
SqueezeNAS: Fast Neural Architecture Search for Faster Semantic Segmentation

Albert Shaw, Daniel Hunter, Forrest Iandola and Sammy Sidhu

DeepScale Inc.
{albert,daniel,forrest,sammy}@deepscale.ai

Abstract

For real time applications utilizing Deep Neural Networks

(DNNs), it is critical that the models achieve high-accuracy

on the target task and low-latency inference on the tar-

get computing platform. While Neural Architecture Search

(NAS) has been effectively used to develop low-latency net-

works for image classification, there has been relatively little

effort to use NAS to optimize DNN architectures for other

vision tasks. In this work, we present what we believe to

be the first proxyless hardware-aware search targeted for

dense semantic segmentation. With this approach, we ad-

vance the state-of-the-art accuracy for latency-optimized

networks on the Cityscapes semantic segmentation dataset.

Our latency-optimized small SqueezeNAS network achieves

68.02% validation class mIOU with less than 35 ms infer-

ence times on the NVIDIA Xavier. Our latency-optimized

large SqueezeNAS network achieves 73.62% class mIOU

with less than 100 ms inference times. We demonstrate that

significant performance gains are possible by utilizing NAS

to find networks optimized for both the specific task and

inference hardware. We also present detailed analysis com-

paring our networks to recent state-of-the-art architectures.

The SqueezeNAS models are available for download here:

https://github.com/ashaw596/squeezenas

1. Introduction and Motivation
In recent years, Deep Neural Networks (DNNs) have be-

come a dominant approach for solving numerous problems

in computer vision. Image classification tasks such as Ima-

geNet [1] and CIFAR10 [2] are the de facto "playground"

for designing DNN model architectures. When developing

DNNs for a target task other than image classification (e.g.

semantic segmentation or object detection), a popular ap-

proach is to use architecture-transfer: start with an image

classification network and append a few task-specific layers

to the end of the network. 1

We believe architecture-transfer has become mainstream

because of a number of conventional-wisdom assumptions

1In our terminology, we refer to the task-specific end of the network

as the head, and we refer to the portion of the network that was originally

designed for image classification as the backbone.

that have permeated the computer vision community. In

the following, we enumerate these assumptions and present

evidence for why these assumptions are becoming outdated.

• Assumption 1: The most accurate neural network

for ImageNet image classification will also be the

most accurate backbone for the target task.

Reality: ImageNet accuracy is only loosely corre-

lated with accuracy on a target task. For example,

SqueezeNet is a small neural network that achieves

significantly lower ImageNet classification accuracy

than VGG [3] [4]. However, SqueezeNet is more ac-

curate than VGG when used for the task of identifying

similar patches in a set of images [5]. Thus, the right

DNN design varies depending on the target task.

• Assumption 2: Neural Architecture Search (NAS)

is prohibitively expensive.

Reality: It is true that some NAS methods based on

genetic algorithms (e.g. [6]) or reinforcement learn-

ing (e.g. [7]) often require thousands of GPU days to

converge on a good DNN design because they train

hundreds or thousands of different DNNs before con-

verging. However, recent "supernetwork" approaches

such as DARTS [8] and FBNet [9] have turned the prob-

lem inside out. They can train one supernetwork that

contains millions of DNN designs, but it still converges

on an optimal DNN design within 10 GPU days.

So, the "right" DNN design depends on the target task, and

modern NAS methods can quickly converge on the right

DNN for a task. A similar issue arises when we look at

choosing the right DNN for a target computing platform (e.g.

a specific version of a CPU, GPU, or TPU):

• Assumption 3: Fewer multiply-accumulate (MAC)

operations will yield lower latency on a target com-

puting platform.

Reality: In a recent study, Almeida et al. showed that

two DNNs with the same number of MACs can have a

10x difference in latency on the same computing plat-

form [10]. Further, when the FBNet authors optimized

networks for different smartphones, they found a DNN

that ran fast on the iPhone X, but slow on the Samsung

Galaxy S8; as well as a DNN ran fast on the iPhone, but

slow on the Samsung [9]. Depending on the processor

and the kernel implementations, different convolution

dimensions run faster or slower, even when the number

of MACs is held constant.

