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Abstract

The Non-Local Network (NLNet) presents a pioneering

approach for capturing long-range dependencies, via ag-

gregating query-specific global context to each query posi-

tion. However, through a rigorous empirical analysis, we

have found that the global contexts modeled by non-local

network are almost the same for different query positions

within an image. In this paper, we take advantage of this

finding to create a simplified network based on a query-

independent formulation, which maintains the accuracy of

NLNet but with significantly less computation. We further

observe that this simplified design shares similar structure

with Squeeze-Excitation Network (SENet). Hence we unify

them into a three-step general framework for global context

modeling. Within the general framework, we design a better

instantiation, called the global context (GC) block, which

is lightweight and can effectively model the global context.

The lightweight property allows us to apply it for multiple

layers in a backbone network to construct a global context

network (GCNet), which generally outperforms both sim-

plified NLNet and SENet on major benchmarks for various

recognition tasks.

1. Introduction

Capturing long-range dependency, which aims to ex-

tract the global understanding of a visual scene, is proven

to benefit a wide range of recognition tasks, such as im-

age/video classification, object detection and segmenta-

tion [31, 13, 38, 15]. In convolution neural networks, as the

convolution layer builds pixel relationship in a local neigh-

borhood, the long-range dependencies are mainly modeled

by deeply stacking convolution layers. However, directly

repeating convolution layers is computationally inefficient

and hard to optimize [31]. This would lead to ineffective
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Figure 1: Visualization of attention maps (heatmaps) for

different query positions (red points) in a non-local block

on COCO object detection. The three attention maps are all

almost the same. More examples are in Figure 2.

modeling of long-range dependency, due in part to difficul-

ties in delivering messages between distant positions.

To address this issue, the non-local network [31] is pro-

posed to model the long-range dependencies using one

layer, via self-attention mechanism [28]. For each query po-

sition, the non-local network first computes the pairwise re-

lations between the query position and all positions to form

an attention map, and then aggregates the features of all po-

sitions by weighted sum with the weights defined by the

attention map. The aggregated features are finally added to

the features of each query position to form the output.

The query-specific attention weights in the non-local net-

work generally imply the importance of the corresponding

positions to the query position. While visualizing the query-

specific importance weights would help the understanding

in depth, such analysis was largely missing in the original

paper. We bridge this regret, as in Figure 1, but surprisingly

observe that the attention maps for different query positions

are almost the same, indicating only query-independent de-

pendency is learnt. This observation is further verified by

statistical analysis in Table 1 that the distance between the

attention maps of different query positions is very small.

Based on this observation, we simplify the non-local

block by explicitly using a query-independent attention map

for all query positions. Then we add the same aggregated

features using this attention map to the features of all query

positions for form the output. This simplified block has sig-

nificantly smaller computation cost than the original non-

local block, but is observed with almost no decrease in accu-



racy on several important visual recognition tasks. Further-

more, we find this simplified block shares similar structure

with the popular Squeeze-Excitation (SE) Network [15].

They both strengthen the original features by the same fea-

tures aggregated from all positions but differentiate each

other by choices on the aggregation strategy, transformation

and strengthening functions. By abstracting these functions,

we reach a three-step general framework which unifies both

the simplified NL block and the SE block: (a) a context

modeling module which aggregates the features of all posi-

tions together to form a global context feature; (b) a feature

transform module to capture the channel-wise interdepen-

dencies; and (c) a fusion module to merge the global context

feature into features of all positions.

The simplified NL block and SE block are two instan-

tiations of this general framework, but with different im-

plementations of the three steps. By comparison study on

each step, we find both the simplified non-local block and

the SE block are sub-optimal, that each block has a part of

the steps advancing over the other. By a combination of the

optimal implementation at each step, we reach a new in-

stantiation of the general framework, called global context

(GC) block. The new block shares the same implementation

with the simplified NL block on the context modeling (using

global attention pooling) and fusion (using addition) steps,

while shares the same transform step (using two-layer bot-

tleneck) with SE block. The GC block is shown to perform

better than both the simplified non-local block and SE block

on multiple visual recognition tasks.

Like SE block, the proposed GC block is also light-

weight which allows it to be applied to all residual blocks

in the ResNet architecture. The GC block strengthened

network is named global context network (GCNet). GC-

Net yields significant performance gains over three general

visual recognition tasks: object detection/segmentation on

COCO (2.7%↑ on APbbox, and 2.4%↑ on APmask over Mask

R-CNN with FPN and ResNet-50 as backbone [10]), image

classification on ImageNet (0.8%↑ on top-1 accuracy over

ResNet-50 [11]), and action recognition on Kinetics (1.1%↑
on top-1 accuracy over the ResNet-50 Slow-only baseline

[7]), with less than a 0.26% increase in computation cost.

