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Abstract

Binary Neural Networks (BNNs) show promising progress

in reducing computational and memory costs, but suffer

from substantial accuracy degradation compared to their

real-valued counterparts on large-scale datasets, e.g., Im-

ageNet. In this work we study existing BNN architectures

and revisit the commonly used technique to include scaling

factors. We suggest several architectural design principles

for BNNs, based on our studies on architectures. Guided by

our principles we develop a novel BNN architecture Bina-

ryDenseNet, which is the first architecture specifically cre-

ated for BNNs to the best of our knowledge. In our exper-

iments, BinaryDenseNet achieves 18.6% and 7.6% relative

improvement over the well-known XNOR-Network and the

current state-of-the-art Bi-Real Net in terms of top-1 accu-

racy on ImageNet, respectively. Further, we show the com-

petitiveness of our BinaryDenseNet regarding memory re-

quirements and computational complexity.

https://github.com/hpi-xnor/BMXNet-v2

1. Introduction

Convolutional Neural Networks (CNNs) have achieved

state-of-the-art on a variety of tasks related to computer vi-

sion, for example, classification [19], detection [7], and text

recognition [17]. By reducing memory footprint and accel-

erating inference, there are two main approaches which al-

low for the execution of neural networks on devices with

low computational power, e.g., mobile or embedded de-

vices: a CNN can be compressed through compact net-

work design [12, 15, 32] or by avoiding the common us-

age of full-precision floating point weights and activations,

which use 32 bits of storage. Instead, quantized floating-

point numbers with lower precision (e.g. 4 bit of storage)

[33] or even binary (1 bit of storage) weights and activa-

tions [14, 21, 24, 25] are used in these approaches. By us-

ing binary weights and inputs a BNN can achieve up to 32×
memory saving and 58× speedup on CPUs by representing

both weights and activations with binary values [25]. How-

ever, they still suffer from noticeable accuracy degradation.

Previous approaches focused on reducing quantization

errors by using approximation methods [25], scaling fac-

tors [25], multiple weight/activation bases [21], fine-tuning

a full-precision model [24], multi-stage pre-training [24], or

custom gradients [24] (a detailed review of related work can

be found in Section 2). These works used well-known real-

valued network architectures such as AlexNet, GoogLeNet

or ResNet for BNNs without thorough explanation or ex-

periments on the design choices. However, they do not

answer the simple yet essential question: Which architec-

tural design principles are essential for efficient and accu-

rate BNNs?

Even though large breakthroughs of the field of full-

precision CNNs came from designing or discovering new

architectures, e.g., ResNet [10] or NASNet [36], not much

work has explored the direction of designing an architecture

optimal for BNNs. To approach the subject, we first revisit

the details of BNNs and study how previous work utilized

the ResNet architecture (see Section 3).

Following these studies, we suggest architectural de-

sign principles and demonstrate them by designing a new

BNN architecture BinaryDenseNet (see Section 4). In our

comparison to previous BNNs, we show that our Bina-

ryDenseNet achieves state-of-the-art regarding the general

evaluation measures for new architectures (which have been

used in previous work [10, 24, 36]): accuracy, model size,

and number of operations (see Section 5). Further, we con-

clude our work in Section 6 with a future outlook.

Summarized, our main contributions in this paper are:

• We empirically and theoretically study previous archi-

tecture design choices and the usage of scaling factors.

• We suggest several general design principles for BNNs

and further propose a new BNN architecture Binary-

DenseNet, which significantly surpasses all existing 1-

bit CNNs for image classification.

• To guarantee the reproducibility, we contribute to an

open source framework for BNN/quantized NN. We

share code and models implemented in this paper for

classification and object detection. Additionally, we

implemented the most influential BNNs including [14,

21, 24, 25, 33] to facilitate follow-up studies.



Table 1: A general comparison of the most related methods to this work. Essential characteristics such as value space of

inputs and weights, numbers of multiply-accumulate operations (MACs), numbers of binary operations, theoretical speedup

rate and operation types, are depicted. The results are based on a single quantized convolution layer from each work. β and

α denote the full-precision scaling factor used in proper methods, whilst m, n, k denote the dimension of weight (W ∈ R
n×k)

and input (I ∈ R
k×m). The table is adapted from [30].