To make use of these new realities, we propose a playbook

for producing the lowest-latency, highest-accuracy DNNs on

a target task and a target computing platform:

1. Run Neural Architecture Search directly on the target

task (e.g. object detection or semantic segmentation),

and not on a proxy task (e.g. image classification).2

2. Use modern supernetwork-based NAS, and enjoy the

fact the search converges quickly.

3. Configure the NAS to optimize for both accuracy (on

the target task) and latency (on the target platform).

In the rest of this paper, we investigate the effective-

ness of this playbook by doing a proxyless search using

the Cityscapes semantic segmentation dataset [11], target-

ing low-latency inference on the NVIDIA Xavier embedded

GPU computing platform [12], and producing fast and accu-

rate DNNs. We refer to the optimized DNNs generated in

this study as SqueezeNAS networks.

2. Related work
2.1. Semantic Segmentation

Semantic segmentation is the computer vision task of

assigning a class for each pixel in a given image. It is a

workhorse in many computer vision applications areas, from

automotive (segmenting the road and lane lines) to aerial

imagery analysis. To train and evaluate semantic segmenta-

tion models, a number of datasets have been developed such

as Cityscapes[11], ADE20k[13], NYUDv2[14], and PAS-

CAL VOC[15] which have made the research in semantic

segmentation algorithms much more accessible.

DNNs initially found success with image classification

tasks; AlexNet[16] and its successors dramatically increased

the state-of-the-art accuracies on the ImageNet and CI-

FAR10 classification tasks. Following this success, Long et

al. developed Fully Convolutional Networks for Semantic

Segmentation[17] (FCN) by utilizing an Imagenet backbone

- achieving then state-of-the-art performance on VOC PAS-

CAL and NYUDv2. DeepLab[18] later leveraged dilated

convolutions to further increase the accuracy on segmenta-

tion benchmarks. The typical workflow of these approaches

is to start with an image classification DNN and then adapt

it for higher resolution, increasing the compute proportion-

ally to the number of pixels. This part is usually called the

encoder or backbone. The semantic segmentation network’s

decoder uses the low resolution feature maps from the en-

coder to perform more computation and generates an output

2If you wish to use outside data from an other task for pretraining, first

perform a proxyless search to produce the DNN architecture, then reset the

weights and do pretraining on outside data, and finally finetune on the target

task.

prediction for each pixel that is the same size as the input

resolution. This decoder or "head" can be a series of decon-

volutions like in FCN, or something much more complex

like the dilated Spatial Pyramid Pooling (ASPP) module

seen in the DeepLab[18, 19, 20] Family.

Semantic segmentation, however, is a very different task

from image classification. One way semantic segmentation

networks differs from image classification networks is that

they usually requires much higher resolution inputs to get

good results. Image classification networks commonly use

an input at a 224x224 resolution, while segmentation net-

works often use more than 40 times the number of pixels.

Segmentation networks also typically have exotic architec-

tures due to the fact that they have a dense high resolution

output. Large input resolutions also means that segmenta-

tion networks often use trillions of Multiply-Accumulates

(MACs) for a single image prediction, whereas accurate im-

age classification networks are usually in the tens of billions.

Many early deep learning approaches focused on maximiz-

ing accuracy, without a regard to the number of operations

or latency.

2.2. Efficient Network Design

From 2012 to 2016, a substantial portion of the computer

vision research community focused on designing DNNs that

achieved the highest possible accuracy on image classifica-

tion. These networks were then modified and finetuned to

perform other tasks such as object detection and semantic

segmentation. This led to significant year-over-year improve-

ments in accuracy on image classification (from AlexNet[16],

to ZFNet[21], to VGGNet[4], to ResNet[22]), which further

led into improved accuracy on the other computer vision

tasks. This also led to an upward trend in computation time

as well as parameter count. To mitigate this, starting in

2016 with SqueezeNet[3], Iandola et al. were successfully

able to design networks that were 50 times smaller in pa-

rameters compared to AlexNet[16]. MobileNets[23] and

ShuffleNet[24] came soon after, optimizing their networks

to have fewer computational operations, with the goal of

reducing latency. The problem of reducing the size, the

number of operations, and ultimately the latency of DNN in-

ference became a widely-studied problem in computer vision

research. One thing to note is that this research typically re-

quires expertise in both computer vision as well as computer

architecture.

