
MSNet: Structural Wired Neural Architecture Search for Internet of Things

Hsin-Pai Cheng1, Tunhou Zhang1, Yukun Yang1, Feng Yan2, Harris Teague3, Yiran Chen1, and Hai Li1

1ECE Department, Duke University, Durham, NC 27708
2CSE Department, University of Nevada, Reno, NV 89557

3Qualcomm AI Research, 5775 Morehouse Drive, San Diego, CA 92121

Abstract

The prosperity of Internet of Things (IoT) calls for

efficient ways of designing extremely compact yet accu-

rate DNN models. Both the cell-based neural architec-

ture search methods and the recently proposed graph based

methods fall short in finding high quality IoT models due

to the search flexibility, accuracy density, and node depen-

dency limitations. In this paper, we propose a new graph-

based neural architecture search methodology MSNAS for

crafting highly compact yet accurate models for IoT de-

vices. MSNAS supports flexible search space and can ac-

cumulate learned knowledge in a meta-graph to increase

accuracy density. By adopting structural wiring architec-

ture, MSNAS reduces the dependency between nodes, which

allows more compact models without sacrificing accuracy.

The preliminary experimental results on IoT applications

demonstrate that the MSNet crafted by MSNAS outperforms

MobileNetV2 and MnasNet by 3.0% in accuracy, with 20%

less peak memory consumption and similar Multi-Adds.

1. Introduction

With the rising of the Internet of Things (IoT), efficiently

performing Deep Neural Network (DNN) tasks in embed-

ded systems such as microcontrollers has become ever im-

portant. However, directly deploying DNN models or even

its mobile version onto IoT devices is not feasible [1] due

to the extremely limited computation power, on-chip mem-

ory (100-320KB SRAM) and flash (256KB-1MB). A recent

study shows that the computational cost of a neural net-

work to be deployed in IoT devices should be less than 60M

multiple-adds (MACs), which is challenging to be achieved

by existing DNN models [1].

Neural Architecture Search (NAS) has been proved as a

promising way for designing DNN model architecture, es-

pecially in crafting compact models [2].In general, there

Figure 1. The structure comparison between MSNet generated by

our MSNAS algorithm, MobileNetV2, and MnasNet. Our struc-

tural wiring provide better feature extraction and more adaptable

to edge devices. Under the same hardware constraint, MSNet

achieved 93.5% accuracy on visual wake words dataset while

MnasNet and MobileNetV2 are 90% and 90.1%.

are two different NAS approaches to craft DNN models –

cell-based approaches that stacking found cells to automate

the depth discovery of neural architectures, and graph-based

approaches that formulate the overall architecture as a graph

and optimize the flow of information to generate better neu-

ral architectures.

Mobile-size models found by cell-based NAS like Mnas-

Net [2] achieves high accuracy, low computation cost, and

low latency. However, when searching even smaller models

or transforming large/mobile models (e.g., using width mul-

tiplier) on IoT devices [1], such approach usually achieves

poor accuracy due to the redundancy of stacked cells that re-

sults in low accuracy density [3] and pre-defined cell struc-

ture that makes the search space less flexible [4]. For graph-

based architecture, e.g., random wiring [4] relaxes the con-

straints of repetitive cells by exploring more diverse connec-

tivity patterns. By allowing more flexible interconnection

between nodes, random wiring achieves competitive per-

formance for large models [4]. However, these models are

difficult to be transformed to fit microcontrollers or mobile

devices due to the strong dependency of each node (i.e., dif-

ficult to perform width multiplier nor pruning). In addition,

models found by random wiring may induce large activation

memory on SRAM [1, 4].

To overcome the above limitations of existing NAS ap-



Figure 2. Visualization of constraints on both local connectivity

and global connectivity. Smaller kernels represent local connec-

tivity constraints; larger kernels represent global constraints.

proaches, we propose a new graph-based NAS method-

ology called MSNAS (Meta-knowledge based Structural

wiring Neural Architecture Search). MSNAS introduces

two key improvements over existing graph-based NAS,

which makes it very capable in crafting models for IoT

devices. First, by introducing meta-graph, which accumu-

lates learned knowledge, MSNAS can explore a much more

flexible search space while achieving high accuracy density

search and good hardware adaptability. Second, MSNAS

adopts structural wiring architecture, which reduces the de-

pendency between nodes so that it can preserve high ac-

curacy when transforming to small models, a significant

improvement over the existing cell-based approaches and

random wiring method. In addition, MSNAS also sup-

ports multi-objective neural architecture search and facili-

tates adding and changing objectives through changing the

update rules in meta-graph.

