
Picking groups instead of samples: A close look at Static Pool-based Meta-Active

Learning

Ignasi Mas

Universitat Politècnica de Catalunya

Barcelona

i.masmend@gmail.com

Josep Ramon Morros

Universitat Politècnica de Catalunya

Barcelona

ramon.morros@upc.edu

Verónica Vilaplana

Universitat Politècnica de Catalunya

Barcelona

veronica.vilaplana@upc.edu

Abstract

Active Learning techniques are used to tackle learning

problems where obtaining training labels is costly. In this

work we use Meta-Active Learning to learn to select a sub-

set of samples from a pool of unsupervised input for further

annotation. This scenario is called Static Pool-based Meta-

Active Learning. We propose to extend existing approaches

by performing the selection in a manner that, unlike previ-

ous works, can handle the selection of each sample based

on the whole selected subset.

1. Introduction

In a standard supervised classification problem, the sys-

tem learns from several labeled samples from each class

during the training stage, in order to classify new samples at

test time. However, annotated data is not always available.

Active Learning (AL) suggests a scenario where a specific

cost is associated to labeling. This is a common setting in

cases such as a company that has to pay some employees

for labeling data.

On the other hand, Few-Shot Learning [31] suggests an-

other scenario where the system is limited to train over a few

samples per class. The extreme case is One-Shot Learning,

where only one sample per class is available for training.

There are several ways to approach the Few-Shot Learning

task. Methods include getting more data (e.g. multimodal

learning [3], domain adaptation [30] or data augmentation,

depending on the available resources) or learning from data

on similar problems.

Each Few-Shot problem can be solved using classical su-

pervised learning: given a set of labeled data (the problem

training set), the model is trained and it is expected to gen-

eralize on new samples. Later, the performance is evaluated

with different samples of the same problem (its test set). We

refer to this process as the Learning level.

We may want a system capable to adapt to a variety of

problems for which it has not been specifically trained. One

solution is to present the system several Few-Shot prob-

lems, different from the ones we will solve at test time but

of similar nature. For each of these problems, annotated

data should be available. We can train such a system by

asking it to solve each one of these problems, analyze the

results and update the model so that the error is minimized.

This way, the system can generalize to new problems as it

learns how to learn each problem. This process is named

Meta-Learning because it is performed above the scope of

a particular problem. At this level, there is a meta-training

step (the process described before to adjust the model) and

a meta-test step, to validate the complete system. The meta-

test step consists of applying the system obtained in the

meta-training step to a different set of problems (the meta-

test set) and evaluating the results. The meta-test evalua-

tion is the aggregation of all the single problem evaluations.

We call the process where this pipeline works the Meta-

Learning level.

The cross-over of Meta-Learning and Active Learning

leads to Meta-Active Learning, which suggests the use of

Meta-Learning to solve Active Learning problems at the

Learning level. The AL component that performs the selec-

tion has to be trained as well. Clearly, the learning process

involved here can not be performed at the Learning level

(within the scope of a single problem) because the goal is

to apply the automatic selection to new problems where no

labeled data is available. Instead, a Meta-Leaning approach

described in the above paragraph can be used to teach the

AL component how to select the optimal samples to label.

The scenario where the system selects the samples from

a pool of unlabelled data is called Pool-based Active Learn-

ing, in contrast with the case where samples arrive sequen-

tially without any clue about future samples, that is named

Stream-based Active Learning. One common problem with

Pool-based Active Learning is that in the real world the sys-

tem cannot always ask feedback without restrictions from

the human annotation agent (called Oracle). This problem

can be alleviated by using the so called Batch mode, where a

batch of samples is selected before asking for labels, so that



the selection does not require feedback from the Oracle for

each sample. However, it still relies on a process where the

Oracle is asked several times sequentially. Instead, we will

focus on Static Pool-based Meta-Active Learning, where

the system selects the whole subset of samples before ask-

ing for their labels. Thus, for each problem the Oracle is

asked just once. More insight into the different scenarios is

given in 2.2.

