-shot recognition. This drives few-shot recognition into

more realistic scenarios. We follow this setting as we study

few-shot recognition.

Transfer Learning. Since the inception of the ImageNet

challenge [32], transfer learning has emerged almost every-

where in visual recognition, such as in object detection [11]

and semantic segmentation [25], by simply transferring the

network weights learned on ImageNet classification and

finetuning on the target task. When the pretraining task and

the target task are closely related, this tends to generalize



much better than training from scratch on the target task

alone. Domain adaptation seeks to address a much more

difficult scenario where there is a large gap between the in-

puts of the source and target domains [14], for example, be-

tween real images and synthetic images. What we study in

this paper is metric transfer. Different from prior work [42]

that employ metric transfer just to reduce the distribution

divergence of different domains, we use metric transfer to

propagate labels. Through this, we show that metric propa-

gation is an effective method for learning with small data.

3. Approach

To deal with the shortage of labeled data, our approach

is to enlarge it by propagating labels from annotated images

to unlabeled data using the similarity metric between data

pairs. The creation of much more labeled data enables us to

train deep neural networks to their full learning capacity.

Our framework works on three data domains: the source

domain S , the target domain T , and additional unlabeled

data U . The source domain S can be labeled or unlabeled

with abundant data, and it is used to learn a generic similar-

ity metric between data pairs. The target domain T only has

few labeled data, but it defines the problem we want to opti-

mize. The unlabeled data U is the resource in which to prop-

agate labels, and may potentially contain similar classes to

the task defined in T . It may or may not have overlapping

classes with S .

The approach we propose in this paper is very general,

suggesting that a spectrum of metric pretraining and label

propagation algorithms can all work well in this framework.

Below we introduce our method in details, and overview

several metric learning and label propagation methods we

used for our experiments.

3.1. Metric Pretraining

The source domain S is used for pretraining a similarity

metric between data pairs. Ideally, we desire the metric to

capture the inherent structure in the target domain T , so that

transferring labels from T is reliable and useful. For this to

happen, we usually hold some prior knowledge about the

source S and the target T . For example, the source domain

is sampled from the same distribution as the target domain,

but is completely unannotated, or the source domain is an-

notated with a different task but is closely related to the tar-

get. Formally, a similarity metric sij between data xi and

xj can be defined as

sij = f(xi, xj), (1)

where f is the similarity function to be learned. In this

work, we use deep neural networks as a parametric model

of this similarity function. The metric can be trained with

either supervised or unsupervised methods, depending on

whether labels are given in the source domain S . We briefly

review the training algorithms as follows.

Unsupervised Metric Pretraining

Recently, there has been growing interest in unsupervised

learning and self-supervised learning. Different algorithms

are based on different data properties (e.g. color [44], con-

text [4], motion [46]) and thus may vary in performance on

the target task we may want to transfer. However, it is not

our intent to give a comprehensive comparison over various

methods and choose the best one. Instead, we show that

general unsupervised transfer is beneficial for label propa-

gation and leads to improved performance.

In this work, we utilize two unsupervised learning meth-

ods: instance discrimination [41] and colorization [44]. For

instance discrimination, we treat each instance as a class,

and maximize the probability of each example belonging to

the class of itself,

P (i|xi) =
exp(sii)∑n
j=1 exp(sij)

. (2)

For colorization, the idea is to learn a mapping from

grayscale images to colorful ones. Following the origi-

nal paper [44], instead of predicting raw pixel colors, we

quantize the color space into soft bins q, and use the cross-

entropy loss on the soft bins,

Lcolor = −
∑

h,w

qh,wlog (qh,w), (3)

where h,w are spatial indices. We follow previous work [5]

for applying ResNet to colorization, where we use a base

network to map inputs to features, and a head network

of three convolutional layers to convert features to colors.

Since colorization does not automatically output a metric,

we use the Euclidean distance on the features from the base

network to measure similarity.

