
AdvGAN++: Harnessing Latent Layers for Adversary Generation

Puneet Mangla∗

IIT Hyderabad, India

cs17btech11029@iith.ac.in

Surgan Jandial∗

IIT Hyderabad, India

jandialsurgan@gmail.com

Sakshi Varshney∗

IIT Hyderabad, India

cs16resch01002@iith.ac.in

Vineeth N Balasubramanian

IIT Hyderabad, India

vineethnb@iith.ac.in

Abstract

Adversarial examples are fabricated examples, indistin-

guishable from the original image that mislead neural net-

works and drastically lower their performance. Recently

proposed AdvGAN, a GAN based approach, takes input im-

age as a prior for generating adversaries to target a model.

In this work, we show how latent features can serve as bet-

ter priors than input images for adversary generation by

proposing AdvGAN++, a version of AdvGAN that achieves

higher attack rates than AdvGAN and at the same time gen-

erates perceptually realistic images on MNIST and CIFAR-

10 datasets.

1. Introduction and Related Work

Deep Neural Networks(DNNs), now have become a

common ingredient to solve various tasks dealing with clas-

sification, object recognition, segmentation, reinforcement

learning, speech recognition etc. However recent works

[18, 4, 15, 13, 19, 6] have shown that these DNNs can be

easily fooled using carefully fabricated examples that are in-

distinguishable to original input. Such fabricated examples,

knows as adversarial examples mislead the neural networks

by drastically changing their latent features, thus affecting

their output.

Adversarial attacks are broadly classified into White box

and Black box attacks. White box attacks such as FGSM

[2] and DeepFool [12] have access to the full target model.

In contrary to this black box attacks like Carlini and Wag-

ner. [1], the attacker does not have access to the structure

or parameters of the target model, it only has access to the

labels assigned for the selected input image.

Gradient based attack methods like Fast Gradient Sign

Method (FGSM) obtains an optimal max-norm constrained

∗Authors contributed equally

perturbation of

η = ǫsign(▽xJ(θ, x, y)) (1)

where J is the cost function and gradient is calculated w.r.t

to input example.

Optimization-based methods like Carlini Wagner [1] op-

timize the adversarial perturbations subject to several con-

straints. This approach targets L0, L2, L∞ distance metrics

for attack purpose. The optimization objective used in the

approach makes it slow as it can focus on one perturbation

instance at a time.

In contrary to this, AdvGAN [17] used a GAN [3] with

an encoder-decoder based generator to generate perceptu-

ally more realistic adversarial examples, close to original

distribution. The generator network produces adversarial

perturbation G(x) when an original image instance (x) is

provided as input. The discriminator tries to distinguish

adversarial image (x + G(x)) with original instance (x).
Apart from standard GAN loss, it uses hinge loss to bound

the magnitude of maximum perturbation and an adversar-

ial loss to guide the generation of image in adversarial way.

Though, AdvGAN is able to generate the realistic examples,

it fails to exploit latent features as priors which are shown to

be more susceptible to the adversarial perturbations recently

[14].

Our Contributions in this work are:

• We show that the latent features serve as a better prior

for adversarial generation than the whole input image

for the untargeted attacks thereby utilizing the observa-

tion from [14] and at same time eliminating the need

to follow encoder-decoder based architecture for gen-

erator, thus reducing training/inference overhead.

• Since GANs are already found to work well in a con-

ditioned setting [7, 11], we show that we can directly

make generator to learn the transition from latent fea-

ture space to adversarial image rather than from the

whole input image.



In the end, through quantitative and qualitative evalua-

tion we show that our examples look perceptually very sim-

ilar to the real ones and have higher attack success rates

compared to AdvGAN.

2. Methodology

2.1. Problem definition

Given a model M that accurately maps image x sampled

from a distribution pdata to its corresponding label t, We

train a generator G to generate an adversary xadv of image

x using its feature map (extracted from a feature extractor)

as prior. Mathematically :

xadv = G(z|f(x)) (2)

such that

M(xadv) �= t, (3)

‖x− xadv‖p < ǫ, (4)

where 1 ≤ p < ∞, ǫ > 0, f represents a feature extractor

and ǫ is maximum magnitude ‖.‖p perturbation allowed.