The task of Static Pool-based Meta-Active Learning has

already been studied by Contardo et al. in [6], where each

sample is scored with a probability of being selected. Their

approach allows learning a selection strategy that favors

useful and representative data over deviant examples in a

single step. However, it has some limitations which, de-

pending on the scenario conditions, can be very harmful.

We focus on the issue that each sample is selected indepen-

dently (sample-focused), and in further sections we explain

why it is an issue.

In our work, we propose a redefinition of the selection

strategy to make it group-focused as opposed to sample-

focused. This means that it should select each sample de-

pending on the rest of the selected samples. This consid-

eration should give the capacity to handle a final subsam-

pling of the training data in a way that considers all possi-

ble groups of selection, so the probability is estimated per

group instead of per sample.

We study the improvement of this method over the sin-

gle step estimation. Furthermore, we provide results on the

Omniglot dataset [15] and reason about the performance of

our approach on a computer vision challenge.

2. Related work

2.1. Meta-Learning

Meta-Learning has been studied from many different ap-

proaches. Santoro et al. [21] proposed to solve the One-

Shot Learning problem from a Memory perspective, follow-

ing the idea presented by Graves et al. [11]. Later, the idea

of metric learning introduced a new family of algorithms

for Meta-Learning [29, 23, 14, 24]. Another approach sug-

gested to find a proper parameter initialization to generalize

enough for all the problems, proposed by Finn et al. [7]

and extended by several works [17, 8, 33]. The last family

of methods follows the idea of learning a proper optimizer

[1, 18, 16].

2.2. Active Learning

All Active Learning problems share the property of hav-

ing a cost assigned to the labels. With that in mind, we can

define two scenarios.

The first one (Stream-based Active Learning) corre-

sponds to the case where an agent receives data in an online

manner (i.e. samples arrive consecutively and there is no

clue about future samples) and has to decide either to label

it or not. Many approaches have been proposed for solving

this case [9, 20].

The second scenario (Pool-based Active Learning) gives

the agent access to all the (unsupervised) data at once. De-

pending on the specific conditions of the problem different

subtypes of Pool-based Active Learning can be defined. On

a Static scenario, the selection is made at once before asking

the labels to the Oracle. On a Sequential scenario, the sys-

tem gets feedback from the Oracle for part of the selected

subset before continuing the selection. This difference is

crucial since the second scenario is not always feasible, as

stated in [12]. Few Static Pool-based solutions have been

proposed yet [34].

In Sequential Pool-based Active Learning, two modes

can be defined: Single-instance mode [5] or Batch mode

[13, 10]. In the first one each step is performed over a single

sample while in the second one it is applied over a batch.

2.3. Meta-Active Learning

Meta-Active Learning still has few proposals. Most of

them make use of Reinforcement Learning to guide the

learning across Learning problems by exploring the perfor-

mance when each given subset is selected. There are works

for both the Stream-based scenario [32] and the Pool-based

Meta-Active one in all its settings (specified in 1): Sequen-

tial Single-instance mode [2], Sequential Batch mode [19]

and finally the Static scenario (where the subset is selected

before labeling it). This last one was studied by Contardo

et al. [6], and it is the focus of our work.

3. Method

3.1. Scenario

From now on we will differentiate between two levels,

named Meta-Learning and Learning. Each Active Learning

problem is solved at the Learning level (it learns from its

available data), while the pipeline which updates the model

is driven in the Meta-Learning level (through different Ac-

tive Learning problems).

The detailed process of a single problem at the Learning

level is illustrated in Figure 1, which uses as an example a

binary classification problem between monkeys and fishes.

A generic problem pi is specified as follows:

• K classes to classify.

• N samples belonging to any of the K classes (N sam-

ples in total, without restrictions on how they are dis-

tributed along classes), which build the labeled train-

ing set Strain and its unlabeled version Utrain.

• M samples belonging to any of the K classes, that

build the labeled set Stest, which we split between its

unlabeled set Utest and its labels Ytest (for evaluation).



