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Abstract

Convolutional Neural Networks (CNN) have been piv-

otal to the success of many state-of-the-art classification

problems, in a wide variety of domains (for e.g. vision,

speech, graphs and medical imaging). A commonality

within those domains is the presence of hierarchical, spa-

tially agglomerative local-to-global interactions within the

data. For instance in natural images, neighboring pixels

are more likely contain similar values than non-neighboring

pixels which are further apart. To that end, we propose a

statistical metric called spatial orderness, which quantifies

the extent to which the input data (2D) obeys the underly-

ing spatial ordering at various scales. In our experiments,

we mainly find that adding convolutional layers to a CNN

could be counterproductive, when the data lacks spatial or-

der at higher scales. Furthermore, we present a theoretical

analysis (and empirical validation) of the spatial orderness

of network weights, where we find that using smaller ker-

nel sizes leads to kernels of greater spatial orderness and

vice-versa.

1. Introduction

There has been a large body of theoretical and exper-

imental work exploring various attributes of CNNs which

may contribute towards their excellent performance and

generalization abilities ([14, 6, 1, 2]. However, the unusual

effectivess of CNNs on a large variety of domains (vision,

audio, graphs, medical imaging) is still not entirely compre-

hended.

Solely from the perspective of a mathematical function,

it is intruiging to see a convolutional neural network demon-

strate significant performance gains, when compared to a

fully connected deep neural network. Empirical evidence

exists [4, 10, 2] points to greater CNN depth being a key

factor in better performance, but the same cannot be said

of an FC-NN [11]. Unlike a FC-NN, CNN exhibits transla-

tion equivariance across its layers, that enable it to achieve

translation equivariant representations deep within the net-

work. This is useful for data containing global translational

symmetries, but we see CNNs easily outperform FC-NNs

in datasets such as MNIST where global translational sym-

metries do not exist [12].

Compared to structure-less FC-NNs, the inductive biases

in a CNN are clearly better suited to handle classification

problem in various domains. But, instead of a function-

based introspection of a CNN, we ask which ”convolution-

conducive” characteristics of the data itself enable these in-

ductive biases to flourish?

In this work, we systematically explore these questions,

based on a hypothesis: Convolutional structure in a neu-

ral network benefits from spatially ordered data. We define

spatial order to be the extent to which spatial proximity de-

termines data value proximity. For images, an example of

high spatial order in data is when spatially nearby pixels

are more likely to have similar values than pixels which are

far apart, and vice-versa. Spatially ordered data is likely

to contain more meaningful spatial structure and hierarchy,

and can benefit from locality-preserving feedforward func-

tions; like convolutional operations in CNNs. 1

A simple, novel metric for reliably quantifying spatial or-

der in 2D data is proposed in this paper, denoted as spatial

orderness. This metric can either be computed for a single

2D image, or for an entire dataset of 2D images. Theoretical

results and extensive experiments (more in supplementary

material) reveal how spatial orderness of the data is impor-

tant to a CNN, and how it affects the spatial orderness of the

kernels themselves.

2. Multi-Scale Spatial Orderness

First we define a spatial arrangement of pixel locations

(p, q, r) as a two-hop spatial arrangement, where d(p, q) =
d(q, r) = 1 and d(p, r) = 2. Here d(x, y) represents the

distance in hops between pixel locations x and y.

Given a set of images, I1, I2, ..., Ik, we first ex-

tract a fixed number (l) of triples of pixel intensities

1For graphs, we can extend the definition of spatial order to one of

locality. For instance, a graph where every node is connected to every

other node would be a counter-example of locality in a graph.
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The metric is constrained to the range (0, 1). With this, we

can extend the definition of spatial orderness to multiple

spatial scales. For that, a scale-space like decomposition

is constructed by averaging a× a non-overlapping input re-

gions onto a single pixel value. We let these sets of new

mean downsampled images be denoted as Ia
1
, Ia

2
, ...., Iak .

For each set of images at each scale, we denote their corre-

sponding spatial orderness values by so(I)a. At the end, we

have a set of scalar values so(I)1, so(I)2, ..., so(I)p, which

represent the spatial orderness of the data at various scales.

We summarize some the ways in which this measure can be

interpreted:

• Randomly permuting the spatial locations of pixels (or

blocks of pixels) will reduce spatial orderness to zero.

Conversely, when a randomly permuted version of an

input has an equal likelihood of occurence to its non-

permuted form, the spatial orderness of data is zero at

all scales.