Methods Inputs Weights MACs Binary Operations Speedup Operations

Full-precision R R n×m×k 0 1× mul,add

BC [3] R {−1, 1} n×m×k 0 ∼ 2× sign,add

BWN [25] R {−α, α} n×m×k 0 ∼ 2× sign,add

TTQ [35] R {−αn, 0, αp} n×m×k 0 ∼ 2× sign,add

DoReFa [33] {0, 1}×4 {0, α} n×k 8×n×m×k ∼ 15× and,bitcount

HORQ [20] {−β, β}×2 {−α, α} 4×n×m 4×n×m×k ∼ 29× xor,bitcount

TBN [30] {−1, 0, 1} {−α, α} n×m 3×n×m×k ∼ 40× and,xor,bitcount

XNOR [25] {−β, β} {−α, α} 2×n×m 2×n×m×k ∼ 58× xor,bitcount

BNN [14] {−1, 1} {−1, 1} 0 2×n×m×k ∼ 64× xor,bitcount

Bi-Real [24] {−1, 1} {−1, 1} 0 2×n×m×k ∼ 64× xor,bitcount

Ours {−1, 1} {−1, 1} 0 2×n×m×k ∼ 64× xor,bitcount

2. Related work

In this section, we roughly divide the recent efforts for bi-

narization and compression into three categories: (i) com-

pact network design, (ii) networks with quantized weights,

(iii) and networks with quantized (or binary) weights and

activations.

Compact Network Design. This sort of methods uses full-

precision floating point numbers as weights, but reduce the

total number of parameters and operations through compact

network design, while minimizing loss of accuracy. The

commonly used techniques include replacing a large portion

of 3×3 filters with smaller 1×1 filters [15]; using depth-

wise separable convolution to reduce operations [12]; and

utilizing channel shuffling to achieve group convolutions in

addition to depth-wise convolution [32]. These approaches

still require GPU hardware for efficient training and infer-

ence. A strategy to accelerate the computation of all these

methods for CPUs has yet to be developed.

Quantized Weights and Real-valued Activations. Recent

efforts from this category, for instance, include BinaryCon-

nect (BC) [3], Binary Weight Network (BWN) [25], and

Trained Ternary Quantization (TTQ) [35]. In these works,

network weights are quantized to lower precision or even

binary. Thus, considerable memory saving with minimal

accuracy loss has been achieved. But, no noteworthy accel-

eration can be obtained due to the real-valued inputs.

Quantized Weights and Activations. On the contrary, ap-

proaches adopting quantized weights and activations can

achieve both compression and acceleration. Remarkable

attempts include DoReFa-Net [33], High-Order Residual

Quantization (HORQ) [20] and SYQ [6], which reported

promising results on ImageNet [4] with 1-bit weights and

multi-bits activations.

Binary Weights and Activations. BNN is the extreme

case of quantization, where both weights and activations

are binary. Hubara et al. proposed Binarized Neural Net-

work (BNN) [14], where weights and activations are re-

stricted to +1 and -1. They provide efficient calculation

methods for the equivalent of matrix multiplication by us-

ing xnor and bitcount operations. XNOR-Net [25] im-

proved the performance of BNNs by introducing a channel-

wise scaling factor to reduce the approximation error of

full-precision parameters. ABC-Nets [21] used multiple

weight bases and activation bases to approximate their full-

precision counterparts. Despite the promising accuracy im-

provement, the significant growth of weight and activation

copies offsets the memory saving and speedup of BNNs.

Wang et al. [30] attempted to use binary weights and

ternary activations in their Ternary-Binary Network (TBN).

They achieved a certain degree of accuracy improvement

with more operations compared to fully binary models. In

Bi-Real Net, Liu et al. [24] proposed several modifications

on ResNet. They achieved state-of-the-art accuracy by ap-

plying an extremely sophisticated training strategy that con-

sists of full-precision pre-training, multi-step initialization

(ReLU→leaky clip→clip [23]), and custom gradients.

Table 1 gives a thorough overview of the recent efforts

in this research domain. We can see that our work follows

the most straightforward binarization strategy as BNN [14],

that achieves the highest theoretical speedup rate and the

highest compression ratio. However, in contrast to previous

work, we directly train a binary network from scratch with a

standard training strategy and focus on the understanding of

previous architectures and design principles for new binary

architectures.