Figure 1: Example of a problem at the Learning level (binary classification between monkeys and fishes). Data samples are

split into two sets, training and test, and embedded into an F-feature space (F = 2). The budget allows picking two samples

(B = 2) from the training set, which are sent to an Oracle that returns their true labels, creating the supervised training set. A

prediction algorithm (1-NN classifier) is applied to the test set based on the supervised training set. Most of the predictions

result in hits, in blue, and a single fail, in red.

• A given budget B that determines the number of sam-

ples that we will be able to label from the unlabeled

training set Utrain, to get a labeled subset D.

As Figure 1 shows, to solve an Active Learning problem

the process below is followed:

1. Select B samples from the represented Utrain set and

send them to the Oracle who should return the labeled

subset D.

2. Predict classes for all samples in Utest based on D, giv-

ing Ŷtest.

3. Evaluate Ŷtest against Ytest (true labels).

The pipeline at the Meta-Learning level is depicted in

Figure 2. In order to build this pipeline, we need a set of

classes C, where for each class a pool of samples and its

associated labels are available. Ideally, at a high level, the

classes should be uniformly distributed according to what is

expected at production (e.g. if we expect to work on prob-

lems of classification of animals in general, classes for dif-

ferent animals should be used, trying to cover all the diver-

sity of animals, instead of classes of animals and classes of

cars).

The idea is to build a pipeline where several Learning

problems guide the (meta-)training of the algorithm and al-

low a (meta-)evaluation of it. The process is driven through

the following steps:

1. Split classes in C into Cmetatrain and Cmetatest.

2. Generate two (meta-)sets of problems for both meta-

training and meta-test stages, Pmetatrain and Pmetatest.

3. Generate each problem pi in the following way:

(a) Select K classes from either Cmetatrain or Cmetatest.

(b) Generate train and test sets Strain and Stest by

picking N and M samples and their respective

labels from the K classes. Furthermore, create

their unlabeled versions Utrain and Utest (by ig-

noring their labels). Preserve the test labels Ytest.

(c) Specify the budget B and number of classes K.

This setting allows us to (meta-)train by, at each epoch,

randomly selecting a problem from Pmetatrain, using the

model to solve it and evaluating results. Those results are

then used to update the model before the new epoch.

At (meta-)test time the process is repeated using the

problems in Pmetatest set to evaluate the results. This time,

the model is not updated.

Note that we have not specified any model or algorithm

for any step on the learning problem, we even ignored which

kind of update is applied to the model or which results are

used to do it. That is because the scope of this section is just

to state the scenario to work on.

3.2. Sample-focused method

In [6] the model is split in 3 parts: Representation Model

(RM), Selection Model (SM) and Prediction Model (PM).

The Representation Model finds a common F -feature

space to embed samples for both SM and PM, and it is

learned through the Meta-training (meta-)stage alongside

other components.

The Selection Model gets UR
train and should return D

from the Oracle. Actually, [6] suggests a slight variation

of that, where the SM returns a probability distribution α

for selecting the samples in UR
train as a Multinomial distribu-

tion where
∑N

i=1 αi = 1. Furthermore, in the Meta-training



(a) Iterative pipeline (b) Unrolled version of the pipeline

Figure 2: Pipeline followed to guide the Meta-Learning process. At each epoch, a problem like the one represented in

Figure 1 is presented and the model updates based on the results it gets. Note that at each epoch the presented problem has,

for both the training and test sets, samples from a different combination of classes, while within the problem both sets have

different samples from the same combination of classes. Furthermore, there is no class overlapping between the classes in

the Meta-training and Meta-test (meta-)sets.

(meta-)stage the SM also returns the possible samplings Dα

given a budget B. On the other hand, on the Meta-test

(meta-)stage it just returns the B samples with highest prob-

ability in α, getting DαMAX
. In [6] the SM is implemented

using a bidirectional GRU [4] since the input is considered

a sequence of samples. We will discuss about the conve-

nience of this choice in the following sections. This SM is

learned alongside the RM, through the Learning problems

in the Meta-training (meta-)stage. The group of all possible

subsamplings can be represented as Dα = {D1
α, D

2
α, ...}

where each Dj
α is a single subsampling.