• Spatial orderness at the lowest scale is indicative of

how much more accurately the value of a pixel can be

interpolated from a neighbor pixel than a non-neighbor

pixel which is at a distance of 2 hops.

3. Experiments

The experiments reported herewith are conducted on

the MNIST [8], Fashion-MNIST [13] and CIFAR-10 [7]

datasets. For MNIST and Fashion-MNIST, we perform

2×2 max-pooling after each convolution layer, whereas for

CIFAR-10, pooling was only performed after each alternate

convolution layer. Additionally, a two layer fully connected

network is used for CIFAR-10, whereas a single fc layer is

used for MNIST and Fashion-MNIST. For consistency we

used 64 units in all hidden layers, with kernels of size 3×3,

except in section 4.1 (variation of kernel size).

3.1. Disrupting Spatial Orderness: Random Block-
Swapping

Here we describe a method for disrupting the spatial or-

derness of the data at various scales, by performing block-

swapping on the input. First we divide (N×N) images into

blocks of size k × k, such that N/k ×N/k blocks span the

entire image. Next, in each iteration of block swapping, a

random chosen pair of image blocks are entirely swapped.

Figure 1. Spatial orderness of the MNIST, Fashion-MNIST and

CIFAR-10 datasets at various scales, and their changes with block-

swap operations performed on the data. For instance, the plots

in red showcase the spatial orderness of the original, unswapped

datasets (Ns = 0) at specific scales. For each dataset, block swap-

ping was performed at a certain scale (specified on top).

We then repeat this process for Ns number of iterations.

More swaps (larger Ns) will lead to a greater disruption

of spatial order, and thus should elicit lower values of spa-

tial orderness, and vice-versa. Furthermore, the scale of

the swap is relevant: swapping at a certain scale must not

greatly impact the spatial orderness of lower scales, as the

spatial arrangement in those scales is not overly affected. 2

3.1.1 Random Block-Swapping: Impact on Spatial Or-

derness

To analyze the effect of block-swapping on spatial or-

derness measures at various scales, we simply vary the

number of block-swap operations on each image of the

corresponding datasets. Increasing the number of swaps

leads to a steady reduction of spatial order as a whole,

in the data. Therefore, a metric which measures spatial

order must return smaller values at the corresponding

scale when the block swap operations on the image are

increased. For our experiments, we block-swap at four

sets of scales (Ns = (0, 10, 20, 30)) for the datasets of

MNIST (at Scale=6), Fashion-MNIST (at Scale=6) and

CIFAR-10 (at Scale=8), generating a total of 12 datasets:

MNIST-swap6(0,10,20,30), CIFAR10-swap8(0,10,20,30)

and Fashion-MNIST-swap6(0,10,20,30). The results are

shown in figure 1.

First, we expectedly observe that in all three datasets,

spatial orderness at the highest scale is significantly lower

than in the initial scales. This fact re-affirms the appar-

ent ”bag-of-features” like organisation of images at higher

scales (objects or patterns are more positionally decorre-

lated at higher scales) (see [3]).

2Block-swapping at higher scales cannot altogether avoid disrupting

the spatial order at lower scales, due to boundary effects of the blocks.



Figure 2. Semilog plots showing the test error rate of networks of different depths, trained on data corrupted by various degrees of spatial

block-swapping (Ns = (0, 10, 20, 30)) on three different datasets (MNIST, Fashion-MNIST and CIFAR-10). Note that for data lacking

in spatial order (Ns > 0), depth additions beyond a certain point do not yield improvements. Instead, such additions often significantly

increase error rate, for larger Ns.

3.1.2 Classification experiments: Is greater convolu-

tional depth always better ?

Here we document CNN classification performance on

MNIST-swap6(0,10,20,30), CIFAR10-swap8(0,10,20,30)

and the Fashion-MNIST-swap6(0,10,20,30) datasets. Our

primary hypothesis is that convolution layers exploit

the spatial orderness of data at multiple scales. Hence,

for block-swapped data, we must expect the addition of

convolution layers (beyond the scale of the swap) to pay de-

creasing dividends. Furthermore, because the block-swaps

are only done at a higher scale, we should still find that

adding initial convolution layers are beneficial, as spatial

orderness of initial scales are still preserved (Figure 1).

Results are shown in figure 2. As hypothesized, we find

that indeed adding convolution layers lead to decreasing

gains, for larger number of block-swaps at the correspond-

ing scales (larger Ns). Also, as anticipated, we observe that

initial additions of convolution layers reduce test errors ir-

respective of block swapping. These findings are consistent

with the theoretical results in [9].