We summarize our contribution as following: (a) The

query-independent observation may bring new understand-

ing about non-local network. (b) The proposed general

framework reveals the intrinsic connection between various

designs of deep neural network building block, which could

guide the invention of new methods. (c) The concrete al-

gorithm, GCNet, proves to be practical regarding both sim-

plicity and effectiveness. The three contributions are also

coherently connected: (b) is motivated by the observation

in (a), and the invention of (c) is guided by the framework

in (b) and observation in (a).

2. Related Work

Deep architectures. As convolution networks have re-

cently achieved great success in large-scale visual recogni-

tion tasks, a number of attempts have been made to improve

the original architecture in a bid to achieve better accuracy

[19, 26, 27, 11, 37, 16, 34, 15, 43, 14, 40, 12, 5, 42, 20, 2,

24, 31, 35, 7]. An important direction of network design is

to improve the functional formulations of basic components

to elevate the power of deep networks. ResNeXt [34] and

Xception [4] adopt group convolution to increase cardinal-

ity. Deformable ConvNets [5, 42] design deformable con-

volution to enhance geometric modeling ability. Squeeze-

Excitation Networks [15] adopt channel-wise rescaling to

explicitly model channel dependencies.

Our global context network is a new backbone architec-

ture, with novel GC blocks to enable more effective global

context modeling, offering superior performances on a wide

range of vision tasks, such as object detection, instance seg-

mentation, image classification and action recognition.

Long-range dependency modeling. The recent ap-

proaches for long-range dependency modeling can be cat-

egorized into two classes. The first is to adopt self-attention

mechanism to model the pairwise relations. The second is

to model the query-independent global context.

Self-attention mechanisms have recently been success-

fully applied in various tasks, such as machine translation

[8, 9, 28], graph embedding [29], generative modeling [39],

and visual recognition [30, 13, 31, 36]. [28] is one of the

first attempts to apply a self-attention mechanism to model

long-range dependencies in machine translation. [13] ex-

tends self-attention mechanisms to model the relations be-

tween objects in object detection. NLNet [31] adopts self-

attention mechanisms to model the pixel-level pairwise re-

lations. CCNet [17] accelerates NLNet via stacking two

criss-cross blocks, and is applied to semantic segmentation.

However, NLNet actually learns query-independent atten-

tion maps for each query position, which is a waste of com-

putation cost to model pixel-level pairwise relations.

To model the global context features, SENet [15], GENet

[14], and PSANet [41] perform rescaling to different chan-

nels to recalibrate the channel dependency with global con-

text. CBAM [32] recalibrates the importance of different

spatial positions and channels both via rescaling. However,

all these methods adopt rescaling for feature fusion which

is not effective enough for global context modeling.

The proposed GCNet can effectively model the global

context via addition fusion as NLNet [31] (which is heavy-

weight and hard to be integrated to multiple layers), with

the lightweight property as SENet [15] (which adopts scal-

ing and is not effective enough for global context modeling).

Hence, via more effective global context modeling, GCNet

can achieve better performance than both NLNet and SENet

on major benchmarks for various recognition tasks.



Figure 2: Visualization of attention maps (heatmaps) for different query positions (red points) in a non-local block on COCO

object detection. In the same image, the attention maps of different query points are almost the same. Best viewed in color.

3. Analysis on Non-local Networks

In this section, we first review the design of the non-

local block [31]. To give an intuitive understanding, we

visualize the attention maps across different query positions

generated by a widely-used instantiation of the non-local

block. To statistically analyze its behavior, we average the

distances (cosine distance and Jensen-Shannon divergence)

between the attention maps of all query positions.

(b) Simplified NL block (Eqn 2)
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Figure 3: Architecture of non-local block (Embedded Gaus-

sian) and its simplified version. The feature maps are shown

by their dimensions, e.g. CxHxW. ⊗ is matrix multiplica-

tion, and ⊕ is broadcast element-wise addition. For two ma-

trices with different dimensions, broadcast operations first

broadcast features in each dimension to match the dimen-

sions of the two matrices.

3.1. Revisiting the Non-local Block

The basic non-local block [31] aims at strengthening the

features of the query position via aggregating information

from other positions. We denote x={xi}
Np

i=1 as the fea-

ture map of one input instance (e.g., an image or video),

where Np is the number of positions in the feature map (e.g.,

Np=H·W for image, Np=H·W·T for video). x and z denote

the input and output of the non-local block, respectively,

which have the same dimensions. The non-local block can

then be expressed as

zi = xi +Wz

∑Np

j=1

f (xi,xj)

C (x)
(Wv · xj), (1)

where i is the index of query positions, and j enumerates all

possible positions. f (xi,xj) denotes the relationship be-

tween position i and j, and has a normalization factor C (x).
Wz and Wv denote linear transform matrices (e.g., 1x1 con-

volution). For simplification, we denote ωij =
f(xi,xj)

C(x) as

normalized pairwise relationship between position i and j.