The Prediction Model gets both the represented unla-

beled test set UR
test and a labeled set Dj

α and predicts the

classes of the test set Ŷ
j
test. More concretely, the classifi-

cation of a test sample is performed by assigning the class

with the maximal sum of metric similarities between the test

sample and the train samples belonging to this class.

Since this PM does not require learning, only the RM

and SM are learned, and they are trained jointly during

the Meta-training (meta-)stage. The loss which updates the

model is a Policy Gradient [26] that explores all the sam-

pling space Dα from the distribution α and their rewards

(based on the error of their prediction). The use of Pol-

icy Gradient to evaluate the whole probability distribution is

justified because single samplings are not differentiable and

therefore we cannot backpropagate from them. The loss is

computed as follows:

L =
∑

j

−log prob(Dj
α)r

j (1)

where r is the reward of a given sampling computed as

r = −d(Ŷtest, Ytest) and d(Ŷtest, Ytest) is the error between

the prediction Ŷtest over the true labels Ytest. On the other

hand, log prob(Dj
α) = log(prob(Dj

α)) and the probabil-

ity distribution vector α can determine the probability of a

given sampling, i.e. prob(Dj
α). This prob(Dj

α) can be com-

puted from the probability of the individual samples defined

as αi. For example, for a budget B = 2, the probability of

a sampling of the first and second sample may be (α1α2).

This loss only gets high values on high rewards with low

probabilities, so it tends to make the most profit on high

rewards by penalizing the behavior that gives them a low

probability.



(a) Selecting both frontier samples

the prediction works optimally

(b) When selecting other symmet-

rical samples the performance is

also good

(c) Selecting non-equivalent sam-

ples for each class is not optimal,

even if they work fine in other com-

binations

(d) Selecting two instances of the

same class assigns that class to all

the predicted samples which is a

really bad performance

Figure 3: Example of the effect of each kind of selection

using a binary classification problem (K = 2, illustrated

as crosses and circles) with a budget B = 2. In grey and

blue there are the training samples, being blue the selected

ones, while green and red are predicted test samples, green

for hits and red for misses.

3.3. Limitation of Sample-focused method

The previous method is useful to avoid getting undesired

samples, such as outliers, that will result in a high error.

However, it only uses the probability of selecting each

individual sample independently of the rest of the selected

samples. Nevertheless, a single sample can work very dif-

ferently depending on the rest of the selected samples, as

illustrated in Figure 3. There is one clear case of these limi-

tations, which is when all the selected samples are from the

same class. Even if the samples are very representative of

their class, the result will obviously be very bad since all the

test samples will be predicted as the same class.

3.4. Proposed methods

3.4.1 General architecture

We defined a method following the same pipeline as in 3.2.

However, we extended it to overcome the issues mentioned

in 3.3. Unlike the Sample-focused method, which just de-

fines a single probability distribution for samples, we pro-

pose two ways of handling combinations of samples: the

Iterative method and the Combinatorial method.

• The Iterative method consists of picking the samples

one by one until the budget B is met. Moreover, we ag-

gregate to the SM input the information about which

samples have already been selected. The idea is to

make the selector sensible to the already selected sam-

ples at each moment.

• The Combinatorial method consists of computing a

single probability distribution (as in the method in 3.2),

but unlike the Sample-focused method, this distribu-

tion is computed over combinations of samples. The

length of the computed probability distribution vector

α increases exponentially with the budget B.

3.4.2 Representation model

We used the convolutional part of VGG-16 [22], pretrained

on ImageNet, and we stacked a Fully Connected layer to the

desired F -feature space. We used F = 128.

3.4.3 Selection model

Our main improvements are focused on this component.

The goal is to obtain, from an input vector of N samples

(vectors of size F ), the probability distribution vector α.

For the Iterative method, we append to each input sam-

ple feature vector an additional binary feature indicating

whether it has been already selected or not, thus getting a

(F + 1)-feature vector for each sample. We propose to

scale each embedded feature on the range [−1, 1] and the

new binary feature as {0, F}, getting a vector of N (F +1-

dimensional) samples.