3. Study on Previous Approaches

In this section, to ease the understanding, we first provide

a brief overview of the major implementation principles of

a binary layer. Afterwards, we study the previously used

ResNet with regards to binary neural networks. We show

that the architectural decision to leave certain layers in full-

precision is essential for accurate BNNs on complex tasks.

The findings from this study motivates us to explore other

effective architectural solutions for creating accurate BNNs.

Furthermore, we revisit scaling factors [20, 21, 25, 29, 30,

33, 35] a commonly used techniques in BNNs. Since we

did not observe accuracy gain as expected, we analyze why

scaling might not be as effective as previously presented and

provide empirical proof.

3.1. Implementation of Binary Layers

We apply the sign function for binary activation, thus trans-

forming floating-point values into binary values:

sign(x) =

{

+1 if x ≥ 0,

−1 otherwise.
(1)

The implementation uses a Straight-Through Estimator

(STE) [1] with the addition, that it cancels the gradients,

when the inputs get too large, as proposed by Hubara et al.

[14]. Let c denote the objective function, ri be a real num-

ber input, and ro ∈ {−1,+1} a binary output. Furthermore,

tclip is the threshold for clipping gradients, which was set to

tclip = 1 in previous work [14, 33]. Then, the resulting STE

is:

Forward: ro = sign(ri) . (2)

Backward:
∂c

∂ri
=

∂c

∂ro
1|ri|≤tclip . (3)

Gradient canceling assists in the optimization process, since

backpropagation no longer increases the absolute value of

an input larger than the clipping threshold, which is similar

to regularization effects in full-precision networks. Further-

more, the computational cost of binary neural networks can

be highly reduced by using the xnor and popcount CPU in-

structions, as presented by Rastegari et al. [25]. They show

that the matrix multiplication of a binary input x and weight

w can be replaced as follows (n is the number of weights di-

vided by the number of input channels):

x · w = 2⊙ bitcount(xnor(x′, w′))− n . (4)

Note, that x′ and w′ are converted from x and w by re-

placing {−1,+1} with {0, 1}. This means normal training

methods with GPU acceleration (e.g. cuDNN implementa-

tion) can be used (the left side of Equation 4). Afterwards,

we can take advantage of the fast CPU implementation with

xnor and popcount (the right side of Equation 4) without

any accuracy loss.

(a) ResNet block

(with bottleneck)

(b) ResNet block

(no bottleneck)

(c) ResNetE block

(added shortcut)

(d) Downsampling convolution in a ResNet

Figure 1: Building blocks and a downsampling convolu-

tion of a ResNet (the length of bold black lines represents

the number of filters). (a) The original ResNet design fea-

tures a bottleneck, where a low number of filters reduces in-

formation capacity for BNNs. (b) A variation of the ResNet

without the bottleneck design. The number of filters is in-

creased, but with only two convolutions instead of three. (c)

The ResNetE architecture with an additional shortcut, first

introduced in [24]. (d) The downsampling part with a 1×1

downsampling convolution (black line) which can be either

full-precision or binary.

3.2. ResNetE: a ResNet with Extra Shortcuts

A ResNet [10] combines the information of all previous lay-

ers with shortcut connections. This is done by adding the

input of a block to its output with an identity connection.

Previous work [24, 25, 31] has used ResNet architectures

with a low amount of layers (18 or 34) for BNNs. Even

though the reason seems clear (to keep model size and num-

ber of operations low), the implications were not discussed

in previous work. By not using larger ResNet architectures,

these binary models also did not use a bottleneck architec-

ture (see Figure 1a compared to b). In fact, to the best of our

knowledge no architecture, which uses bottleneck blocks,

has been successfully used for BNNs before.

Furthermore, Liu et al. [24] increased the number of con-

nections by reducing the block size from two convolutions

per block to one convolution per block. This leads to twice

the amount of shortcuts, as there are as many shortcuts as

blocks, if the amount of layers is kept the same (see Fig-

ure 1c). However, Liu et al. also incorporate other changes

to the ResNet architecture. Therefore we call this specific

change in the block design ResNetE (short for Extra short-

cut). Their second change is using a full-precision (instead

of binary) downsampling convolution layer, which we dis-

cuss in the following section.



Table 2: The influence of using scaling and a full-precision

downsampling convolution on the CIFAR-10 and ImageNet

datasets based on a binary ResNetE18. All models were

trained with the same hyperparameters and for either 150

epochs (CIFAR-10) or 40 epochs (ImageNet).