2.3. Neural Architecture Search (NAS)

Since classification networks have commonly been used

as the encoder for other computer vision tasks [25, 26, 19,

27, 28], they are often a target of NAS searches[8, 9, 29, 30,

31, 32, 33, 34] in efforts to exceed the performance of expert

designed networks. However, many prior NAS works such

as some that use Reinforcement Learning or Evolutionary

search algorithms can often require thousands of GPU days

Image

Low Level Features

.... Final Feature Decoder
Segmentation

Predictions

Searched Encoder

Figure 1: General Encoder-Decoder Structure of our Segmentation Networks. We search the architecture space of the

"Searched Encoder". We use either an ASPP[19] inspired decoder or the LR-ASPP Decoder depending on the search space.

� �� � � � �����

1x1 (group) Conv, Relu

����� � �� ��� � � � �����

KxK DWConv (Dilated),
Relu

����� � �� ��� � � � ������

1x1 (group) Conv

� �� ����

+

Figure 2: Diagram showing the architecture of the Inverted

Residual blocks we use in our search space. They are param-

eterized so that the number of groups (g ∈ {1, 2}) in the 1x1
convolutions, the dilation rate of the depthwise convolution

(d ∈ {1, 2}), the kernel size (k ∈ {3, 5}), and the expansion

ratio (e ∈ 1, 3, 6) may vary for different candidate blocks.

The 12 possible configurations are shown in shown in Fig-

ure 7 and Appendix B. Cin, Cout, and stride (s ∈ {1, 2}) are

defined by the macro level parameters shown in Appendix C.

A residual connection is used if Cin = Cout and s = 1.

per search[34, 35, 6]. The compute time of these searches

would further increase if they were run directly on these high

resolution vision tasks. Howard et al. in MobileNetV3[36]

created networks for semantic segmentation by modifying

classification networks that were produced by NAS. The

NAS in that work had the objective of minimizing latency of

the low resolution image classification network for mobile

phones, and not for our ultimate goal of semantic segmenta-

tion at high resolution.

Many works have developed methods to greatly reduce

the search time of NAS[37, 32, 33]. Recently, supernetwork-

based NAS approaches have been proposed which have led to

search times that are orders of magnitude faster by searching

over millions of potential DNN designs while training just

one supernetwork[8, 9, 29, 30, 31, 38]. While there has

been some work searching directly on other vision tasks,

most of these do not also directly optimize for hardware

latency[26, 38, 25]. In our work described later in this paper,

a gradient-based NAS method optimizes a supernetwork

for both high semantic segmentation accuracy as well as

low latency on our target hardware. Our particular NAS

algorithm utilizes the Gumbel-Softmax[39] approximation

of the categorical choice distribution which is also used in

[9, 29, 31].

3. Architecture Search Space
In this work, we explore the space of encoders for se-

mantic segmentation networks consisting of sequential In-

verted Residual Blocks[40]. The blocks are parameterized

as shown in Figure 2. In each architecture search, we con-

strain the macro-architecture and find optimal parameters

for each block. This search space was chosen to be similar

to the FBNet[9], MobileNetV2[40], and MobileNetV3[36]

network families which allows us to directly compare our

segmentation optimized networks to their classification opti-

mized networks.

The general structure of all our networks is shown in Fig-

ure 1. We follow a common structure of some segmentation

networks[19, 36] where the decoder uses both the final out-

put features from the encoder as well as a low level feature

map from an earlier layer in the encoder.

3.1. Constrained Macro-Architecture

In our experiments we searched 3 search spaces: Small,

Large, and XLarge. To define each of these architecture

spaces, we first constrain the macro-architecture of the en-

coder networks. The macro-architectures describe the total

number of blocks N in the encoder, which decoder is used,

and which layer our lower level features come from. For

each block, we fix the input and output channels(Cin and

Cout) and whether each block uses a stride of s = 1 or s = 2
in the depthwise convolution layer. It should be noted that

since we allow each block to choose a no-op skip connection,

the final layer count can be less than N .