To meet various needs in practical applications, four in-

stantiations of the non-local block with different ωij are de-

signed, namely Gaussian, Embedded Gaussian, Dot prod-

uct, and Concat: (a) Gaussian denotes that f in ωij is

the Gaussian function, defined as ωij=
exp(〈xi,xj〉)∑
m

exp(〈xi,xm〉) ;

(b) Embedded Gaussian is a simple extension of Gaus-

sian, which computes similarity in an embedding space,

defined as ωij=
exp(〈Wqxi,Wkxj〉)∑
m

exp(〈Wqxi,Wkxm〉) ; (c) For Dot prod-

uct, f in ωij is defined as a dot-product similarity, formu-

lated as ωij=
〈Wqxi,Wkxj〉

Np
; (d) Concat is defined literally, as

ωij=
ReLU(Wq [xi,xj ])

Np
. The most widely-used instantiation,

Embedded Gaussian, is illustrated in Figure 3(a).

The non-local block can be regarded as a global context

modeling block, which aggregates query-specific global

context features (weighted averaged from all positions via

a query-specific attention map) to each query position. As

attention maps are computed for each query position, the

time and space complexity of the non-local block are both

quadratic to the number of positions Np.

3.2. Analysis

Visualization To intuitively understand the behavior of

the non-local block, we first visualize the attention maps

for different query positions. As different instantiations



Dataset Method APbbox APmask cosine distance
JSD-att

input output att

COCO

Gaussian 38.0 34.8 0.397 0.062 0.177 0.065

E-Gaussian 38.0 34.7 0.402 0.012 0.020 0.011

Dot product 38.1 34.8 0.405 0.020 0.015 -

Concat 38.0 34.9 0.393 0.003 0.004 -

Dataset Method Top-1 Top-5 input output att JSD-att

Kinetics

Gaussian 76.0 92.3 0.345 0.056 0.056 0.021

E-Gaussian 75.9 92.2 0.358 0.003 0.004 0.015

Dot product 76.0 92.3 0.353 0.095 0.099 -

Concat 75.4 92.2 0.354 0.048 0.049 -

Table 1: Statistical analysis on four instantiations of non-

local blocks. ‘input’ denotes the input of non-local block

(xi), ‘output’ denotes the output of the non-local block (zi−
xi), ‘att’ denotes the attention map of query positions (ωi).

achieve comparable performance [31], here we only visu-

alize the most widely-used version, Embedded Gaussian,

which has the same formulation as the block proposed in

[28]. Since attention maps in videos are hard to visual-

ize and understand, we only show visualizations on the ob-

ject detection/segmentation task, which takes images as in-

put. Following the standard setting of non-local networks

for object detection [31], we conduct experiments on Mask

R-CNN with FPN and Res50, and only add one non-local

block right before the last residual block of res4.

In Figure 2, we randomly select six images from the

COCO dataset, and visualize three different query posi-

tions (red points) and their query-specific attention maps

(heatmaps) for each image. We surprisingly find that for

different query positions, their attention maps are al-

most the same. To verify this observation statistically, we

analyze the distances between the global contexts of differ-

ent query positions.

Statistical Analysis Denote vi as the feature vector for

position i. The average distance measure is defined as

avg dist = 1
N2

p

∑Np

i=1

∑Np

j=1 dist (vi,vj), where dist(·, ·)

is the distance function between two vectors.

Cosine distance is a widely-used distance measure,

defined as dist(vi,vj)=(1 − cos(vi,vj))/2. Here we

compute the cosine distance between three kinds of vec-

tors, the non-local block inputs (vi=xi, ‘input’ in Table

1), the non-local block outputs before fusion (vi=zi-xi,

‘output’ in Table 1), and the attention maps of query

positions (vi=ωi, ‘att’ in Table 1). The Jensen-Shannon

divergence (JSD) is adopted to measure the statis-

tical distance between two probability distributions, as

dist (vi,vj)=
1
2

∑Np

k=1

(

vik log
2vik

vik+vjk
+ vjk log

2vjk

vik+vjk

)

.

As the summation over each attention map ωi is 1 (in Gaus-

sian and E-Gaussian), we can regard each ωi as a discrete

probability distribution. Hence we compute JSD between

the attention maps (vi=ωi) for Gaussian and E-Gaussian.

Results for two distance measures on two standard tasks

are shown in Table 1. First, large values of cosine distance

in the ‘input’ column show that the input features for the

non-local block can be discriminated across different posi-

tions. But the values of cosine distance in ‘output’ are quite

small, indicating that global context features modeled by the

non-local block are almost the same for different query po-

sitions. Both distance measures on attention maps (‘att’) are

also very small for all instantiations, which again verifies

the observation from visualization. In other words, although

a non-local block intends to compute the global context spe-

cific to each query position, the global context after training

is actually independent of query position. Hence, there is

no need to compute query-specific global context for each

query position, allowing us to simplify the non-local block.