Downsampl.

convolution

Scaling

of [25]

Top1/Top5 Acc.

CIFAR-10

Top1/Top5 Acc.

ImageNet

binary
yes 83.6%/99.2% 52.7%/76.1%

no 87.2%/99.4% 54.5%/77.8%

(model sizes) 1.39 MB 3.36 MB

full-precision
yes 84.7%/99.2% 55.6%/78.4%

no 87.6%/99.5% 56.7%/79.2%

(model sizes) 2.03 MB 4.0 MB

3.3. Full-precision Layers in Binary Networks

Another method to achieve reasonable accuracy with binary

neural networks is replacing certain crucial layers in a bi-

nary network with full precision layers. The reasoning is

as follows: If layers that do not have a shortcut connection

are binarized, the information lost (due to binarization) can

not be recovered in subsequent layers of the network. This

affects the first (convolutional) layer and the last layer (a

fully connected layer which has a number of output neu-

rons equal to the number of classes), as learned from pre-

vious work [25, 33, 24, 30, 14]. These layers generate the

initial information for the network or consume the final in-

formation for the prediction, respectively. Therefore, full-

precision layers for the first and the final layer are always

applied previously. Another crucial part of deep networks

is the downsampling convolution which converts all previ-

ously collected information of the network to smaller fea-

ture maps with more channels (this convolution often has

stride two and output channels equal to twice the number

of input channels) (see Figure 1d). Any information lost

in this downsampling process is effectively no longer avail-

able. Some previous work ([24, 25]) has kept these lay-

ers in full-precision in addition to the first and last layer.

However, the importance and existence of this architectural

change does not seem to be well known. It only became

apparent to us, when studying the published code of Liu et

al. and is only shown in an extended technical report [23].

Therefore, we also conducted an ablation study for testing

the exact accuracy gain and the impact on the model size.

First, we examine the results of binary ResNetE18 on

CIFAR-10. Using full-precision downsampling over binary

leads to an accuracy gain between 0.4% and 1.1% (see Ta-

ble 2). However, the model size also increases from 1.39

MB to 2.03 MB, which is arguably too much for this minor

increase of accuracy. Our results show a more significant

difference on ImageNet: the accuracy gain is between 2.2%

and 2.6% when using full-precision downsampling. Simi-

Figure 2: An exemplary implementation shows that nor-

malization minimizes the difference between a binary con-

volution with scaling (right column) and one without (mid-

dle column). In the top row, the columns from left to right

respectively demonstrate the gemm results of full-precision,

binary, and binary with scaling. The bottom row shows their

results after normalization. Errors are the absolute differ-

ence between full-precision and binary results. The results

indicate that normalization dilutes the effect of scaling.

lar to CIFAR-10, the model size for ImageNet increases by

0.64 MB, in this case from 3.36 MB to 4.0 MB (and 1.06%

of the total operations become full-precision). The larger

base model size and the low number of affected operations

make the relative model size difference lower and provides

a stronger argument for this trade-off. We conclude that the

increase in accuracy is still significant, especially for Ima-

geNet.

3.4. Scaling Methods

Binarization will always introduce an approximation error

compared to a full-precision signal. In their analysis, Zhou

et al. [34] show that this error linearly degrades the accuracy

of a CNN.

Consequently, Rastegari et al. [25] propose to scale the

output of the binary convolution by the average absolute

weight value per channel (α) and average absolut activation

over all input channels (K).

x ∗w ≈ binconv(sign(x), sign(w)) ·K · α (5)

The scaling factors should help binary convolutions to

increase the value range. Producing results closer to those

of full-precision convolutions and reducing the approxima-

tion error. However, these different scaling values influence

specific output channels of the convolution. Therefore, a

BatchNorm [16] layer directly after the convolution (which

is used in all modern architectures) theoretically minimizes

the difference between a binary convolution with scaling

and one without. Thus, we hypothesize that learning a use-

ful scaling factor is made inherently difficult by BatchNorm

layers. Figure 2 demonstrates an exemplary implementation

of our hypothesis.



Table 3: Comparison of our binary ResNetE18 model (trained for up to 120 epochs) to state-of-the-art binary models using

ResNet18 on the ImageNet dataset. The top-1 and top-5 validation accuracy are reported. For the sake of fairness we use the

ABC-Net result with 1 weight base and 1 activation base in this table.