Supervised Metric Pretraining

In some scenarios, we have access to a labeled dataset,

such as PASCAL VOC and ImageNet, having commonali-

ties with the target task. Traditional metric learning with su-

pervision minimizes the intra-class distance and maximizes

the inter-class distance of the labeled samples. For this pur-

pose, many types of loss functions such as contrastive loss,

triplet loss [13], and neighborhood analysis [12] have been

proposed. In this work, we use neighborhood analysis [12]

to learn our metric. Concretely, we maximize the likelihood

of each example being supported by other examples belong-

ing to the same category,

P (yi|xi) =

∑
yk=yi

exp(sik)∑n
j=1 exp(sij)

. (4)



Figure 2: Left: raw similarity matrix. Right: similarity ma-

trix by spectral embedding. Through spectral embedding,

sparse similarities are propagated to distant areas to reveal

global structure. Samples are sorted by their class id for

better visualization.

3.2. Label Propagation

Given a target T represented by a small number of la-

beled examples, and a unlabeled set U , we propagate labels

from T to U using the similarity function f(·) learned from

S . Suppose T = {(x1, y1), (x2, y2), ..., (xnt
, ynt

)}, and

U = {xnt+1, xnt+2, ..., xnt+nu
}, where nt and nu are the

number of images in T , U respectively. Label yi is repre-

sented as a vector with the ground-truth class element set

to 1 and the others set to −1. We consider two propagation

algorithms.

Naive Nearest Neighbors

A straightforward propagation approach is to vote for the

class of an unlabeled sample based on its similarity to each

of the exemplars in the target set T . For an unlabeled ex-

ample xu ∈ U , we calculate its logits zu,c for every class

c,

zu,c =
1

nt,c

nt∑

i=1

I(yi,c = 1) ·Wi,u, (5)

where I(·) is the indicator function, Wi,u =
exp (f(xi, xu))) denotes the similarity between exam-

ple i and u, and nt,c is the number of labeled images

available for class c.

The nearest neighbor propagation method is essentially

a one-step random walk where the similarity metric acts

as the transition matrix and the indicator function acts as

the initial distribution. The effectiveness of such one-step

propagation depends heavily on the quality of the similarity

metric.

In general, it is hard to learn such a metric well, espe-

cially when limited supervision is available, because of the

visual diversity of images. Figure 2 (left) shows a typi-

cal similarity matrix computed from unsupervised features.

Data points in the similarity matrix are sparsely connected,

thus limiting the one-step label propagation approach.

Figure 3: The accumulated accuracy of the pseudo labels

on the validation data sorted by the confidence measure.

Constrained Spectral Clustering

Constrained spectral clustering [15, 7] may potentially re-

lieve such a problem. Instead of propagating labels by

one step as in the naive nearest neighbor approach, con-

strained spectral clustering propagates labels through mul-

tiple steps by taking advantage of structure within the un-

labeled dataset. It computes a spectral embedding [33, 38]

from the original similarity metric, which is then used as the

new metric for label propagation. The spectral embedding

is formulated as

W ′ =

η∑

j=2

1

λj
eje

T
j , (6)

where λj and ej are the eigenvalues and eigenvectors of the

normalized Laplacian in ascending order. The Laplacian

matrix Lsym is derived from the original similarity metric

as Lsym = I − D−1/2WD−1/2, with degree matrix D =
diag(d) and di =

∑
j Wij . Parameter η is the total number

of eigen components used.

Due to its globalized nature, spectral clustering is able

to pass messages between distant areas, which is in con-

trast to the local behavior of the naive nearest neighbors

approach. The embedded metric is usually densely con-

nected and better aligned with object classes, as illustrated

in Figure 2 (right). Using the same voting approach as in

Eqn (5), labeled propagation can be more accurate than us-

ing the original raw similarity metric.

Constrained spectral clustering is also efficient. By fol-

lowing the common practice of using k-nearest neighbors

to build the similarity graph [38], propagating labels to 50k
images takes about 10 seconds on a regular GPU.

3.3. Confidence Weighted Supervised Training

Given the logits zi, the pseudo label ŷi is estimated as

ŷi = argmax
c

zi,c. (7)



Table 1: Ablation study of the mean average precision (mAP) of pseudo labels on CIFAR10.