Our preliminary experimental evaluation demonstrates

that the model, MSNet, found by MSNAS outperforms

state-of-the-art hardware-aware NAS works. Under the

same IoT device constrained, MSNet achieved 93.5% ac-

curacy, surpassing MobileNet-V2’s 90.1%, and MNasNet’s

90.0%. Compared to MobileNetV1 (400K parameters),

MSNet achieved up to 4.8% performance gain with only

231K parameters. MSNet has only 200KB peak mem-

ory consumption, 20% (50KB) less than MobileNetV2 and

MnasNet.

2. Meta-knowledge based Structural Wiring

We propose MSNAS (Meta-knowledge based Structural

wiring Neural Architecture Search), a new structural wired

neural architecture search method that enables quickly dis-

covering IoT friendly models. MSNAS abstracts the ar-

chitecture of DNNs into several directed acyclic graphs

(DAGs) connected by downsampling modules. All of the

DAGs are independent and each DAG is a sampled sub-

graph from a complete DAG. The target DNN architecture

is divided into several stages represented by their respective

DAGs. A down-sampling module is employed to connect

DAGs in adjacent stages.

Each node of a DAG represents a node operation o and

produces an output tensor x. The node operation can be any

valid operations in DNN architectures, parameterized by

weight parameter W . For Convolutional Neural Networks,

each node can choose the operation from either 1× 1 Con-

volution or 3 × 3 Depthwise Separable Convolution. Each

Convolution operation uses a conv-bn-relu triplet. Each

edge e ∈ E of a DAG represents the flow of tensors be-

tween its two connected nodes, and we use w to denote the

probability of connection of this edge. For example, for

two nodes u, v, edge eu→v = (u, v, wuv) ∈ E represents

the flow of the tensor from node u to node v, and the proba-

bility of the connection is given by wuv . These probabilities

of edge connections are used to generate optimal architec-

tures after the graph propagation process is completed. The

output tensor is computed by concatenating all of the input

nodes within the last dimension and performing the corre-

sponding node operation:

xv = ov({u : eu→v∈E};Wv) (1)

By using filter concatenation, MSNAS-family architectures

are able to gather knowledge from different parts of DNNs

to improve the flow of information between layers like

DenseNets [5].

Search Objective. Unlike existing NAS works which tar-

get at finding the best neural architecture, MSNAS targets

at finding a wide range of neural architectures which can fit

a wide range of resource budgets. MSNAS aims to explore

a family of highly representative architectures by learning

the edge connection probabilities of each DAG (edge con-

nection weights) using a combined search metric with con-

sideration of both performance metrics (e.g., accuracy) and

IoT metrics (e.g., peak memory usage, MAC count, num-

ber of parameters, etc.). For each candidate A, the search

metric M for evaluation is defined as:

M(A) = Perf(w∗(A),A,D)− ·IoT (A) (2)

Where Perf() denotes the performance metrics of current

candidate architecture given optimal weight parameters val-

idated on the proxy dataset 1. IoT() is dependent on both the

resource constraints and the complexity of the graph. This

term is used to penalize extreme resource consumption. D
represents the validation dataset. w∗(A) represents the op-

timal weight parameters which are defined as:

w∗(A) = argmin
w

Ltrain(w,A) (3)

Structural wiring. We define the metric of searching a

hardware-aware structural wiring architecture as follows:

IoT (A) =λa‖ ·
n∑

i

ki ⊛ adj(A)‖0

+ λb ·MACs+ λc · param

(4)

1We randomly select 5,000 samples from the entire CIFAR-10 dataset

as our proxy dataset.



Figure 3. Overview diagram of the search process. To form a sam-

pled DNN, we subsample multiple DAGs from the complete DAG.

After several training epochs with the proxy training set, we use

the search metrics (such as latency and accuracy) to update the

complete DAG.