Downsampl.

convolution
Size Our result Bi-Real [24] TBN∗ [30] XNOR [25] ABC-Net (1/1) [21]

full-precision 4.0 MB 58.1%/80.6% 56.4%/79.5%
55.6%/74.2%∗ 51.2%/73.2% n/a

binary 3.4 MB 54.5%/77.8% n/a n/a 42.7%/67.6%
∗ Even though TBN does not use full-precision downsampling, it is not directly comparable to binary downsampling either, since they use

three values for activations.

We empirically evaluated the influence of scaling factors

(as proposed by Rastegari et al. [25]) on the accuracy of

our trained models based on the binary ResNetE architec-

ture (see Section 3.2). First, the results of our CIFAR-10

[19] experiments verify our hypothesis, that applying scal-

ing when training a model from scratch does not lead to

better accuracy (see Table 2). All models show a decrease

in accuracy between 0.7% and 3.6% when applying scal-

ing factors. Secondly, we evaluated the influence of scal-

ing for the ImageNet dataset. The result is similar, scaling

reduces model accuracy ranging from 1.0% to 1.7%. We

conclude that either the BatchNorm layers following each

convolution layer absorb the effect of the scaling factors or

the benefit of using scaling factors only exists, when using

a pre-trained full-precision model instead of training from

scratch. To avoid the additional computational and memory

costs, we do not use scaling factors in the rest of the paper.

4. Developing a New Architecture

In this section, we present several design principles for de-

veloping accurate architectures for BNNs. These are de-

rived from our studies on the binary ResNetE model in

the previous section. Afterwards, we propose a new BNN

model BinaryDenseNet based on these insights, which has

a higher number of shortcut connections and reaches state-

of-the-art accuracy.

4.1. Golden Rules for Architecture Design

As shown in Table 3, with a standard training strategy our

binary ResNetE18 model outperforms other state-of-the-

art binary models simply by using the same architectural

changes of previous work. Inspired by this success, we

suggest several general design principles for BNN architec-

tures, summarized as follows:

• The core of our theory is maintaining rich information

flow of the network, which can effectively compensate

the precision loss caused by quantization.

• Not all the well-known real-valued network architec-

tures can be seamlessly applied for BNNs. The net-

work architectures from the category compact network

design are not well suited for BNNs, since their de-

sign philosophies are mutually exclusive (eliminating

redundancy ↔ compensating information loss).

• Bottleneck design [28] should be eliminated in your

BNNs. We will discuss this in detail in the following

paragraphs (also confirmed by [2]).

• Consider using full-precision downsampling layer in

your BNNs to preserve the information flow for com-

plex tasks.

• Using shortcut connections is a straightforward way to

avoid bottlenecks of information flow, which is partic-

ularly essential for BNNs.

• To overcome bottlenecks of information flow, we

should appropriately increase the network width (the

dimension of feature maps) while going deeper (as

e.g., see BinaryDenseNet37/37-dilated/45 in Table 6).

However, this may introduce additional computational

costs.

Before thinking about new model architectures, we must

consider the main drawbacks of BNNs. First of all, the in-

formation density is theoretically 32 times lower, compared

to full-precision networks. Research suggests, that the dif-

ference between 32 bits and 8 bits seems to be minimal

and 8-bit networks can achieve almost identical accuracy as

full-precision networks [9]. However, when decreasing bit-

width to four or even one bit (binary), the accuracy drops

significantly [14, 33]. Therefore, the precision loss needs

to be alleviated through other techniques, for example by

increasing information flow through the network. We fur-

ther describe the three main methods we learned from our

studies in the previous chapter, which help to preserve in-

formation despite binarization of the model:

First, a binary model should use as many shortcut con-

nections as possible in the network. These connections al-

low layers later in the network to access information gained

in earlier layers despite of precision loss through binariza-

tion. Furthermore, this means that increasing the number

of connections between layers should lead to better model

performance, especially for binary networks.



(a) DenseNet

(with bottleneck)

(b) DenseNet

(no bottleneck)

(c) BinaryDenseNet

(extra shortcuts)

(d) DenseNet (e) BinaryDenseNet

Figure 3: Different building blocks and downsampling

convolutions of the DenseNet and BinaryDenseNet archi-

tecture (the length of bold black lines represents the number

of filters). (a) The original DenseNet design with a bottle-

neck. (b) The DenseNet design without a bottleneck. The

two convolution operations are replaced by one 3 × 3 con-

volution. (c) Our suggested change to a DenseNet where

a convolution with N filters is replaced by two layers with
N
2

filters each. (d) The original DenseNet transition block.