Metric pretraining Propagation method 50 100 250 500 1000 2000 4000 8000

Bootstrapping
Nearest neighbor 22.03 25.74 48.35 68.03 77.57 77.28 87.77 90.88

Spectral 23.49 28.88 54.46 70.02 80.94 87.77 93.94 96.23

Colorization [44]
Nearest neighbor 57.32 67.61 75.48 79.34 80.70 82.14 83.66 84.79

Spectral 60.85 67.34 76.31 80.04 81.78 81.89 82.93 82.03

Instance [41]
Nearest neighbor 54.82 62.99 77.08 84.90 88.68 91.34 92.72 93.67

Spectral 72.59 79.21 86.64 90.01 91.04 91.57 91.77 91.94

Table 2: Ablation study of semi-supervised performance on CIFAR10.

Metric pretraining Propagation method 50 100 250 500 1000 2000 4000 8000

No No 20.95 25.35 41.63 54.06 65.08 73.22 81.44 86.23

Bootstrapping
Nearest neighbor 21.79 25.37 42.70 54.14 68.08 75.17 83.30 87.68

Spectral 22.78 27.95 47.28 60.73 72.60 78.20 85.10 88.26

Colorization [44]

No 49.57 55.41 64.65 68.81 73.40 77.93 82.17 86.25

Nearest neighbor 49.96 52.69 65.63 65.88 70.88 76.36 80.16 84.64

Spectral 53.47 55.08 68.40 71.15 72.38 76.50 80.31 84.03

Instance [41]

No 35.27 37.87 62.46 71.04 75.96 80.12 83.90 87.82

Nearest neighbor 46.68 54.45 66.93 74.16 79.17 82.24 84.56 87.92

Spectral 56.34 63.53 71.26 74.77 79.38 82.34 84.52 87.48

With the estimated pseudo labels on the unlabeled data, we

have considerably more data for training a classifier. How-

ever, the pseudo labels may not be accurate, and directly

using these labels may lead to degraded performance. For

example, not all the data in the unlabeled set are related

to the target problem. Here, we devise a simple weighting

mechanism to compensate for inaccurate labels.

Given the logits zi produced by the label propagation al-

gorithm, we first normalize it into a probabilistic distribu-

tion,

z̄i,c =
exp(zi,c/τ)∑
j exp(zi,j/τ)

, (8)

where c indexes the dimension of categories, and the tem-

perature τ controls the sharpness of the distribution. We

then define the confidence measure αi of the pseudo label

as the difference between the maximum response and the

second largest response,

αi = max
j

z̄i,j − max
c �=argmax z̄i,j

z̄i,c. (9)

A high value of αi indicates a confident estimate of the

pseudo label, and a low value of αi indicates an ambiguous

estimate. In Figure 3, we measure the accumulated accu-

racy of pseudo labels on validation data sorted by this con-

fidence. It can be seen that our confidence measure gives a

good indication of the quality of pseudo labels.

Our final training criterion is given by

L = −
1

N

∑

i

αi · log pŷi
(10)

where ŷi is the pseudo label for example i, and p(·) is the

softmax probability output of the classification network.

In practice, since some pseudo labels have relatively low

confidence, e.g. α < 0.01, and thus contribute negligibly to

the overall learning criterion, we may safely discard those

examples to speed up learning.

4. Experiments

Through experiments, we show that, with unlabeled data,

metric propagation is able to effectively label lots of data

when little labeled data is given. We verify our approach

on semi-supervised learning, where an unsupervised metric

is transferred, and on transfer learning, where supervised

metrics generalize across different data distributions, and

on few-shot recognition, where the metric can generalize

across open-set object categories. While studying few-shot

recognition, we leverage an extra unlabeled data for label

propagation, which is also known as semi-supervised few-

shot recognition [30].

Our approach has two major hyper-parameters: the num-

ber of the eigenvectors η for spectral clustering and the tem-

perature σ controlling the confidence distribution. Differ-

ent parameter settings may slightly change the performance.

We use η = 200 and σ = 40 across the experiments. A de-

tailed analysis is provided in the supplementary materials.

4.1. Semi-Supervised Learning

We follow a recent evaluation paper [28], which gives

a comprehensive benchmark for state-of-the-art semi-



Table 3: Scalability to large network architectures on CIFAR10.

