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Abstract

Convolutional Neural Networks (CNN) have been piv-
otal to the success of many state-of-the-art classification
problems, in a wide variety of domains (for e.g. vision,
speech, graphs and medical imaging). A commonality
within those domains is the presence of hierarchical, spa-
tially agglomerative local-to-global interactions within the
data. For instance in natural images, neighboring pixels
are more likely contain similar values than non-neighboring
pixels which are further apart. To that end, we propose a
statistical metric called spatial orderness, which quantifies
the extent to which the input data (2D) obeys the underly-
ing spatial ordering at various scales. In our experiments,
we mainly find that adding convolutional layers to a CNN
could be counterproductive, when the data lacks spatial or-
der at higher scales. Furthermore, we present a theoretical
analysis (and empirical validation) of the spatial orderness
of network weights, where we find that using smaller ker-
nel sizes leads to kernels of greater spatial orderness and
vice-versa.

1. Introduction

There has been a large body of theoretical and exper-
imental work exploring various attributes of CNNs which
may contribute towards their excellent performance and
generalization abilities ([14, 6, 1, 2]. However, the unusual
effectivess of CNNs on a large variety of domains (vision,
audio, graphs, medical imaging) is still not entirely compre-
hended.

Solely from the perspective of a mathematical function,
it is intruiging to see a convolutional neural network demon-
strate significant performance gains, when compared to a
fully connected deep neural network. Empirical evidence
exists [4, 10, 2] points to greater CNN depth being a key
factor in better performance, but the same cannot be said
of an FC-NN [11]. Unlike a FC-NN, CNN exhibits transla-
tion equivariance across its layers, that enable it to achieve
translation equivariant representations deep within the net-
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work. This is useful for data containing global translational
symmetries, but we see CNNs easily outperform FC-NNs
in datasets such as MNIST where global translational sym-
metries do not exist [12].

Compared to structure-less FC-NNss, the inductive biases
in a CNN are clearly better suited to handle classification
problem in various domains. But, instead of a function-
based introspection of a CNN, we ask which “’convolution-
conducive” characteristics of the data itself enable these in-
ductive biases to flourish?

In this work, we systematically explore these questions,
based on a hypothesis: Convolutional structure in a neu-
ral network benefits from spatially ordered data. We define
spatial order to be the extent to which spatial proximity de-
termines data value proximity. For images, an example of
high spatial order in data is when spatially nearby pixels
are more likely to have similar values than pixels which are
far apart, and vice-versa. Spatially ordered data is likely
to contain more meaningful spatial structure and hierarchy,
and can benefit from locality-preserving feedforward func-
tions; like convolutional operations in CNNs. !

A simple, novel metric for reliably quantifying spatial or-
der in 2D data is proposed in this paper, denoted as spatial
orderness. This metric can either be computed for a single
2D image, or for an entire dataset of 2D images. Theoretical
results and extensive experiments (more in supplementary
material) reveal how spatial orderness of the data is impor-
tant to a CNN, and how it affects the spatial orderness of the
kernels themselves.

2. Multi-Scale Spatial Orderness

First we define a spatial arrangement of pixel locations
(p, q,r) as a two-hop spatial arrangement, where d(p, ¢) =
d(g,r) = 1 and d(p,r) = 2. Here d(z,y) represents the
distance in hops between pixel locations x and .

Given a set of images, I,Is,...,Ix, we first ex-
tract a fixed number ([) of triples of pixel intensities

For graphs, we can extend the definition of spatial order to one of
locality. For instance, a graph where every node is connected to every
other node would be a counter-example of locality in a graph.
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The metric is constrained to the range (0, 1). With this, we
can extend the definition of spatial orderness to multiple
spatial scales. For that, a scale-space like decomposition
is constructed by averaging a X a non-overlapping input re-
gions onto a single pixel value. We let these sets of new
mean downsampled images be denoted as I, 13, ...., I}.
For each set of images at each scale, we denote their corre-
sponding spatial orderness values by so(I)?. At the end, we
have a set of scalar values so(1)!, so(I)?, ..., so(I)P, which
represent the spatial orderness of the data at various scales.
We summarize some the ways in which this measure can be
interpreted:

e Randomly permuting the spatial locations of pixels (or
blocks of pixels) will reduce spatial orderness to zero.
Conversely, when a randomly permuted version of an
input has an equal likelihood of occurence to its non-
permuted form, the spatial orderness of data is zero at
all scales.

e Spatial orderness at the lowest scale is indicative of
how much more accurately the value of a pixel can be
interpolated from a neighbor pixel than a non-neighbor
pixel which is at a distance of 2 hops.