4. Method

4.1. Simplifying the Non-local Block

As different instantiations achieve comparable perfor-

mance on both COCO and Kinetics, as shown in Table 1,

here we adopt the most widely-used version, Embedded

Gaussian, as the basic non-local block. Based on the ob-

servation that the attention maps for different query posi-

tions are almost the same, we simplify the non-local block

by computing a global (query-independent) attention map

and sharing this global attention map for all query positions.

Following the results in [13] that variants with and without

Wz achieve comparable performance, we omit Wz in the

simplified version. Our simplified NL block is defined as

zi = xi +
∑Np

j=1

exp (Wkxj)
∑Np

m=1 exp (Wkxm)
(Wv · xj), (2)

where Wk and Wv denote linear transformation matrices.

This simplified non-local block is illustrated in Figure 3(b).

To further reduce the computational cost of this simpli-

fied block, we apply the distributive law to move Wv outside

of the attention pooling, as

zi = xi +Wv

∑Np

j=1

exp (Wkxj)
∑Np

m=1 exp (Wkxm)
xj . (3)

This version of the simplified non-local block is illustrated

in Figure 4(b). The FLOPs of the 1x1 conv Wv is reduced

from O(HWC2) to O(C2).

Different from the traditional non-local block, the second

term in Eqn 3 is independent to the query position i, which

means this term is shared across all query positions i. We

thus directly model global context as a weighted average of

the features at all positions, and aggregate (add) the global

context features to the features at each query position. In

experiments, we directly replace the non-local (NL) block

with our simplified non-local (SNL) block, and evaluate ac-

curacy and computation cost on three tasks, object detection

on COCO, ImageNet classification, and action recognition,

shown in Table 2(a), 4(a) and 5. As we expect, the SNL
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Figure 4: Architecture of the main blocks. The feature maps are shown as feature dimensions, e.g. CxHxW denotes a

feature map with channel number C, height H and width W. ⊗ denotes matrix multiplication, ⊕ denotes broadcast element-

wise addition, and ⊙ denotes broadcast element-wise multiplication.

block achieves comparable performance to the NL block

with significantly lower FLOPs.

4.2. Global Context Modeling Framework

As shown in Figure 4(b), the simplified non-local block

can be abstracted into three procedures: (a) global attention

pooling, which adopts a 1x1 convolution Wk and softmax

function to obtain the attention weights, and then performs

the attention pooling to obtain the global context features;

(b) feature transform via a 1x1 convolution Wv; (c) fea-

ture aggregation, which employs addition to aggregate the

global context features to the features of each position.

We regard this abstraction as a global context modeling

framework, illustrated in Figure 4(a) and defined as

zi = F

(

xi, δ

(

∑Np

j=1
αjxj

))

, (4)

where (a)
∑

j αjxj denotes the context modeling mod-

ule which groups the features of all positions together via

weighted averaging with weight αj to obtain the global con-

text features (global attention pooling in the simplified NL

(SNL) block); (b) δ(·) denotes the feature transform to

capture channel-wise dependencies (1x1 conv in the SNL

block); and (c) F (·, ·) denotes the fusion function to aggre-

gate the global context features to the features of each posi-

tion (broadcast element-wise addition in the SNL block).

Interestingly, the squeeze-excitation (SE) block pro-

posed in [15] is also an instantiation of our proposed frame-

work. Illustrated in Figure 4(c), it consists of: (a) global

average pooling for global context modeling (set αj = 1
Np

in Eqn. 4), named the squeeze operation in SE block; (b)

a bottleneck transform module (let δ(·) in Eqn. 4 be one

1x1 convolution, one ReLU, one 1x1 convolution and a sig-

moid function, sequentially), to compute the importance for

each channel, named the excitation operation in SE block;

and (c) a rescaling function for fusion (let F (·, ·) in Eqn. 4

be element-wise multiplication), to recalibrate the channel-

wise features. Different from the non-local block, this SE

block is quite lightweight, allowing it to be applied to all

layers with only a slight increase in computation cost.

4.3. Global Context Block

Here we propose a new instantiation of the global con-

text modeling framework, named the global context (GC)

block, which has the benefits of both the simplified non-

local (SNL) block with effective modeling on long-range

dependency, and the squeeze-excitation (SE) block with

lightweight computation.

In the simplified non-local block, shown in Figure 4(b),

the transform module has the largest number of param-

eters, including from one 1x1 convolution with C·C pa-

rameters. When we add this SNL block to higher layers,

e.g. res5, the number of parameters of this 1x1 convolu-

tion, C·C=2048·2048, dominates the number of parameters

of this block. To obtain the lightweight property of the

SE block, this 1x1 convolution is replaced by a bottleneck

transform module, which significantly reduces the number

of parameters from C·C to 2·C·C/r, where r is the bottleneck

ratio and C/r denotes the hidden representation dimension

of the bottleneck. With default reduction ratio set to r=16,

the number of params for transform module can be reduced

to 1/8 of the original SNL block. More results on different

values of bottleneck ratio r are shown in Table 2(e).