The Combinatorial method receives UR
train and then rep-

resents all possible combinations by just stacking the corre-

sponding B samples for that combination, getting a vector

of NB ((BF )-dimensional) samples. From this vector it

needs to return α as a vector of size NB , being the proba-

bilities of each combination.

As for the component, we need a model that takes a num-

ber of input samples (N vectors of size F + 1 for the Iter-

ative method and NB vectors of size BF ) and returns a

vector α with the same size as the input, where each ele-

ment refers to each input element (sample or combination)

but taking into account the rest of elements in a sequence to

sequence manner [25]. The model selected for this task is

a Bidirectional GRU with a stacked Fully Connected layer

at the end for the resulting features (as in [6]). We also use

Softmax as the activation function. Additionally, the proba-

bility of selecting the samples already selected is set to 0.

There is something more we should take into account

when generating α. The input UR
test is actually a set, not

a sequence, which means that its samples are ordered ran-

domly and for different problems there is no relationship

between their orders. However, Recurrent Neural Networks

are designed to handle sequences. To overcome that issue

we propose one of the solutions that Vinyals et al. suggest

in [28], which is to force an artificial order. We propose

to order the samples according to their distance to a refer-

ence. Among different distances and references that have

been tested, the one that has given us the best results for

the Iterative method is the Euclidean distance to the cen-

troid for the already selected samples. For the Combinato-

rial method, ordering to the centroid of the already selected



samples is not possible (since selection is done in a single

step) so we considered ordering by Euclidean distance to

the UR
test centroid.

3.4.4 Prediction model

We have based the PM on the distances between training

and test vectors (in our case, Euclidean distance) as in [6].

More concretely, we have computed the probability to be-

long to each class as follows:

ŷ
cj
testi

=

∑
xtraink

∈Dα,ytraink
=cj

dist(xtraink , xtesti)
−1

∑
l

∑
xtraink

∈Dα,ytraink
=cl

dist(xtraink , xtesti)
−1

(2)

3.4.5 Loss

Policy Gradient requires the exploration of all possible sam-

plings at (meta-)training time. In the Iterative method, the

probability distribution is computed for each selected sam-

ple in an iterative way (given the previously selected sam-

ples). For this reason, if all samplings are explored at each

selected sample, a probability distribution needs to be com-

puted for each possible previous sampling. The probability

of a final sampling is the product of the probabilities of the

selected sample in each selection step in B.

We propose to compute the reward as a value that de-

creases as the error increases in an exponential way, where

r = e−d(Ŷtest,Ytest). We use Cross Entropy as the error metric

since it is a typical classification loss (so d(Ŷtest, Ytest) is the

Cross-Entropy error between Ŷtest and Ytest).

3.4.6 Training procedure

The procedure to guide the Meta-training consists of com-

puting the loss for each epoch and updating the model with

it. Note that the loss does not depend just on the quality

of the model but also on the difficulty of the specific ran-

dom problem, which can undesirably guide the update. To

overcome this issue we propose to use several problems per

epoch to smooth the randomness of the epoch. We use 50
problems per epoch. We just need to sum or average the

losses of all the problems.

As already mentioned, the model is composed of RM,

SM, and PM. However, PM is not trainable, so the opti-

mizer will actually update RM and SM. We propose to pre-

train RM for classification problems (through plain Meta-

Learning) and then freeze it and just train the SM in the

Meta-Active Learning setting.

4. Experimental validation

4.1. Experiments setting

Omniglot [15] is a dataset of handwritten characters

specifically created for Few-Shot Learning. It consists of

50 alphabets.

Each alphabet is a group of characters, which are the

actual classes. We split the alphabets into three disjoint

(meta-)sets: (meta-)training, (meta-)validation and (meta-

)testing alphabets. The method described in 3.1 is used:

we construct several Learning problems to guide the (meta-

)training of the algorithm and allow a (meta-)evaluation.

For each (meta-)set, problems are generated by picking one

random alphabet and selecting K random classes from it.

The problems consist in classifying samples from these K

classes. For each problem psi , we create the training and test

sets with samples from the selected classes.