The Strong interconnection between nodes may induce

activation buffer overflow in SRAM, so we regulate the lo-

cal and global complexity of a sampled neural architecture

by L0-norm. To feed this information as a penalty term in

the search process, we use different sizes of kernel matrices

convolve with the adjacency matrices of candidate architec-

ture, A, to collect local and global sparsity as visualized

in Figure 2. Here ki is the kernel matrix. adj(·) denotes

the adjacency matrix of a given DAG. MAC and param

represents the Multi-Adds and number of parameters in the

entire neural architecture, which are measured in Millions.

λa, λb, λc are adjustable penalty terms. As indicated in Eq.

4, our approach aims to search for IoT-friendly neural ar-

chitectures while applying the constraint of both local con-

nectivity and global connectivity during the search process.

2.1. IoT device friendly Search Workflow

The 3-phase search workflow is visualized in Figure 3.

In phase A, we sample each DAG to obtain a sampled neural

network. In phase B, we train the sampled neural network

on proxy dataset and get the feedback metrics according to

Eq. 2. We use the validation accuracy on the proxy dataset

as the performance metrics and the multi-objective penalty

term in Eq. 4 as the IoT metrics. Finally, in phase C, we

update the connection weights for all the DAGs according

to the sampled architectures and feedback metrics in Eq. 5.

e
k,t

w(i,j) =







e
k,t−1
w(i,j)

Zt
exp[α(η′

− β)] If eki→j ∈ Ek

e
k,t−1
w(i,j)

Zt
Otherwise

(5)

Note that only the weights of edges chosen in the sam-

pled neural networks are updated. Empirically, we apply

exponential function in the update process to boost the train-

ing speed. We also use a scale factor α to adjust the rate of

the update. The updated weights are normalized for a valid

probability representation by Zt.

Figure 4. Visualization of structure-level pruning. The pruning

achieves a trade-off between model size and model performance

within a given hardware budget.

2.2. Post-searching Hardware Adaptation

Existing works such as MobileNets [6, 7] uses width

multiplier to thinner the models and down-scale the channel

depth to remove the redundant channels. However, such ap-

proaches could not identify redundant operations and thus

not very efficient. We propose a new structure-level pruning

method to explore compact architectures according to the

resource constraints. Specifically, the connection weights

that are below the given level are pruned while the connec-

tions weights larger than the level are kept. Figure 4 is a vi-

sualization of structure-level pruning process in a pretrained

meta-graph after knowledge accumulation in MSNAS.

3. Experimental Evaluation

Experiment Setup. We configure our target meta-graph

to have 3 coarse-grained stages. In each stage, we use a

complete DAG with 30 nodes to generate candidate neu-

ral architectures during the search workflow. For down-

sampling modules connecting these DAGs from different

stages, we use Max Pooling Layers with both pooling size

and strides set to 2. During architecture search, hyperpa-

rameters of the searching algorithm need to be configured

carefully. α is set to 0.9, β is the moving average of historic

performance with initial value 0.4. λa is set to 0.1, λb, λc

is set to 1 to penalize hardware cost with respect to the IoT

metric function. Thanks to MSNAS’s ability to efficiently

accumulating knowledge through evaluation of candidate

architectures, we trained the Meta-Graph for 1000 iterations

before the post-searching hardware adaptation. Because of

the small number of iterations, the training process takes

only 8 GPU hours on an NVIDIA GTX 1080 GPU, which

is significantly faster than existing NAS methods such as

MNasNet and Randomly Wired Neural Networks. Previous

works apply width multiplier to adapt to smaller devices.

MnasNet can redo the hardware-aware search to adapt to

different devices. On the contrary, MSNAS does not need to

redo the searching to adapt to different devices. The meta-

graph of MSNAS is able to generate a wide range of ar-

chitectures for different tasks. We evaluate the adaptation

ability of MSNAS using CIFAR-10, Visual Wake Words,



ImageNet.

CIFAR10. We first train the meta-graph of MSNAS using

the CIFAR-10 proxy training dataset. Then we use meta-

graph to generate the neural architecture and train the archi-

tecture to convergence. To show the flexibility and adapt-

ability of MSNAS, we use different pruning threshold to

generate MSNets from MSNAS with consideration of dif-

ferent computational budget. Table 1 reports the validation

accuracy of MSNet on CIFAR-10 dataset and demonstrates

MSNet’s ability to fit for a wide range of computational

budgets. With different structure-level pruning threshold,

MSNet is able to achieve 85%-90% accuracy with 3-36 Mil-

lion Multi-addons. In addition, MSNet has a much higher

MAC efficiency compared to existing works, which veri-

fis that MSNet can well utilize the limited computational

power on IoT devices.