As the two-layer bottleneck transform increases the diffi-

culty of optimization, we add layer normalization inside the

bottleneck transform (before ReLU) to ease optimization,

as well as to act as a regularizer that can benefit general-

ization. As shown in Table 2(d), layer normalization can

significantly enhance object detection on COCO.

The detailed architecture of the global context (GC)

block is illustrated in Figure 4(d), formulated as

zi = xi +Wv2ReLU

(

LN

(

Wv1

Np∑

j=1

eWkxj

Np∑
m=1

eWkxm

xj

))

, (5)

where αj = e
Wkxj

∑
m

eWkxm
is the weight for global attention



pooling, and δ(·) = Wv2ReLU(LN(Wv1(·))) denotes the

bottleneck transform. Specifically, our GC block consists

of: (a) global attention pooling for context modeling; (b)

bottleneck transform to capture channel-wise dependencies;

and (c) broadcast element-wise addition for feature fusion.

Since the GC block is lightweight, it can be applied

in multiple layers to better capture the long-range depen-

dency with only a slight increase in computation cost. Tak-

ing ResNet-50 for ImageNet classification as an example,

GC-ResNet-50 denotes adding the GC block to all layers

(c3+c4+c5) in ResNet-50 with a bottleneck ratio of 16. GC-

ResNet-50 increases ResNet-50 computation from ∼3.86

GFLOPs to ∼3.87 GFLOPs, corresponding to a 0.26% rel-

ative increase. Also, GC-ResNet-50 introduces ∼2.52M

additional parameters beyond the ∼25.56M parameters re-

quired by ResNet-50, corresponding to a ∼9.86% increase.

Global context can benefit a wide range of visual recog-

nition tasks, and the flexibility of the GC block allows it to

be plugged into network architectures used in various com-

puter vision problems. In this paper, we apply our GC block

to three general vision tasks – image recognition, object de-

tection/segmentation and action recognition – and observe

significant improvements in all three.

Relationship to non-local block. As the non-local

block actually learns query-independent global context, the

global attention pooling of our global context block models

the same global context as the NL block but with signif-

icantly lower computation cost. As the GC block adopts

the bottleneck transform to reduce redundancy in the global

context features, the numbers of parameters and FLOPs are

further reduced. The FLOPs and number of parameters of

the GC block are significantly lower than that of NL block,

allowing our GC block to be applied to multiple layers with

just a slight increase in computation, while better capturing

long-range dependency and aiding network training.

Relationship to squeeze-excitation block. The main

difference between the SE block and our GC block is the

fusion module, which reflects the different goals of the two

blocks. The SE block adopts rescaling to recalibrate the im-

portance of channels but inadequately models long-range

dependency. Our GC block follows the NL block by utiliz-

ing addition to aggregate global context to all positions for

capturing long-range dependency. The second difference is

the layer normalization in the bottleneck transform. As our

GC block adopts addition for fusion, layer normalization

can ease optimization of the two-layer architecture for the

bottleneck transform, which can lead to better performance.

Third, global average pooling in the SE block is a special

case of global attention pooling in the GC block. Results

in Table 2(f) and 4(b) show the superiority of our GCNet

compared to SENet.

5. Experiments

To evaluate the proposed method, we carry out exper-

iments on three basic tasks, object detection/segmentation

on COCO [22], image classification on ImageNet [6], and

action recognition on Kinetics [18]. Experimental results

demonstrate that the proposed GCNet generally outper-

forms both non-local networks (with lower FLOPs) and

squeeze-excitation networks (with comparable FLOPs).

5.1. Object Detection/Segmentation on COCO

We investigate our model on object detection and in-

stance segmentation on COCO 2017 [22], whose train set

is comprised of 118k images, validation set of 5k images,

and test-dev set of 20k images. We follow the standard set-

ting [10] of evaluating object detection and instance seg-

mentation via the standard mean average-precision scores

at different boxes and the mask IoUs, respectively.

Setup. Our experiments are implemented with PyTorch

[23]. Unless otherwise noted, our GC block of ratio r=16 is

applied to stage c3, c4, c5 of ResNet/ResNeXt.

Training. We use the standard configuration of Mask

R-CNN [10] with FPN and ResNet/ResNeXt as the back-

bone architecture. The input images are resized such that

their shorter side is of 800 pixels [21]. We trained on 8

GPUs with 2 images per GPU (effective mini batch size of

16). The backbones of all models are pretrained on Ima-

geNet classification [6], then all layers except for c1 and

c2 are jointly finetuned with detection and segmentation

2fc heads. Unlike stage-wise training with respect to RPN

in [10], end-to-end training like in [25] is adopted for our

implementation, yielding better results. Different from the

conventional finetuning setting [10], we use Synchronized

BatchNorm to replace frozen BatchNorm in the backbone.