(e) We changed the layer ordering to effectively reduce the

number of MACs. If we use full-precision downsampling in

a BinaryDenseNet, we increase the reduction rate to reduce

the number of channels (the dashed lines depict the number

of channels without reduction).

Secondly, following our ideas in Section 3.2, network ar-

chitectures including bottlenecks are always a challenge to

adopt. The bottleneck design reduces the number of filters

and values significantly between the layers, resulting in less

information flow through BNNs. Therefore we hypothesize

that we either need to eliminate the bottlenecks or at least

increase the number of filters in these bottleneck parts for

BNNs to achieve best results.

Thirdly, as discussed in Section 3.3 certain crucial layers

in a binary network should be replaced with full precision

layers to preserve information. The first and the final layer

should always be left in full-precision. Additionally, for

complex tasks, the downsampling convolution layers in a

network should be kept in full-precision.

4.2. BinaryDenseNet

DenseNets [13] apply shortcut connections that, contrary

to ResNet, concatenate the input of a block to its output

(see Figure 3a, b). Therefore, new information gained in

one layer can be reused throughout the entire depth of the

network. We believe this is a significant characteristic for

maintaining information flow. Thus, we construct a novel

BNN architecture: BinaryDenseNet.

The bottleneck design and transition layers of the origi-

nal DenseNet effectively keep the network at a smaller total

size, even though the concatenation adds new information

into the network every layer. However, as previously men-

tioned, we have to eliminate bottlenecks for BNNs. The

bottleneck design can be modified by replacing the two

convolution layers (kernel sizes 1 and 3) with one 3 × 3
convolution (see Figure 3a, b). However, our experiments

showed that DenseNet architecture does not achieve satis-

factory performance, even after this change. This is due to

the limited representation capacity of binary layers. There

are different ways to increase the capacity. We can increase

the growth rate parameter k, which is the number of newly

concatenated features from each layer. We can also use a

larger number of blocks. Both individual approaches add

roughly the same amount of parameters to the network.

To keep the number of parameters equal for a given Bina-

ryDenseNet we can halve the growth rate and double the

number of blocks at the same time (see Figure 3c) or vice

versa. We assume that in this case increasing the number of

blocks should provide better results compared to increasing

the growth rate. This assumption is derived from our hy-

pothesis: favoring an increased number of connections over

simply adding weights.

Another characteristic difference of BinaryDenseNet

compared to binary ResNetE is that the downsampling layer

reduces the number of channels. To preserve information

flow in these parts of the network we found two options:

On the one hand, we can use a full-precision downsampling

layer, similarly to binary ResNetE. Since the full-precision

layer preserves more information, we can use higher reduc-

tion rate for downsampling layers. To reduce the number

of MACs, we modify the transition block by swapping the

position of pooling and convolution layers. We use Max-

Pool → ReLU → 1×1-Conv instead of ReLU → 1×1-Conv

→ AvgPool in the transition block (see Figure 3e, d). On

the other hand, we can use a binary downsampling conv-

layer instead of a full-precision layer with a lower reduction

rate, or even no reduction at all. We coupled the decision

whether to use a binary or a full-precision downsampling

convolution with the choice of reduction rate. The two vari-

ants we compare in our experiments (see Section 4.3) are

thus called full-precision downsampling with high reduc-

tion (halve the number of channels in all transition layers)

and binary downsampling with low reduction (no reduction

in the first transition, divide number of channels by 1.4 in

the second and third transition).



Table 4: The difference of performance for different Bi-

naryDenseNet models when using different downsampling

methods evaluated on ImageNet.

Blocks,

growth-rate

Model

size

(binary)

Downsampl.

convolution,

reduction

Accuracy

Top1/Top5

16, 128
3.39 MB binary, low 52.7%/75.7%

3.03 MB FP, high 55.9%/78.5%

32, 64
3.45 MB binary, low 54.3%/77.3%

3.08 MB FP, high 57.1%/80.0%

Table 5: The accuracy of different BinaryDenseNet models

by successively splitting blocks evaluated on ImageNet. As

the number of connections increases, the model size (and

number of binary operations) changes marginally, but the

accuracy increases significantly.