4. Spatial Orderness of Kernels

4.1. Theoretical Results and Experimental Valida-
tion (Please see the Appendices)

We note that just like the inputs and the feature maps, one

can treat the kernels (of size K × K) as 2D images them-

selves. As such, it is also possible to compute the spatial

orderness within the kernels, at the end of training. Con-

volution is linear in nature, and will elicit larger output re-

sponses when the input patches are highly correlated to the

kernel form. Thus, kernels with very low spatial order (e.g.

white noise kernels) are less likely to extract spatially struc-

tured and meaningful features, and vice-versa. Hence, from

a feature extraction point of view, it is desirable that weights

exhibit higher spatial orderness.

Here we summarize our theoretical results on the spatial

orderness of kernels. Please find our main theoretical results

(Theorems 1, Corollaries 1.1 and 1.2) and proofs in the sup-

plementary material below. We summarize the theorems as

follows.

• Theorem 1 and Corollary 1.2: How is the spatial

orderness of kernels and the spatial orderness of the

feature map input related ? We find that the spatial

orderness of the kernels are likely to be higher when

the inputs themselves have higher spatial orderness.

• Corollary 1.1: How is the spatial orderness of ker-

nels related to the choice of kernel size ? We find that

choosing a larger kernel size can lead to kernels with

lower spatial orderness3. This shows that the choice of

kernel size is quite important w.r.t ensuring spatially

ordered kernels.

To verify the above theoretical results empirically, we

train a CNN with 3 layers on a subset of MNIST. Figure 3

(a) and (b) shows the spatial orderness of kernels computed

against variation of input spatial orderness, and kernel size

respectively. We find that the experiments corroborate to

our theoretical predictions.

These results add an interesting perspective on the de-

bate of CNNs versus FC-NNs. Taken together, the results

imply that a CNN is more likely to extract spatially ordered

and meaningful features, subject to two necessary condi-

tions: (a) the kernel size of the convolutions are small (i.e.

more CNN than FC-NN like) and (b) the data on which the

network is trained exhibits high spatial orderness.

3Note that by ”spatial orderness of kernels” we mean the average spatial

orderness of post-trained kernel weights (averaged across all kernels within

a layer). In the following section, we empirically substantiate the results in

the theorems.



Figure 3. (a) demonstrates that disruption of spatial orderness at

the input has an immediate effect on the spatial orderness of the

kernels, and (b) shows that the size of kernels affect the spatial

orderness of the trained kernels. All experiments were done on

MNIST-1000 (1000 training examples used) and each experiment

was repeated across six random splits of the data.

5. Discussions: Connection to Other Works

Recently it was found that on Imagenet, a bag-of-

features based approach with shallow CNNs performs sur-

prisingly close to bigger models which exploit spatial struc-

ture at higher scales [3]. Hence, spatial arrangement infor-

mation beyond a certain scale is not very yielding in terms

of improving classification performance. This is consistent

with our findings in this paper. For instance, in section

3.1.1, it is observed that the spatial orderness of the image

at higher scales is usually less than that of the lower scales,

i.e. approaching a bag-of-features like organization.

Another example of testing the generalization abilities

of CNNs is discussed in [5]. The authors observe that

the CNN fails to generalize well when recognizability-

preserving fourier domain filter masks were applied to the

input. Throughout their experiments, the authors observe

that the CNN trained on the low pass filtered radially-

masked inputs showed the most consistent performance

across datasets, having the smallest generalization gap. Our

analysis on the spatial orderness of kernels in section 4 pro-

vides a possible explanation. Low-pass filtering enhances

the spatial orderness of the input which ensures that trained

kernels have greater spatial orderness; a reason for more

consistent performance across data distortion variations.

6. Conclusions

A new statistical measure for quantifying spatial order

within 2D data at various scales was proposed, called spa-

tial orderness. This measure was shown to be indicative

of the spatial organization at various scales, decreasing in

value in correlation to the amount of input block-swapping

performed. The performance gains from adding convolu-

tion layers was demonstrated to weaken with greater spa-

tial order disruption. Theoretical and empirical results

demonstrated the correlation between the spatial orderness

of trained kernels, and the spatial orderness of the input.

Additionally, we find that spatial orderness of kernels shows

a significant drop with greater kernel-size, as it approaches

a FC-NN like configuration.
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