The specifics of each of the three search spaces are shown

in Appendix C. They were chosen to be comparable to the

MobileNetV2[40] and MobileNetV3[36] segmentation net-

works. In the Small and Large search spaces, we use the

LR-ASPP[36] decoder. In the XLarge search space, we

use the variation of the ASPP decoder with fully depthwise

convolutions proposed in Chen et al. [20].

Input

Super Block 1

Choice 1

Choice 2

...

Choice 13

Choice 3

G
u

m
b

e
l

S
o

ftm
a

x

.....

Super Block 2

Choice 1

Choice 2

...

Choice 13

Choice 3

G
u

m
b

e
l

S
o

ftm
a

x

Output

Super Block N

Choice 1

Choice 2

...

Choice 13

Choice 3

G
u

m
b

e
l

S
o

ftm
a

x

Super Blocks
3 to N

Figure 3: Diagram of a supernetwork with N superblocks, which each contain 13 possible candidate block choices.

Input

Super Block 1

Choice 1

Choice 2

...

Choice 13

Choice 3
.....

Super Block 2

Choice 1

Choice 2

...

Choice 13

Choice 3
Output

Super Block N

Choice 1

Choice 2

...

Choice 13

Choice 3

Super Blocks
3 to N

Figure 4: Diagram of an architecture path of a sampled architecture from a supernetwork. In this example, the 1st superblock

uses candidate block 1, the 2nd superblock uses candidate block 3, and the N th superblock uses candidate block 2.

3.2. Block Search Space
Within each macro-architecture space, our NAS picks

the optimal hyperparameters for each block or replaces it

with a no-op skip connection. As shown in Figure 2, these

hyperparameters define whether the 1x1 convolutions are

grouped, whether the depthwise convolution is dilated with a

rate 2, the size of the kernel k for the depthwise convolution,

and the expansion ratio e. We choose from 12 possible

configurations as shown in Figure 7 and Appendix B as well

as the skip connection.

4. Neural Architecture Search Algorithm
The particular approach and search space we use is similar

to those used in [9]. We consider architecture search as a

path-selection problem within a stochastic supernetwork

such that any particular architecture in our search space is

represented by some path through our supernetwork. As

illustrated in Figure 3, we define our supernetwork to be

a sequence of superblocks that each contain the candidate

block choices. Running inference for a sampled architecture

of the stochastic supernetwork is shown in Figure 4.

We simultaneously co-optimize the convolutional weights

(w) and architecture parameters (θ) of the stochastic super-

network to minimize our loss function which is defined as

L(θ, w) = LP (θ, w) + α ∗ LE(θ) (1)

where LP represents the problem-specific loss, LE is re-

source aware-loss term, and the hyperparameter α controls

the tradeoff made between the two. As this work focuses

on semantic segmentation, LP is a pixel-level cross-entropy

loss. For LE we experiment with both the estimated to-

tal inference latency on our target-platform as well as the

estimated number of Multiply-Accumulates for the network.

4.1. Gumbel-Softmax
In order to make computation and optimization of the

stochastic supernetwork tractable, each superblock picks

a candidate block independent of the choices of other su-

perblocks. Thus, we can model the choice of a candidate

block as sampling from an independent categorical distri-

bution where the probability of choosing candidate block

j for superblock i in the network is p(i, j). We define this

probability using the softmax function on our architecture

parameters (θ) for each superblock.

p(i, j|θ) =
eθi,j

∑
13

j eθi,j
(2)

The categorical distribution is difficult to directly opti-

mize efficiently, so we use the Gumbel-Softmax relaxation

of the categorical distribution proposed in Jang et al. [39].

Sampling from the Gumbel-Softmax distribution allows us

to efficiently optimize the architecture distribution by us-

ing gradient descent on the stochastic supernetwork. The

Gumbel-Softmax distribution is controlled by a temperature

parameter t. As t approaches zero, the Gumbel-Softmax

distribution becomes equivalent to the categorical distribu-

tion. The temperature parameter is annealed from 5.0 to 1.0

during our search.