Blocks
Growth-

rate

Model size

(binary)

Accuracy

Top1/Top5

8 256 3.31 MB 50.2%/73.7%

16 128 3.39 MB 52.7%/75.7%

32 64 3.45 MB 55.5%/78.1%

4.3. Ablation Studies

Downsampling Layers. In the following we present our

evaluation results of a BinaryDenseNet when using a full-

precision downsampling with high reduction over a binary

downsampling with low reduction. The results of a Bina-

ryDenseNet21 with growth rate 128 for CIFAR-10 show

an accuracy increase of 2.7% from 87.6% to 90.3%. The

model size increases from 673 KB to 1.49 MB. This is an

arguably sharp increase in model size, but the model is still

smaller than a comparable binary ResNet18 with a much

higher accuracy. The results of two BinaryDenseNet ar-

chitectures (16 and 32 blocks combined with 128 and 64

growth rate respectively) for ImageNet show an increase of

accuracy ranging from 2.8% to 3.2% (see Table 4). Fur-

ther, because of the higher reduction rate, the model size de-

creases by 0.36 MB at the same time. This shows a higher

effectiveness and efficiency of using a FP downsampling

layer for a BinaryDenseNet compared to a binary ResNet.

Note, that 2.2% of all operations are in these downsampling

layers and they become full-precision operations (for a Bi-

naryDenseNet28). Therefore, we compared the effiency of

our architectures to previous work in Section 5.2.

Splitting Layers. We tested our proposed architecture

change (see Figure 3c) by comparing BinaryDenseNet mod-

els with varying growth rates and number of blocks (and

thus layers). The results show, that increasing the number

of connections by adding more layers over simply increas-

ing growth rate increases accuracy in an efficient way (see

Table 6: Comparison of our BinaryDenseNet to state-of-

the-art 1-bit CNN models on ImageNet.

Model

size
Method

Top-1/Top-5

accuracy

∼4.0MB

XNOR-ResNet18 [25] 51.2%/73.2%

TBN-ResNet18 [30] 55.6%/74.2%

Bi-Real-ResNet18 [24] 56.4%/79.5%

BinaryResNetE18 58.1%/80.6%

BinaryDenseNet28 60.7%/82.4%

∼5.1MB

TBN-ResNet34 [30] 58.2%/81.0%

Bi-Real-ResNet34 [24] 62.2%/83.9%

BinaryDenseNet37 62.5%/83.9%

BinaryDenseNet37-dilated∗ 63.7%/84.7%

7.4MB BinaryDenseNet45 63.7%/84.8%

46.8MB Full-precision ResNet18 69.3%/89.2%

249MB Full-precision AlexNet 56.6%/80.2%
∗ BinaryDenseNet37-dilated is slightly different to other models

as it applies dilated convolution kernels, while the spatial dimen-

tion of the feature maps are unchanged in the 2nd, 3rd and 4th

stage that enables a broader information flow.

Table 5). Doubling the number of blocks and halving the

growth rate leads to an accuracy gain ranging from 2.5%

to 2.8%. Since the training of very deep BinaryDenseNet

models becomes slow (because of memory requirements,

which are not a problem during inference, since the inter-

mediate results are only needed for backpropagation), we

have not trained even more highly connected models, but

highly suspect that this would increase accuracy even fur-

ther. The total model size slightly increases, since every

second half of a split block has slightly more inputs com-

pared to those of a double-sized normal block. In conclu-

sion, our technique of increasing the number of connections

is highly effective and size-efficient for a BinaryDenseNet.

5. Comparison to State-of-the-Art

In this section, we report our main experimental results

on image classification and object detection using Binary-

DenseNet. We further report the computation cost in com-

parison with other quantization methods. Our implemen-

tation is based on the BMXNet framework first presented

by Yang et al. [31]. All models are trained with the Adam

optimizer [18] with an initial learning rate (alpha) of 10−3

for ImageNet. We trained our ImageNet models for up to

120 epochs, and multiply the learning rate by 0.1 at epochs

100 and 110 and use a Gaussian distribution to initialize the

weights in the network according to the method proposed

by Glorot and Bengio [8]. We use a clipping threshold tclip
(see Section 3.1) of 1.25 or 1.3 instead of 1, since experi-

ments showed it increases accuracy by 0.2% to 0.3%.