All models are trained for 12 epochs using Synchronized

SGD with a weight decay of 0.0001 and momentum of 0.9,

which corresponds to the 1x schedule in the mmdetection

[3]. The learning rate is initialized to 0.02, and decays by a

factor of 10 at the 9th and 11th epochs. Our method is im-

plemented based on the latest release of mmdetection [3],

we also follow the same choice of hyper-parameters.

5.1.1 Ablation Study

The ablation study is done on COCO 2017 validation set.

The standard COCO metrics including AP, AP50, AP75 for

both bounding boxes and segmentation masks are reported.

Block design. Following [31], we insert 1 non-local

block (NL), 1 simplified non-local block (SNL), or 1 global

context block (GC) right before the last residual block of

c4. Table 2(a) shows that both SNL and GC achieve per-

formance comparable to NL with fewer parameters and less

computation, indicating redundancy in computation and pa-

rameters in the original non-local design. Furthermore,

adding the GC block in all residual blocks yields higher per-



(a) Block design

APbbox APbbox
50

APbbox
75

APmask APmask
50

APmask
75

#param FLOPs

baseline 37.2 59.0 40.1 33.8 55.4 35.9 44.4M 279.4G

+1 NL 38.0 59.8 41.0 34.7 56.7 36.6 46.5M 288.7G

+1 SNL 38.1 60.0 41.6 35.0 56.9 37.0 45.4M 279.4G

+1 GC 38.1 60.0 41.2 34.9 56.5 37.2 44.5M 279.4G

+all GC 39.4 61.6 42.4 35.7 58.4 37.6 46.9M 279.6G

(b) Positions

APbbox APbbox
50

APbbox
75

APmask APmask
50

APmask
75

#param FLOPs

baseline 37.2 59.0 40.1 33.8 55.4 35.9 44.4M 279.4G

afterAdd 39.4 61.9 42.5 35.8 58.6 38.1 46.9M 279.6G

after1x1 39.4 61.6 42.4 35.7 58.4 37.6 46.9M 279.6G

(c) Stages

APbbox APbbox
50

APbbox
75

APmask APmask
50

APmask
75

#param FLOPs

baseline 37.2 59.0 40.1 33.8 55.4 35.9 44.4M 279.4G

c3 37.9 59.6 41.1 34.5 56.3 36.8 44.5M 279.5G

c4 38.9 60.9 42.2 35.5 57.6 37.7 45.2M 279.5G

c5 38.7 61.1 41.7 35.2 57.4 37.4 45.9M 279.4G

c3+c4+c5 39.4 61.6 42.4 35.7 58.4 37.6 46.9M 279.6G

(d) Bottleneck design

APbbox APbbox
50

APbbox
75

APmask APmask
50

APmask
75

#param FLOPs

baseline 37.2 59.0 40.1 33.8 55.4 35.9 44.4M 279.4G

w/o ratio 39.4 61.8 42.8 35.9 58.6 38.1 64.4M 279.6G

r16 (ratio 16) 38.8 61.0 42.3 35.3 57.6 37.5 46.9M 279.6G

r16+ReLU 38.8 61.0 42.0 35.4 57.5 37.6 46.9M 279.6G

r16+LN+ReLU 39.4 61.6 42.4 35.7 58.4 37.6 46.9M 279.6G

(e) Bottleneck ratio

APbbox APbbox
50

APbbox
75

APmask APmask
50

APmask
75

#param FLOPs

baseline 37.2 59.0 40.1 33.8 55.4 35.9 44.4M 279.4G

ratio 4 39.9 62.2 42.9 36.2 58.7 38.3 54.4M 279.6G

ratio 8 39.5 62.1 42.5 35.9 58.1 38.1 49.4M 279.6G

ratio 16 39.4 61.6 42.4 35.7 58.4 37.6 46.9M 279.6G

ratio 32 39.1 61.6 42.4 35.7 58.1 37.8 45.7M 279.5G

(f) Pooling and fusion

APbbox APbbox
50

APbbox
75

APmask APmask
50

APmask
75

#param FLOPs

baseline 37.2 59.0 40.1 33.8 55.4 35.9 44.4M 279.4G

avg+scale (SE) 38.2 60.2 41.2 34.7 56.7 37.1 46.9M 279.5G

avg+add 39.1 61.4 42.3 35.6 57.9 37.9 46.9M 279.5G

att+scale 38.3 60.4 41.5 34.8 57.0 36.8 46.9M 279.6G

att+add 39.4 61.6 42.4 35.7 58.4 37.6 46.9M 279.6G

Table 2: Ablation study based on Mask R-CNN, using

ResNet-50 as backbone with FPN, for object detection and

instance segmentation on COCO 2017 validation set.

formance (1.1%↑ on APbbox and 0.9%↑ on APmask) with a

slight increase of FLOPs and #params.

Positions. The NL block is inserted after the residual

block (afterAdd), while the SE block is integrated after the

last 1x1 conv inside the residual block (after1x1). In Table

2(b), we investigate both cases with GC block and they yield

similar results. Hence we adopt after1x1 as the default.