3. Experiments

The experiments reported herewith are conducted on
the MNIST [8], Fashion-MNIST [13] and CIFAR-10 [7]
datasets. For MNIST and Fashion-MNIST, we perform
2 x 2 max-pooling after each convolution layer, whereas for
CIFAR-10, pooling was only performed after each alternate
convolution layer. Additionally, a two layer fully connected
network is used for CIFAR-10, whereas a single fc layer is
used for MNIST and Fashion-MNIST. For consistency we
used 64 units in all hidden layers, with kernels of size 3 x 3,
except in section 4.1 (variation of kernel size).

3.1. Disrupting Spatial Orderness: Random Block-
Swapping

Here we describe a method for disrupting the spatial or-
derness of the data at various scales, by performing block-
swapping on the input. First we divide (N x N) images into
blocks of size k x k, such that N/k x N/k blocks span the
entire image. Next, in each iteration of block swapping, a
random chosen pair of image blocks are entirely swapped.
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Figure 1. Spatial orderness of the MNIST, Fashion-MNIST and

CIFAR-10 datasets at various scales, and their changes with block-
swap operations performed on the data. For instance, the plots
in red showcase the spatial orderness of the original, unswapped
datasets (/s = 0) at specific scales. For each dataset, block swap-
ping was performed at a certain scale (specified on top).

We then repeat this process for Ns number of iterations.
More swaps (larger Ns) will lead to a greater disruption
of spatial order, and thus should elicit lower values of spa-
tial orderness, and vice-versa. Furthermore, the scale of
the swap is relevant: swapping at a certain scale must not
greatly impact the spatial orderness of lower scales, as the
spatial arrangement in those scales is not overly affected. 2

3.1.1 Random Block-Swapping: Impact on Spatial Or-
derness

To analyze the effect of block-swapping on spatial or-
derness measures at various scales, we simply vary the
number of block-swap operations on each image of the
corresponding datasets. Increasing the number of swaps
leads to a steady reduction of spatial order as a whole,
in the data. Therefore, a metric which measures spatial
order must return smaller values at the corresponding
scale when the block swap operations on the image are
increased. For our experiments, we block-swap at four
sets of scales (Ns = (0,10,20,30)) for the datasets of
MNIST (at Scale=6), Fashion-MNIST (at Scale=6) and
CIFAR-10 (at Scale=8), generating a total of 12 datasets:
MNIST-swapg(0,10,20,30), CIFAR10-swapg(0,10,20,30)
and Fashion-MNIST-swapg(0,10,20,30). The results are
shown in figure 1.

First, we expectedly observe that in all three datasets,
spatial orderness at the highest scale is significantly lower
than in the initial scales. This fact re-affirms the appar-
ent “bag-of-features” like organisation of images at higher
scales (objects or patterns are more positionally decorre-
lated at higher scales) (see [3]).

2Block-swapping at higher scales cannot altogether avoid disrupting
the spatial order at lower scales, due to boundary effects of the blocks.
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Figure 2. Semilog plots showing the test error rate of networks of different depths, trained on data corrupted by various degrees of spatial
block-swapping (Ns = (0, 10, 20, 30)) on three different datasets (MNIST, Fashion-MNIST and CIFAR-10). Note that for data lacking
in spatial order (Ns > 0), depth additions beyond a certain point do not yield improvements. Instead, such additions often significantly

increase error rate, for larger Vs.

3.1.2 Classification experiments: Is greater convolu-
tional depth always better ?

Here we document CNN classification performance on
MNIST-swapg(0,10,20,30), CIFAR10-swapg(0,10,20,30)
and the Fashion-MNIST-swapg(0,10,20,30) datasets. Our
primary hypothesis is that convolution layers exploit
the spatial orderness of data at multiple scales. Hence,
for block-swapped data, we must expect the addition of
convolution layers (beyond the scale of the swap) to pay de-
creasing dividends. Furthermore, because the block-swaps
are only done at a higher scale, we should still find that
adding initial convolution layers are beneficial, as spatial
orderness of initial scales are still preserved (Figure 1).

Results are shown in figure 2. As hypothesized, we find
that indeed adding convolution layers lead to decreasing
gains, for larger number of block-swaps at the correspond-
ing scales (larger IVs). Also, as anticipated, we observe that
initial additions of convolution layers reduce test errors ir-
respective of block swapping. These findings are consistent
with the theoretical results in [9].