Figure 4: The trade-off of top-1 validation accuracy on Im-

ageNet and number of operations. All the binary/quantized

models are based on ResNet18 except BinaryDenseNet.

5.1. Image Classification

To evaluate the classification accuracy, we report our re-

sults on ImageNet [4]. Table 6 shows the comparison result

of our BinaryDenseNet to state-of-the-art BNNs with dif-

ferent sizes. For this comparison, we chose growth and re-

duction rates between layers for BinaryDenseNet models to

match the model size and complexity of the corresponding

binary ResNet architectures as closely as possible (see Ta-

ble 7 for details). Our results show that BinaryDenseNet

surpass all the existing 1-bit CNNs with noticeable mar-

gin. Particularly, BinaryDenseNet28 with 60.7% top-1 ac-

curacy, is better than our binary ResNetE18, and achieves

up to 18.6% and 7.6% relative improvement over the well-

known XNOR-Network and the current state-of-the-art Bi-

Real Net, even though they use a more complex training

strategy and additional techniques, e.g., custom gradients

and a scaling variant.

5.2. Efficiency Analysis

For this analysis, we adopted the same calculation method

as [10, 24]. They separately sum up the numbers of full-

precision (f ) and binary operations (b). Then they calcu-

late the number of operations as f + 1
32

· b, based on the

theoretical speedup factor of 32. Figure 4 shows that our

binary ResNetE18 demonstrates higher accuracy with the

same computational complexity compared to other BNNs.

Furthermore, our BinaryDenseNet28/37/45 achieve signifi-

cant accuracy improvement with only small additional com-

putation overhead. For a more challenging comparison, we

include models with other bit-widths for weights (w) and

activations (a): DoReFa-Net (w: 1, a: 4) [33], TBN (w: 1,

a: 1.5) [30], and ABC-Net (w: 5, a: 5) [21]. Overall, our

BinaryDenseNet models show superior performance while

measuring both accuracy and computational efficiency.

Table 7: The detailed configuration of all our models. All

models use 64 channels in the first convolution and all Bina-

ryDenseNet (BDN) models use a growth-rate of 64 for each

block. We show the number of layers for each stage and the

reduction rate between each of the four stages.

Model Layers
Reduction

rate

Best/total

epochs
tclip

ResNetE18 4, 4, 4, 4 - 115/120 1.25

BDN-28 6, 6, 6, 5 2.7, 2.7, 2.2 117/120 1.3

BDN-37 6, 8, 12, 6 3.3, 3.3, 4 118/120 1.3

BDN-45 6, 12, 14, 8 2.7, 3.3, 4 123/130 1.3

Table 8: Object detection performance in Mean Average

Precision (mAP) by using our BinaryDenseNet37/45 with

an SSD 512 [22] on the VOC2007 [5] test set compared to

Full-Precision (FP) approaches.

BinaryDenseNet

37/45 (SSD 512)

SSD 512

FP ([22])

Faster RCNN

FP ([27])

Yolo

FP ([26])

mAP 66.4/68.2 76.8 73.2 66.4

5.3. Preliminary Result on Object Detection

We adopted the off-the-shelf toolbox Gluon-CV [11] for the

object detection experiment. We change the base model of

the adopted SSD architecture [22] to BinaryDenseNet and

train our models on the combination of PASCAL VOC2007

trainval and VOC2012 trainval, and test on VOC2007 test

set [5]. Table 8 illustrates the results of our binary SSD as

well as full-precision detection models [22, 26, 27].

6. Conclusion

We discovered, that previous work in the field of BNNs

mostly concentrated on training improvements unrelated to

the architecture. Therefore, there was little understand-

ing on the effects of architectural changes and adaptations

of the ResNet architecture for BNNs. In our work, we

provided empirical and theoretical studies of previous ar-

chitecture changes and the common usage of scaling fac-

tors. We derived architectural design principles and demon-

strated that they can be used to create an efficient novel Bi-

naryDenseNet architecture. We showed, that our new ar-

chitecture achieves state-of-the-art accuracy with regards to

model size and number of operations compared to previous

work on ImageNet. Although the task is still arduous, we

hope the ideas and results of this paper will provide new

potential directions for the future development of BNNs.

In future work, we would like to explore other architecture

changes, which could improve accuracy and efficiency of

binary models even further.
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