Stages. Table 2(c) shows the results of integrating the

GC block at different stages. All stages benefit from global

context modeling in the GC block (0.7%-1.7%↑ on APbbox

and APmask). Inserting to c4 and c5 both achieves better

performance than to c3, demonstrating that better semantic

features can benefit more from the global context modeling.

With slight increase in FLOPs, inserting the GC block to

all layers (c3+c4+c5) yields even higher performance than

inserting to only a single layer.

Bottleneck design. The effects of each component in

(a) test on validation set

backbone APbbox APbbox
50

APbbox
75

APmask APmask
50

APmask
75

FLOPS

R50

baseline 37.2 59.0 40.1 33.8 55.4 35.9 279.4G

+GC r16 39.4 61.6 42.4 35.7 58.4 37.6 279.6G

+GC r4 39.9 62.2 42.9 36.2 58.7 38.3 279.6G

R101

baseline 39.8 61.3 42.9 36.0 57.9 38.3 354.0G

+GC r16 41.1 63.6 45.0 37.4 60.1 39.6 354.3G

+GC r4 41.7 63.7 45.5 37.6 60.5 39.8 354.3G

X101

baseline 41.2 63.0 45.1 37.3 59.7 39.9 357.9G

+GC r16 42.4 64.6 46.5 38.0 60.9 40.5 358.2G

+GC r4 42.9 65.2 47.0 38.5 61.8 40.9 358.2G

X101
baseline 44.7 63.0 48.5 38.3 59.9 41.3 536.9G

+Cascade
+GC r16 45.9 64.8 50.0 39.3 61.8 42.1 537.2G

+GC r4 46.5 65.4 50.7 39.7 62.5 42.7 537.3G

X101+DCN
baseline 47.1 66.1 51.3 40.4 63.1 43.7 547.5G

+Cascade
+GC r16 47.9 66.9 52.2 40.9 63.7 44.1 547.8G

+GC r4 47.9 66.9 51.9 40.8 64.0 44.0 547.8G

(b) test on test-dev set

X101
baseline 45.0 63.7 49.1 38.7 60.8 41.8 536.9G

+Cascade
+GC r16 46.5 65.7 50.7 40.0 62.9 43.1 537.2G

+GC r4 46.6 65.9 50.7 40.1 62.9 43.3 537.3G

X101+DCN
baseline 47.7 66.7 52.0 41.0 63.9 44.3 547.5G

+Cascade
+GC r16 48.3 67.5 52.7 41.5 64.6 45.0 547.8G

+GC r4 48.4 67.6 52.7 41.5 64.6 45.0 547.8G

Table 3: Results of GCNet (ratio 4 and 16) with stronger

backbones on COCO 2017 validation and test-dev sets.

the bottleneck transform are shown in Table 2(d). w/o ra-

tio denotes the simplified NLNet using one 1x1 conv as the

transform, which has much more parameters compared to

the baseline. Even though r16 and r16+ReLU have much

fewer parameters than the w/o ratio variant, two layers are

found to be harder to optimize and lead to worse perfor-

mance than a single layer. So LayerNorm (LN) is exploited

to ease optimization, leading to performance similar to w/o

ratio but with much fewer #params.

Bottleneck ratio. The bottleneck design is intended to

reduce redundancy in parameters and provide a tradeoff be-

tween performance and #params. In Table 2(e), we alter the

ratio r of bottleneck. As the ratio r decreases (from 32 to

4) with increasing number of parameters and FLOPs, the

performance improves consistently (0.8%↑ on APbbox and

0.5%↑ on APmask), indicating that our bottleneck strikes a

good balance of performance and parameters. It is worth

noting that even with a ratio of r=32, the network still out-

performs the baseline by large margins.

Pooling and fusion. The different choices on pooling

and fusion are ablated in Table 2(f). First, it shows that ad-

dition is more effective than scaling in the fusion stage. It is

surprising that attention pooling only achieves slightly bet-

ter results than vanilla average pooling. This indicates that

how global context is aggregated to query positions (choice

of fusion module) is more important than how features from

all positions are grouped together (choice in context mod-

eling module). It is worth noting that, our GCNet (att+add)

significantly outperforms SENet, because of effective mod-

eling of long-range dependency with attention pooling for

context modeling, and addition for feature aggregation.



(a) Block Design

Top-1 Acc Top-5 Acc #params(M) FLOPs(G)

baseline 76.88 93.16 25.56 3.86

+1NL 77.20 93.51 27.66 4.11

+1SNL 77.28 93.60 26.61 3.86

+1GC 77.34 93.52 25.69 3.86

+all GC 77.70 93.66 28.08 3.87

(b) Pooling and fusion

Top-1 Acc Top-5 Acc #params(M) FLOPs(G)

baseline 76.88 93.16 25.56 3.86

avg+scale (SENet) 77.26 93.55 28.07 3.87

avg+add 77.40 93.60 28.07 3.87

att+scale 77.34 93.48 28.08 3.87

att+add 77.70 93.66 28.08 3.87

Table 4: Ablation study of GCNet with ResNet-50 on im-

age classification on ImageNet validation set.