Methods Network architectures 50 100 250 500 1000 2000 4000 8000

Mean Teacher
WideResNet-28-2

29.66 36.62 45.49 57.19 65.07 79.26 84.38 87.55

Ours 56.34 63.53 71.26 74.77 79.38 82.34 84.52 87.48

Mean Teacher
WideResNet-28-10

27.35 38.83 49.44 59.45 70.03 82.62 86.71 89.38

Ours 73.13 75.87 80.30 81.76 84.97 86.82 88.70 91.01

Figure 4: Comparisons to the state-of-the-art on CIFAR10.

supervised learning approaches. A majority of our ablation

studies are conducted on CIFAR10 [18], while we also test

our method on ImageNet. On CIFAR10, we use the same

Wide-ResNet [43] architecture with 28 layers and a width

factor of 2. We report performance varying the number of

labeled examples from 50 to 8, 000 of 50, 000 examples.

For training our model, we pretrain the metric using the

unlabeled split, and propagate labels to the same unlabeled

set. This means S = U in our framework. We use SGD

for optimization with an initial learning rate of 0.01 and a

cosine decay schedule. We fix the total number of optimiza-

tion iterations to 200K as opposed to fixing optimization

epochs, because it gives more consistent comparisons when

the number of labeled data varies.

Study of different pretrained metrics.

Our label propagation algorithm needs a pretrained sim-

ilarity metric to guide it. The pretrained metric can be

learned by supervised methods using limited labeled data,

or by unsupervised methods using large-scale unlabeled

data. Here, we consider three metric pretraining methods:

1. supervised bootstrapping on limited labeled data.

2. self-supervised learning by image colorization [44].

3. unsupervised learning by instance discrimination [41].

We train the models using the optimal parameters for each

pretraining method. Then we use cosine similarity in the

feature space for propagating labels to the unlabeled data.

In Table 1, we evaluate the quality of pseudo labels as the

mean average precision (mAP) sorted by the confidence as

in Figure 3. Table 2 lists the final semi-supervised recogni-

tion accuracy. We can see that both unsupervised methods

generalize much better than the supervised bootstrapping

method most of the time, until the labeled set is relatively

large with 4000 labels. This confirms our claim that unsu-

pervised transfer is the key for label propagation. For the

unsupervised methods, non-parametric metric learning per-

forms better than colorization, probably because it explic-

itly learns a similarity metric. We also include the result of

the naive baseline which trains from scratch using limited

labeled data without label propagation.

Study of different label propagation schemes.

Given the pretrained metrics, there are various ways to

transfer the metrics. We consider three possible solutions:

1. no propagation, only transfer network weights.

2. nearest neighbor metric transfer.

3. spectral metric transfer.

The first baseline is a common practice, which basically

transfers the network weights and then finetunes on the la-

beled data. The second is much weaker than the third be-

cause it only considers one-hop distances, without taking

into account the similarities between unlabeled pairs.

The results are summarized in Table 1 and Table 2. Com-

pared to the state-of-the-art performance in Table 4, even

a simple finetuning approach outperforms the state-of-the-

arts when the labeled data is small. For example, by finetun-

ing from instance discrimination, we achieve 62.46% with

250 labeled data, significantly outperforming the state-of-

the-art result of 47.07%. This suggests that unsupervised

pretraining generally improves semi-supervised learning.

When unlabeled data is used for label propagation, met-

ric transfer can be much stronger than just weight trans-

fer, improving the performance to 71.26% with 250 labeled

data. It is also evident that the spectral clustering method

performs better than weighted nearest neighbors because of

its globalization behavior.

Scalability to large network architectures.

In contrast to prior methods which face over-fitting is-

sues, our approach can easily scale to larger network ar-

chitectures. Here, we keep all the learning parameters un-

changed, and experiment with a wider version of Wide-

ResNet-28 with a width factor of 10. We consider a state-

of-the-art method mean-teacher [36] for comparison. In Ta-

ble 3, mean-teacher only shows a limited improvement of

about 2 − 3%. Our method enjoys consistently significant



Table 4: Ours is complementary to all prior state-of-the-art

methods on CIFAR10.