2.2. Harnessing latent features for adversary gen-
eration

We now propose our attack, AdvGAN++ which take la-

tent feature map of original image as prior for adversary

generation. Figure 1 shows the architecture of our proposed

network. It contains the target model M , a a feature ex-

tractor f , generator network G and a discriminator network

D. The generator G receives feature f(x) of image x and

a noise vector z (as a concatenated vector) and generates

an adversary xadv corresponding to x. The discriminator D

distinguishes the distribution of generator output with actual

distribution pdata. In order to fool the target model M , gen-

erator minimize Mt(xadv), which represents the softmax-

probability of adversary xadv belonging to class t. To bound

the magnitude of perturbation, we also minimize l2 loss be-

tween the adversary xadv and x. The final loss function is

expressed as :

L(G,D) = LGAN + αLadv + βLpert (5)

where

LGAN = Ex[logD(x) + Exlog(1−D(G(z|f(x)))], (6)

Ladv = Ex[Mt(G(z|f(x)))], (7)

Lpert = Ex‖x−G(z|f(x))‖2 (8)

Here α , β are hyper-parameters to control the weight-

age of each objective. The feature f(.) is extracted from one

of the intermediate convolutional layers of target model M .

By solving the min-max game argminG maxD L(G,D)
we obtain optimal parameters for G and D. The training

Figure 1: AdvGAN++ architecture.

procedure thus ensures that we learn to generate adversarial

images close to input distribution that harness the suscepti-

bility of latent features to adversarial perturbations. Algo-

rithm 1 summarizes the training procedure of AdvGAN++.

Algorithm 1: AdvGAN++ training

for number of training iterations do

Sample a mini-batch of m noise samples { z(1), ...

z(m) } from noise prior pg(z) ;

Sample a mini-batch of m examples {x(1), ... x(m)

} from data generating distribution pdata(x);

Extract latent features {f(x(1)), ... f(x(m)) };

Update the discriminator by ascending its

stochastic gradient. ;

▽θD
1
m

∑m

i=1 log(D(x(i))) + log(1−

D(G(z(i)|f(x(i)))));

Sample a mini-batch of m noise samples { z(1)

,z(2) ... z(m) } from noise prior pg(z);

Update the generator by descending its stochastic

gradient. ;

▽θG
1
m

∑m

i=1 log(1−D(G(z(i)|f(x(i))))

+‖x(i) −G(z(i)|f(x(i)))‖2 +
Mt(G(z(i)|f(x(i))))

end

3. Experiments

In this section we evaluate the performance of Adv-

GAN++, both quantitatively and qualitatively. We start

by describing datasets and model-architectures followed by

implementation details and results.



Data Model Defense AdvGAN AdvGAN++

MNIST Lenet C

FGSM Adv. training 18.7 20.02

Iter. FGSM training 13.5 27.31

Ensemble training 12.6 28.01

CIFAR-10

Resnet-32

FGSM Adv. training 16.03 29.36

Iter. FGSM training 14.32 32.34

Ensemble training 29.47 34.74

Wide-Resnet-34-10

FGSM Adv. training 14.26 26.12

Iter. FGSM training 13.94 43.2

Ensemble training 20.75 23.54

Table 1: Attack success rate of Adversarial examples generated AdvGAN++ when target model is under defense.

Data Target Model AdvGAN AdvGAN++

MNIST Lenet C 97.9 98.4

CIFAR-10
Resnet-32 94.7 97.2

Wide-Resnet-34-10 99.3 99.92

Table 2: Attack success rate of AdvGAN and AdvGAN++

under no defense

Datasets and Model Architectures: We perform exper-

iments on MNIST[10] and CIFAR-10[8] datasets wherein

we train AdvGAN++ using training set and do evaluations

on test set. We follow Lenet architecture C from [16] for

MNIST[10] as our target model. For CIFAR-10[8], we

show our results on Resnet-32 [5] and Wide-Resnet-34-10

[20].

3.1. Implementation details

We use an encoder and decoder based architecture of dis-

criminator D and generator G respectively. For feature ex-

tractor f we use the last convolutional layer of our target

model M . Adam optimizer with learning rate 0.01 and β1

= 0.5 and β2 = 0.99 is used for optimizing generator and

discriminator. We sample the noise vector from a normal

distribution and use label smoothing to stabilize the train-

ing procedure.

3.2. Results

Attack under no defense We compare the attack suc-

cess rate of examples generated by AdvGAN and Adv-

GAN++ on target models without using any defense strate-

gies on them. The results in table 2 shows that with much

less training/inference overhead, AdvGAN++ performs bet-

ter than AdvGAN.

Attack under defense We perform experiment to com-

pare the attack success rate of AdvGAN++ with AdvGAN

when target model M is trained using various defense

mechanism such as FGSM[2] , iterative FGSM [9] and en-

semble adversarial training [16]. For this, we first gener-

ate adversarial examples using original model M as tar-

Data Target Model Other Model Attack Success rate

MNIST LeNet C LeNet B [16] 20.24

CIFAR-10
Resnet-32 A Wide-Resnet-34 48.22

Wide-Resnet-34 Resnet-32 89.4

Table 3: Transferability of adversarial examples generated

by AdvGAN++

get (without any defense) and then evaluate the attack suc-

cess rate of these adversarial examples on same model, now

trained using one of the aforementioned defense strategies.