The key is that any alphabet will not be found in more

than one (meta-)set, but the problems will be of similar na-

ture: classification problems of K characters on the same

alphabet, but with a random alphabet on each problem.

Using 30 (meta-)training, 10 (meta-)validation and 10

(meta-)test alphabets, we defined a total of 4000 (meta-

)training, 500 (meta-)validation and 500 (meta-)test prob-

lems of K = 2 and B = 2. That means that we are ac-

tually building a Meta-Active Learning setting where we

want to learn to convert Active Learning problems to Bi-

nary One-Shot Learning problems and solve them through

Meta-Learning.

Furthermore, we define N = 15 (15 unlabeled training

samples from which we want to label 2 of them) and M =
30 (30 test samples to predict).

With that setting we compute two metrics: Multi-class

ratio, which tells how many problems (relatively) have been

solved selecting samples from different classes (a metric

that makes sense for binary One-Shot Learning classifica-

tion problems, i.e. K = 2, B = 2) and final accuracy.

4.2. Results

For fair comparison, we have trained all the approaches

on the same benchmark (meta-)training set and evaluated

on also the same (meta-)testing set, where the set of (meta-

)training and (meta-)testing (and also meta-validation)

problems fulfill that Ptrain ∩ Ptest = 0. The results ob-

tained for the different approaches on the evaluation over

the (meta-)testing set are presented in table 1.

First, as a worst-case scenario, we have tested a system

where the Active Learning component selects the samples

randomly (row 1). We have also made one experiment eval-

uating all possible selections (over the samples represented

with the pretrained RM) and keeping the best one. The

rest of the experiments (corresponding to the proposed ap-

proaches) are on this list:



Multi-class ratio Mean accuracy

1 Random selection 0.246 0.5385

2 Sample-focused method (previous) 0.416 0.4981

3 Iterative method (unordered) 0.278 0.5373

4 Iterative method (ordered) 0.784 0.6473

5 Combinatorial method (ordered) 0.374 0.5615

6 Best selection 0.998 0.8675

Table 1: Results for each approach, explained in 4.2

• Sample-focused method: We have replicated the

method defined by [6].

The results are presented in row 2. Comparing with

the Random Selection (row 1), we see that there is no

increase in final accuracy even having a higher Multi-

class ratio, which shows that even if we pick samples

from different classes we can have bad results (e.g. ex-

ample c in Figure 3).

• Iterative method, unordered samples: In this ex-

periment, we evaluate the Iterative method described

in 3.4, without sample order.

The results are presented in row 3. There is a slight

improvement in accuracy. Something also noticeable

is the decrease of the Multi-class ratio. This could be

caused simply because, without order, the algorithm

still does not find a proper behavior.

• Iterative method, ordered samples: At this point, we

study the effects of imposing an order to the input of

the SM as described in 3.4. As already told, this or-

der consists of Euclidean distance to the previously se-

lected samples centroid.

The results are presented in row 4. Here we note a

substantial improvement on both Multi-class ratio and

on final accuracy. That is because the order helps the

SM to better handle the selection depending on how far

the samples are from the already selected ones. This

ordering gets samples that tend to be from different

classes (although not always, it is a difficult unsuper-

vised task).

• Combinatorial method: Finally, we have experi-

mented with the method explained in 3.4. In this case,

we force the order at the input as the Euclidean dis-

tance to the pool centroid (there is no other possible

origin for this method).

The results presented in row 5 show a decrease for both

the Multi-class and for the final accuracy with respect

to the Iterative method with order. However, the reason

may be that the order considers the pool centroid as

the origin. This ordering has also been used with the

Iterative method, with poor results.

5. Conclusions

In this work, we face the problem of Static Pool-based

Active Learning as a Meta-Active Learning problem. We

present two main contributions, and we improve the previ-

ously defined approaches within the same scenario.

The first one is making the selection Group-focused

(within the Static scenario), thus giving the system the ca-

pacity to propose optimal groups of samples (i.e. making

the selection optimal as a whole). We propose two methods

here: the Iterative method and the Combinatorial method.