4. Spatial Orderness of Kernels

4.1. Theoretical Results and Experimental Valida-
tion (Please see the Appendices)

We note that just like the inputs and the feature maps, one
can treat the kernels (of size K x K) as 2D images them-
selves. As such, it is also possible to compute the spatial
orderness within the kernels, at the end of training. Con-
volution is linear in nature, and will elicit larger output re-
sponses when the input patches are highly correlated to the
kernel form. Thus, kernels with very low spatial order (e.g.
white noise kernels) are less likely to extract spatially struc-
tured and meaningful features, and vice-versa. Hence, from
a feature extraction point of view, it is desirable that weights

exhibit higher spatial orderness.

Here we summarize our theoretical results on the spatial
orderness of kernels. Please find our main theoretical results
(Theorems 1, Corollaries 1.1 and 1.2) and proofs in the sup-
plementary material below. We summarize the theorems as
follows.

e Theorem 1 and Corollary 1.2: How is the spatial
orderness of kernels and the spatial orderness of the
feature map input related ? We find that the spatial
orderness of the kernels are likely to be higher when
the inputs themselves have higher spatial orderness.

e Corollary 1.1: How is the spatial orderness of ker-
nels related to the choice of kernel size ? We find that
choosing a larger kernel size can lead to kernels with
lower spatial orderness’. This shows that the choice of
kernel size is quite important w.r.t ensuring spatially
ordered kernels.

To verify the above theoretical results empirically, we
train a CNN with 3 layers on a subset of MNIST. Figure 3
(a) and (b) shows the spatial orderness of kernels computed
against variation of input spatial orderness, and kernel size
respectively. We find that the experiments corroborate to
our theoretical predictions.

These results add an interesting perspective on the de-
bate of CNNs versus FC-NNs. Taken together, the results
imply that a CNN is more likely to extract spatially ordered
and meaningful features, subject to two necessary condi-
tions: (a) the kernel size of the convolutions are small (i.e.
more CNN than FC-NN like) and (b) the data on which the
network is trained exhibits high spatial orderness.

3Note that by “’spatial orderness of kernels” we mean the average spatial
orderness of post-trained kernel weights (averaged across all kernels within
alayer). In the following section, we empirically substantiate the results in
the theorems.
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Figure 3. (a) demonstrates that disruption of spatial orderness at
the input has an immediate effect on the spatial orderness of the
kernels, and (b) shows that the size of kernels affect the spatial
orderness of the trained kernels. All experiments were done on
MNIST-1000 (1000 training examples used) and each experiment
was repeated across six random splits of the data.

5. Discussions: Connection to Other Works

Recently it was found that on Imagenet, a bag-of-
features based approach with shallow CNNs performs sur-
prisingly close to bigger models which exploit spatial struc-
ture at higher scales [3]. Hence, spatial arrangement infor-
mation beyond a certain scale is not very yielding in terms
of improving classification performance. This is consistent
with our findings in this paper. For instance, in section
3.1.1, it is observed that the spatial orderness of the image
at higher scales is usually less than that of the lower scales,
i.e. approaching a bag-of-features like organization.

Another example of testing the generalization abilities
of CNNs is discussed in [5]. The authors observe that
the CNN fails to generalize well when recognizability-
preserving fourier domain filter masks were applied to the
input. Throughout their experiments, the authors observe
that the CNN trained on the low pass filtered radially-
masked inputs showed the most consistent performance
across datasets, having the smallest generalization gap. Our
analysis on the spatial orderness of kernels in section 4 pro-
vides a possible explanation. Low-pass filtering enhances
the spatial orderness of the input which ensures that trained
kernels have greater spatial orderness; a reason for more
consistent performance across data distortion variations.

6. Conclusions

A new statistical measure for quantifying spatial order
within 2D data at various scales was proposed, called spa-
tial orderness. This measure was shown to be indicative
of the spatial organization at various scales, decreasing in
value in correlation to the amount of input block-swapping
performed. The performance gains from adding convolu-
tion layers was demonstrated to weaken with greater spa-
tial order disruption. Theoretical and empirical results

demonstrated the correlation between the spatial orderness
of trained kernels, and the spatial orderness of the input.
Additionally, we find that spatial orderness of kernels shows
a significant drop with greater kernel-size, as it approaches
a FC-NN like configuration.
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