Table 1 shows that AdvGAN++ performs better than the

AdvGAN under various defense environment.

Visual results Figure 2 shows the adversarial images

generated by AdvGAN++ on MNIST[10] and CIFAR-10[8]

datasets. It shows the ability of AdvGAN++ to generate

perceptually realistic adversarial images.

Transferability to other models Table 3 shows attack

success rate of adversarial examples generated by Adv-

GAN++ and evaluated on different model M
′

doing the

same task. From the table we can see that the adversaries

produced by AdvGAN++ are significantly transferable to

other models performing the same task which can also be

used to attack a model in a black-box fashion.

4. Conclusion

In our work, we study the gaps left by AdvGAN [17]

mainly focusing on the observation [14] that latent features

are more prone to alteration by adversarial noise as com-

pared to the input image. This not only reduces training

time but also increases attack success rate. This vulnerabil-

ity of latent features made them a better candidate for being

the starting point for generation and allowed us to propose

a generator that could directly convert latent features to the

adversarial image.

5. Acknowledgements

This work was supported by Intel AI Devcloud by pro-

viding Intel Xeon Scalable Processors for experiments.



Figure 2: Adversarial images generated by AdvGAN++ for MNIST and CIFAR-10 dataset. Row 1: Original image, Row 2:

generated adversarial example.

References

[1] N. Carlini, David, and Wagner. Towards evaluating the ro-

bustness of neural networks. In Security and Privacy (SP),

2017 IEEE Symposium on, page 3957, 2017. 1

[2] I. Goodfellow, J. Shlens, and C. Szegedy. Explaining and

harnessing adversarial examples. In International Confer-

ence on LearningRepresentations,, 2015. 1, 3

[3] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-

erative adversarial networks, 2014. 1

[4] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and

P. McDaniel. Adversarial examples for malware detection. In

S. N. Foley, D. Gollmann, and E. Snekkenes, editors, Com-

puter Security – ESORICS 2017, pages 62–79, Cham, 2017.

Springer International Publishing. 1

[5] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition, 2015. 3

[6] S. H. Huang, N. Papernot, I. J. Goodfellow, Y. Duan, and

P. Abbeel. Adversarial attacks on neural network policies.

CoRR, abs/1702.02284, 2017. 1

[7] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image

translation with conditional adversarial networks, 2016. 1

[8] A. Krizhevsky, V. Nair, and G. Hinton. Cifar-10 (canadian

institute for advanced research). 3

[9] A. Kurakin, I. J. Goodfellow, and S. Bengio. Adversarial ex-

amples in the physical world. CoRR, abs/1607.02533, 2016.

3

[10] Y. LeCun and C. Cortes. MNIST handwritten digit database.

2010. 3

[11] M. Mirza and S. Osindero. Conditional generative adversar-

ial nets, 2014. 1

[12] Seyed-Mohsen, Moosavi-Dezfooli, A. Fawzi, and

P. Frossard. deepfool: a simple and accurate method

to fool deep neural networks,. IEEE Conference on

Computer Vision and Pattern Recognition (CVPR),, 2016. 1

[13] M. Sharif, S. Bhagavatula, L. Bauer, and M. K. Reiter. Ac-

cessorize to a crime: Real and stealthy attacks on state-of-

the-art face recognition. In Proceedings of the 2016 ACM

SIGSAC Conference on Computer and Communications Se-

curity, CCS ’16, pages 1528–1540, New York, NY, USA,

2016. ACM. 1

[14] M. Singh, A. Sinha, N. Kumari, H. Machiraju, B. Krishna-

murthy, and V. N. Balasubramanian. Harnessing the vulner-

ability of latent layers in adversarially trained models, 2019.

1, 3

[15] R. Taori, A. Kamsetty, B. Chu, and N. Vemuri. Targeted

adversarial examples for black box audio systems. CoRR,

abs/1805.07820, 2018. 1

[16] F. Tramèr, A. Kurakin, N. Papernot, I. Goodfellow,

D. Boneh, and P. McDaniel. Ensemble adversarial train-

ing: Attacks and defenses. arXiv preprint arXiv:1705.07204,

2017. 3

[17] C. Xiao, B. Li, J.-Y. Zhu, W. He, M. Liu, and D. Song. Gen-

erating adversarial examples with adversarial networks. IJ-

CAI, 2018. 1, 3

[18] C. Xie, J. Wang, Z. Zhang, Y. Zhou, L. Xie, and A. Yuille.

Adversarial examples for semantic segmentation and object

detection. In International Conference on Computer Vision.

IEEE, 2017. 1

[19] X. Yuan, P. He, and X. A. Li. Adaptive adversarial attack on

scene text recognition. CoRR, abs/1807.03326, 2018. 1

[20] S. Zagoruyko and N. Komodakis. Wide residual networks,

2016. 3