Num Labeled 250 4000

Ours 71.26 84.52

Pi Model [20] 47.07 84.17

+ Ours 74.90 85.32

Mean Teacher [36] 45.49 84.38

+ Ours 74.54 85.45

VAT [27] 44.83 86.79

+ Ours 78.34 86.93

VAT+EM [27] 46.29 86.96

+ Ours 78.63 87.20

Table 5: Semi-supervised classification results on the Ima-

geNet dataset.

Num Labeled 1% 2% 4%
Scratch 22.4 40.2 58.2

Finetune 39.2 52.8 65.2

Ours 58.6 66.3 72.4

gains from a larger network on all the testing scenarios. It

achieves an unprecedented 73.13% accuracy using only 50
labels with Wide-ResNet-28-10.

Comparison to the state-of-the-art on CIFAR10.

We compare our approach to state of the art methods in

Figure 4. Ours is particularly stronger when the labeled set

is small, but this advantage diminishes as the labeled set

grows. However, as most prior approaches focus on self-

ensembling, ours is orthogonal to them. We examine the

complementarity of our method by combining it with each

of the prior approaches. To do so, we generate our most

confident 10K pseudo labels (about 20% of the full data),

and use it as ground-truth for the other algorithms. For

fair comparisons, we run public code1 with our generated

pseudo labels. In Table 4, combining our approach leads to

improved performance for all of the methods.

Comparison to the state-of-the-art on ImageNet.

We notice that few literature report semi-supervised clas-

sification performance on ImageNet consistently. In this

paper, we consider finetuning from an unsupervised model

trained with instance discrimination [41] as our baseline.

We vary the number of labeled examples from 1% to 4% of

the entire ImageNet. We use ResNet-50 to pretrain the un-

supervised model, and split the dataset into 10 chunks for

spectral clustering to speed up the computation. In Table 5,

finetuning from unsupervised model significantly improves

upon training from scratch, and our label propagation ap-

proach outperforms the finetuning approach. Notable, ours

is 18% better when 1% labeled data is available.

1https://github.com/brain-research/realistic-ssl-evaluation

4.2. Transfer Learning

We also examine whether the proposed metric transfer

can work across different data distributions. We pretrain

the metric on the source S ImageNet, and transfer it to the

unlabeled U CIFAR10. For this, we study supervised and

unsupervised pretraining for transfer learning.

Transferring from labeled ImageNet. We resize Ima-

geNet images to a resolution of 32 × 32 and pretrain the

metric on them by supervised learning. We keep the net-

work architecture WideResNet-28-2 for meaningful com-

parison with the semi-supervised settings in Sec 4.1. This

obtains an accuracy of 42% on the ImageNet validation set.

Then we transfer the metric to CIFAR10. This transfer is

conducted by network finetuning and by metric propaga-

tion. In Table 6, we can see that simple network finetuning

can reach the best results obtained in the semi-supervised

settings of the previous subsection. By using label propa-

gation with spectral clustering, we can observe a large im-

provement, yielding 86.07% accuracy with just 250 labeled

images. This illustrates the generality of our metric transfer

approach, where supervised transfer can also take advan-

tage of unlabeled data to improve generalization.

Transferring from unlabeled ImageNet. Instead of su-

pervised training which encodes prior knowledge about ob-

ject categories, we treat ImageNet images as unlabeled and

repeat the previous experiment. Different from the ear-

lier unsupervised experiments, this setting involves substan-

tially more unlabeled data, which could potentially lead to

a better unsupervised metric. However, our results sug-

gest otherwise. When propagating to CIFAR10, the unsu-

pervised metric learned from ImageNet is inferior to the

metric learned from CIFAR10. This is possibly due to

the data distribution gap between CIFAR10 and ImageNet.

Nevertheless, our unsupervised transfer from ImageNet still

surpasses the state-of-the-art in the semi-supervised setting

when labeled samples are limited.

4.3. Few-Shot Recognition

Few-shot recognition targets a more challenging sce-

nario, the generalization across object categories (a.k.a.

open-set recognition). Originally, the problem is defined

with numerous labeled examples in a source dataset, and

few examples in the target categories. Recent works [30, 9]

also explore the scenario where extra unlabeled data is

available for this problem. This fits into our framework for

studying label propagation via metric transfer.