Table 1. Performance and accuracy density of different versions of

MSNet trained on CIFAR-10 in the format of MSNet-k, where k

represents the level of structure-level pruning.

Model Accuracy #MACs

MSNet-0.65 85.92% 3M

MSNet-0.50 88.74% 5M

MSNet-0.40 89.09% 12M

MSNet-0.30 90.17% 36M

Adaptation to IoT devices. Visual wake words dataset

is a common vision task [1] in microcontrollers. Table 2

shows performance on visual wake words dataset for both

hand-crafted models and NAS-based models. For IoT de-

vices, both the peak memory usage limit and parameter stor-

age limit is 250KB. We can see that MSNet has reached the

state-of-art validation accuracy with fewer parameters and

less peak memory consumption than existing state-of-the-

art architectures.

Table 2. Performance of MSNet on IoT tasks.

IoT model - Visual wake words

Model Acc #param MACs Peak Memory

MSNet 93.5% 231K 42M 200KB

MobileNetV1 88.7% 208K 41M 220KB

MobileNetV2 90.1% 290K 54M 252KB

MnasNet 90.0% 400K 54M 255KB

Adaptation to ImageNet. We adapt the microcontroller

model to ImageNet task by changing the size of the out-

put layer to match the number of classes. We increase the

depth of ImageNet model by stacking sub-modules (i.e.,

DAGs between downsampling layers) to form a deeper ar-

chitecture. Table 3 shows the adaptation result of MSNet

on the ImageNet-1k dataset. Compared to state-of-the-art

Table 3. Performance of MSNet on ImageNet-1k.

Mobile model - ImageNet

Model Acc #param MACs Peak Memory

MSNet 59.1% 1556K 58M 250KB

MobileNetV2 58.2% [1] 1660K 43M 250KB

MnasNet 59.7% [1] 1700K 63M 250KB

architectures, MSNet offers competitive results within the

250KB peak memory constraint.

Structure Transferability. MSNAS is capable of provid-

ing a range of flexible neural architectures by changing the

structure-pruning level, thus it is possible for MSNAS to

generate new deep neural networks for new tasks without

further training. We select a wide range of image classi-

fication tasks and use the same meta-graph of MSNAS to

directly generate architectures for them. Table 4 shows that

the adapted models achieved good performance while the

computational cost is only around 1 Million Multi-Adds.

With the extremely low computational cost, MSNet is the

best fit for deployment on IoT applications.

Table 4. Adapt MSNAS to new tasks without further training.

Task #MACs Accuracy

MNIST 0.23M 99.24%

SVHN 1.15M 94.95%

Fashion MNIST 0.86M 93.56%

References

[1] A. Chowdhery, P. Warden, J. Shlens, A. Howard, and

R. Rhodes, “Visual wake words dataset,” arXiv preprint

arXiv:1906.05721, 2019. 1, 4

[2] M. Tan, B. Chen, R. Pang, V. Vasudevan, and Q. V. Le, “Mnas-

net: Platform-aware neural architecture search for mobile,” in

arXiv preprint arXiv:1807.11626, 2018. 1

[3] S. Bianco, R. Cadene, L. Celona, and P. Napoletano, “Bench-

mark analysis of representative deep neural network architec-

tures,” IEEE Access, vol. 6, pp. 64270–64277, 2018. 1

[4] S. Xie, A. Kirillov, R. Girshick, and K. He, “Exploring ran-

domly wired neural networks for image recognition,” arXiv

preprint arXiv:1904.01569, 2019. 1

[5] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Wein-

berger, “Densely connected convolutional networks,” in Pro-

ceedings of the IEEE Conference on Computer Vision and Pat-

tern Recognition, pp. 4700–4708, 2017. 2

[6] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,

T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Effi-

cient convolutional neural networks for mobile vision appli-

cations,” in arXiv preprint arXiv:1704.04861, 2017. 3

[7] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-

C. Chen, “Mobilenetv2: Inverted residuals and linear bottle-

necks,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pp. 4510–4520, 2018. 3