We prove that both outperform the Sample-focused method.

The second main contribution consists in enforcing an

artificial order to the pool of samples. We suggest ordering

by distance, to the centroid of either the whole unsupervised

pool or the already selected subset as in [28]. We prove that

the order helps the SM to find some patterns.

In the end, we get some results that encourage us to fol-

low the proposed ideas since we show that they have an

effect on the performance in the considered scenario. How-

ever, there is still a need to overcome the stated limitations.

The next logical step should be using an Attention RNN

(a concept introduced in [27]), which is a more robust ap-

proach that can be better than the enforced artificial order.

6. Acknowledgements

This work has been developed in the framework of

project TEC2016-75976-R, financed by the Spanish Minis-

terio de Economı́a y Competitividad and the European Re-

gional Development Fund (ERDF)

References

[1] M. Andrychowicz, M. Denil, S. Gómez, M. W. Hoffman,

D. Pfau, T. Schaul, B. Shillingford, and N. de Freitas. Learn-

ing to learn by gradient descent by gradient descent. In D. D.

Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett,

editors, Advances in Neural Information Processing Systems

29, pages 3981–3989. Curran Associates, Inc., 2016.



[2] P. Bachman, A. Sordoni, and A. Trischler. Learning algo-

rithms for active learning. In D. Precup and Y. W. Teh, ed-

itors, Proceedings of the 34th International Conference on

Machine Learning, volume 70 of Proceedings of Machine

Learning Research, pages 301–310, International Conven-

tion Centre, Sydney, Australia, 06–11 Aug 2017. PMLR.

[3] T. Baltrušaitis, C. Ahuja, and L.-P. Morency. Multimodal

machine learning: A survey and taxonomy. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 41:423–

443, 2017.

[4] K. Cho, B. van Merrienboer, . Glehre, D. Bahdanau,

F. Bougares, H. Schwenk, and Y. Bengio. Learning phrase

representations using rnn encoder-decoder for statistical ma-

chine translation. In A. Moschitti, B. Pang, and W. Daele-

mans, editors, EMNLP, pages 1724–1734. ACL, 2014.

[5] T. Collet and O. Pietquin. Active learning for classification:

An optimistic approach. 12 2014.

[6] G. Contardo, L. Denoyer, and T. Artières. A Meta-Learning

Approach to One-Step Active-Learning. In International

Workshop on Automatic Selection, Configuration and Com-

position of Machine Learning Algorithms, volume 1998 of

CEUR Workshop Proceedings, pages 28–40, Skopje, Mace-

donia, Sept. 2017. CEUR.

[7] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-

learning for fast adaptation of deep networks. In D. Pre-

cup and Y. W. Teh, editors, Proc. of the Int. Conference on

Machine Learning, volume 70 of Proceedings of Machine

Learning Research, pages 1126–1135, International Conven-

tion Centre, Sydney, Australia, 06–11 Aug 2017. PMLR.

[8] C. Finn, K. Xu, and S. Levine. Probabilistic model-agnostic

meta-learning. In S. Bengio, H. Wallach, H. Larochelle,

K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Ad-

vances in Neural Information Processing Systems 31, pages

9516–9527. Curran Associates, Inc., 2018.

[9] Y. Freund, H. S. Seung, E. Shamir, and N. Tishby. Selective

sampling using the query by committee algorithm. Mach.

Learn., 28(2-3):133–168, Sept. 1997.

[10] Y. Gal, R. Islam, and Z. Ghahramani. Deep bayesian ac-

tive learning with image data. In Proceedings of the 34th

International Conference on Machine Learning - Volume 70,

ICML’17, pages 1183–1192. JMLR.org, 2017.

[11] A. Graves, G. Wayne, and I. Danihelka. Neural turing ma-

chines, 2014.

[12] Q. Gu, T. Zhang, J. Han, and C. H. Ding. Selective labeling

via error bound minimization. In F. Pereira, C. J. C. Burges,

L. Bottou, and K. Q. Weinberger, editors, Advances in Neu-

ral Information Processing Systems 25, pages 323–331. Cur-

ran Associates, Inc., 2012.