We follow the protocols in [30] for conducting the ex-

periments, because it introduces distractor categories in the

unlabeled set. The experiments are evaluated on the mini-

ImageNet dataset, consisting of a total of 100 categories,

with 64 for training, 16 for validation and 20 for testing.

Images in each category are split into 40% as labeled, and



Table 6: Transfer learning from ImageNet to CIFAR10.

Metric pretraining Transfer method 50 100 250 500 1000 2000 4000 8000

Unsupervised
Network finetuning 28.92 34.56 57.14 67.54 76.20 80.92 85.01 88.74

Spectral 44.30 46.51 61.29 68.31 72.61 77.86 84.00 88.19

Supervised
Network finetuning 54.95 61.88 73.01 78.43 84.52 88.79 91.44 93.05

Spectral 77.71 85.34 86.07 86.91 88.27 89.93 91.22 93.49

Table 7: Few-shot recognition on Mini-ImageNet dataset.

Method Fintune
Unlabel 5-way Classification

data 1-shot 5-shot

NN baseline [37] No No 41.1±0.7 51.0±0.7

MAML [8] Yes No 48.7±0.7 63.2±0.9

Meta-SGD [23] No No 50.5±1.9 64.0±0.9

Matching net [37] Yes No 46.6±0.8 60.0±0.7

Prototypical [35] No No 49.4±0.8 68.2±0.7

SNCA [40] No No 50.3±0.7 64.1±0.8

Soft k-means [30] Yes Yes 50.4±0.3 64.4±0.2

Our supervised Yes Yes 56.1±0.6 70.7±0.5

Our unsupervised Yes Yes 50.8±0.6 66.0±0.5

60% as unlabeled. Training uses only the labeled split in

the training categories. During evaluation, a testing episode

is constructed by sampling few-shot labeled observations

from the labeled split in the testing categories, and all of

the unlabeled images in all the testing categories. A testing

episode requires the model to find useful information in the

unlabeled set to aid recognition from the few-shot observa-

tions. Unlike [30], which includes five distractor categories

in the unlabeled set, we consider all 20 categories in the

testing set, which better reflects practical scenarios. We test

300 episodes and report the results.

We follow prior work [37] by using a shallow architec-

ture with four convolutional layers and a final fully con-

nected layer. Each convolutional layer has 64 channels, in-

terleaved with ReLU, subsampling and a batch normaliza-

tion layer. Images are resized to 84× 84 to train the model.

We use the spectral embedding approach for label propaga-

tion. During online training, we use an initial learning rate

of 0.01 with a total of 30 epochs and decrease the learning

rate to be 5 times smaller after 20 epochs.

Transfer from supervised models. We use a recent super-

vised metric learning approach SNCA [40] as the baseline.

After label propagation and finetuning on the new data, our

supervised propagation obtains a significant boost of 6%
over SNCA. Prior work [30] improves upon its baselines,

but fails to make further improvement because of limited

training data. In Figure 5, we visualize the top retrievals

from the unlabeled set in the one-shot scenario. These re-

trievals not only belong to the same class as the ground

Figure 5: Visualizations of top ranked retrievals from the

unlabeled set given one-shot observations.

truth, but their diversity facilitates a strong classifier.

Transfer from unsupervised models. We also investigate

pretraining the metric without labels, using instance dis-

crimination [41] for learning the metric. Surprisingly, in

Table 7, our unsupervised propagation obtains better per-

formance than the offline metric learning approach with an-

notations [40], by 0.5% in 1-shot recognition and 2% for

5-shot. This suggests that leveraging unlabeled data in the

target problem may possibly be more beneficial than using

labeled samples in the source domain.

5. Discussions

• The effectiveness of label propagation depends heavily

on the learned metric, so advances in metric learning

should lead to improved results. Since the prevalent

pretraining methods in deep learning use softmax clas-

sification, we hope to draw more attention to pretrain-

ing networks with metric learning.

• Currently, we study metric pretraining and label prop-

agation separately. It may be beneficial to formulate

them jointly in an end-to-end framework.

• Our algorithm takes advantage of the unlabeled dataset

U to create more training data. The overall perfor-

mance is affected by the relevance of image content

in the unlabeled set U to that of the target T , as this

impacts the ability to effectively propagate labels.
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