5.1.2 Experiments on Stronger Backbones

We evaluate our GCNet on stronger backbones, by re-

placing ResNet-50 with ResNet-101 and ResNeXt-101

[34], adding Deformable convolution to multiple layers

(c3+c4+c5) [5, 42] and adopting the Cascade strategy [1].

The results of our GCNet with GC blocks integrated in all

layers (c3+c4+c5) with bottleneck ratios of 4 and 16 are re-

ported. Table 3(a) presents detailed results on the validation

set. It is worth noting that even when adopting stronger

backbones, the gain of GCNet compared to the baseline

is still significant, which demonstrates that our GC block

with global context modeling is complementary to the ca-

pacity of current models. For the strongest backbone, with

deformable convolution and cascade RCNN in ResNeXt-

101, our GC block can still boost performance by 0.8%↑
on APbbox and 0.5%↑ on APmask. To further evaluate our

proposed method, the results on the test-dev set are also re-

ported, shown in Table 3(b). On test-dev, strong baselines

are also boosted by large margins by adding GC blocks,

which is consistent with the results on validation set. These

results demonstrate the robustness of our proposed method.

5.2. Image Classification on ImageNet

Our preprocessing and augmentation strategy follows the

baseline proposed in [33] and [15]. To speed up the exper-

iments, all the reported results are trained via two stages.

We first train standard ResNet-50 for 120 epochs on 8

GPUs with 64 images per GPU (effective batch size of 512)

with 5 epochs of linear warmup. Second, we insert newly-

designed blocks into the model trained in the first stage and

finetune for other 40 epochs with a 0.02 initial learning rate.

The baseline also follows this two-stage training but with-

out adding new blocks in second stage. Cosine learning rate

decay is used for both training and fine-tuning.

Block Design. As done for block design on COCO, re-

sults on different blocks are reported in Table 4(a). GC

block performs slightly better than NL and SNL blocks with

fewer parameters and less computation, which indicates the

versatility and generalization ability of our design. By in-

method Top-1 Acc Top-5 Acc #params(M) FLOPs(G)

baseline 74.94 91.90 32.45 39.29

+5 NL 75.95 92.29 39.81 59.60

+5 SNL 75.76 92.44 36.13 39.32

+5 GC 75.85 92.25 34.30 39.31

+all GC 76.00 92.34 42.45 39.35

Table 5: Results of GCNet and NLNet based on Slow-only

baseline using R50 as backbone on Kinetics validation set.

serting GC blocks in all residual blocks (c3+c4+c5), the per-

formance is further boosted (by 0.82%↑ on top-1 accuracy

compared to baseline) with marginal computational over-

head (0.26% relative increase on FLOPs).

Pooling and fusion. The functionality of different pool-

ing and fusion methods is also investigated on image clas-

sification. Comparing Table 4(b) with Table 2(f), it is seen

that attention pooling has greater effect in image classifi-

cation, which could be one of missing ingredients in [15].

Also, attention pooling with addition (GCNet) outperforms

vanilla average pooling with scale (SENet) by 0.44% on

top-1 accuracy with almost the same #params and FLOPs.

5.3. Action Recognition on Kinetics

For human action recognition, we adopt the widely-used

Kinetics [18] dataset, which has ∼240k training videos and

20k validation videos in 400 human action categories. We

adopt the slow-only baseline in [7], the best single model

to date that can utilize weights inflated [2] from the Im-

ageNet pretrained model. This inflated 3D strategy [31]

greatly speeds up convergence compared to training from

scratch. All the experiment settings explicitly follow [7];

the slow-only baseline is trained with 8 frames (8 × 8) as

input, and multi(30)-clip validation is adopted.

The ablation study results are reported in Table 5. For

Kinetics experiments, the ratio of GC blocks is set to 4.

First, when replacing the NL block with the simplified NL

block and GC block, the performance can be regarded as

on par (0.19%↓ and 0.11%↓ in top-1 accuracy, 0.15%↑ and

0.14%↑ in top-5 accuracy). As in COCO and ImageNet,

adding more GC blocks further improves results and out-

performs NL blocks with much less computation.

6. Conclusion

The pioneering work for long-range dependency mod-

eling, non-local networks, intends to model query-specific

global context, but only models query-independent context.

Based on this, we simplify non-local networks and abstract

this simplified version to a global context modeling frame-

work. Then we propose a novel instantiation of this frame-

work, the GC block, which is lightweight and can effec-

tively model long-range dependency. Our GCNet is con-

structed via applying GC blocks to multiple layers, which

generally outperforms simplified NLNet and SENet on ma-

jor benchmarks for various recognition tasks.
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