[13] S. Hoi, R. Jin, J. Zhu, and M. Lyu. Semi-supervised svm

batch mode active learning for image retrieval. 06 2008.

[14] G. Koch, R. Zemel, and R. Salakhutdinov. Siamese neural

networks for one-shot image recognition. 2015.

[15] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. Human-

level concept learning through probabilistic program induc-

tion. Science, 350:1332–1338, 2015.

[16] N. Mishra, M. Rohaninejad, X. Chen, and P. Abbeel. A sim-

ple neural attentive meta-learner. In ICLR, 2017.

[17] A. Nichol, J. Achiam, and J. Schulman. On first-order meta-

learning algorithms. ArXiv, abs/1803.02999, 2018.

[18] S. Ravi and H. Larochelle. Optimization as a model for few-

shot learning. In ICLR, 2017.

[19] S. Ravi and H. Larochelle. Meta-learning for batch mode

active learning. In ICLR, 2018.

[20] N. Roy and A. McCallum. Toward optimal active learning

through sampling estimation of error reduction. In ICML,

2001.

[21] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. P.

Lillicrap. One-shot learning with memory-augmented neural

networks. ArXiv, abs/1605.06065, 2016.

[22] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In 3rd Interna-

tional Conference on Learning Representations, ICLR 2015,

San Diego, CA, USA, May 7-9, 2015, Conference Track Pro-

ceedings, 2015.

[23] J. Snell, K. Swersky, and R. Zemel. Prototypical networks

for few-shot learning. In I. Guyon, U. V. Luxburg, S. Ben-

gio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,

editors, Advances in Neural Information Processing Systems

30, pages 4077–4087. Curran Associates, Inc., 2017.

[24] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. S. Torr, and T. M.

Hospedales. Learning to compare: Relation network for few-

shot learning. 2018 IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, pages 1199–1208, 2017.

[25] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence

learning with neural networks. In Proceedings of the 27th

International Conference on Neural Information Processing

Systems - Volume 2, NIPS’14, pages 3104–3112, Cambridge,

MA, USA, 2014. MIT Press.

[26] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Man-

sour. Policy gradient methods for reinforcement learning

with function approximation. In S. A. Solla, T. K. Leen,

and K. Müller, editors, Advances in Neural Information Pro-

cessing Systems 12, pages 1057–1063. MIT Press, 2000.

[27] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,

A. N. Gomez, L. u. Kaiser, and I. Polosukhin. Attention

is all you need. In I. Guyon, U. V. Luxburg, S. Bengio,

H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, edi-

tors, Advances in Neural Information Processing Systems 30,

pages 5998–6008. Curran Associates, Inc., 2017.

[28] O. Vinyals, S. Bengio, and M. Kudlur. Order matters: Se-

quence to sequence for sets. In International Conference on

Learning Representations (ICLR), 2016.

[29] O. Vinyals, C. Blundell, T. Lillicrap, k. kavukcuoglu, and

D. Wierstra. Matching networks for one shot learning. In

D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett,

editors, Advances in Neural Information Processing Systems

29, pages 3630–3638. Curran Associates, Inc., 2016.

[30] M. Wang and W. Deng. Deep visual domain adaptation: A

survey. Neurocomputing, 312:135–153, 2018.

[31] Y. Wang and Q. Yao. Few-shot learning: A survey, 04 2019.

[32] M. Woodward and C. Finn. Active one-shot learning. 02

2017.

[33] J. Yoon, T. Kim, O. Dia, S. Kim, Y. Bengio, and S. Ahn.

Bayesian model-agnostic meta-learning. In S. Bengio,



H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,

and R. Garnett, editors, Advances in Neural Information Pro-

cessing Systems 31, pages 7332–7342. Curran Associates,

Inc., 2018.

[34] K. Yu, J. Bi, and V. Tresp. Active learning via transductive

experimental design. In Proceedings of the 23rd Interna-

tional Conference on Machine Learning, ICML ’06, pages

1081–1088, New York, NY, USA, 2006. ACM.