4.2. Early Stopping
A caveat of our supernetwork approach is that the op-

timization requires computation through every single can-

didate block for every iteration regardless of the learned

architecture distribution. As optimal network architectures

converge, the probability that a low performing candidate

block is chosen decreases, but it still continues to use com-

pute. So we use a compute optimization when the estimated

probability of a candidate block being chosen is less than

0.5%. We simply remove it from the supernetwork. While

there is some low probability that a removed candidate block

could be optimal later in the search process, we have not

seen this in practice. This compute optimization can cut

search time in half.

4.3. Resource-Aware Architecture Search
We define our resource aware loss as follows:

LE(θ) =
N∑

j

13∑

i

p(i, j|θi)C(i, j) (3)

C(i, j) represents the network resource cost of choosing

candidate j in block i of the network. We model the resource

cost of each block to be independent of others. C can also

be implemented as a lookup table similar to FBNet[9] so the

resource costs only needs to be calculated once. Depending

on how we build the lookup table, we can optimize for many

different objectives ranging from hardware-agnostic metrics

such as MACs or parameter size to hardware-aware costs

like inference-time, memory accesses, or energy usage.

5. Experiments and Results
We demonstrate two key ideas: first, Neural Architecture

Search (NAS) is a powerful tool that can yield high-accuracy,

low-latency networks. The second idea is that optimizing for

hardware-agnostic metrics such as Multiply-Accumulates

(MACs) is not an ideal proxy and can lead to sub-optimal

latency results.

To demonstrate this, we use search spaces similar to prior

work: the Small, Large, XLarge search spaces, which

we define in Section 3.1. We first use our NAS method along

with a hardware-agnostic objective (MACs) to generate a

semantic segmentation network in each of our search spaces.

These networks are comparable with current state-of-the-

art networks on the MACs/Accuracy trade-off curve. We

then measure the latency of these low-MAC networks on an

embedded platform (NVIDIA Xaiver) as a baseline. Finally,

we use our NAS method again on the same search spaces, but

optimize with a hardware-aware objective (latency) to find 3

new networks targeted at similar latencies of the networks

generated in the previous search.

All search experiments are done on the Cityscapes[11]

semantic segmentation dataset.

5.1. Hardware-Agnostic Search
For our hardware-agnostic architecture searches, we ap-

ply our NAS method with a Multiply-Accumulates (MACs)

minimization objective to create networks that are on the

pareto-optimal tradeoff curve of MACs vs mIOU. To im-

plement this, for each block i in the network, we compute

the number of Multiply-Accumulates for each candidate

block j and store the results in the lookup table C such that

C(i, j) = MACSi,j .

We then perform an independent search in each of

the three search spaces and obtain three MAC-optimized

SqueezeNAS-MAC networks. As shown in Table 1, we

achieve results that exceed the performance of prior work

without NAS. We also achieve comparable results with

MobileNetV3[36] w.r.t the number of MACs. We finally

measure the inference time of the 3 networks on a NVIDIA

Xavier using cuDNN 7.3.1. As in many applications requir-

ing real-time inference, we use batch size = 1 for all of our

latency tests throughout the paper. The results can be seen

in Table 1.

5.2. Hardware-Aware Search

Our hardware-aware searches use the same NAS al-

gorithm and architectural search space as the hardware-

agnostic approach, but now we use a latency minimiza-

tion objective for the resource-aware loss; formulated as

C(i, j) = Latencyi,j . To compute the latency of every can-

didate j in each block i, we measure the inference time of

all candidates on our target platform. We conduct 3 new in-

dependent hardware-aware searches that target the latencies

measured from the hardware-agnostic networks. The results

of these searches yield the three SqueezeNAS-LAT networks.

Our hardware-aware searches find networks that have sig-

nificantly higher accuracies at the same or lower latency

compared to the hardware-agnostic networks seen in Table 1.

The latency-optimized networks have a higher number of

MACs, but they still run faster on our target device.

5.3. Implementation

5.3.1 Architecture Search

In our supernetwork-based architecture search, we train di-

rectly on the Cityscapes training set, without using any proxy

task. After we finish optimizing the supernetwork, we sam-

ple 200 discrete architectures from the optimal architecture

distribution. We estimate the performance of each architec-

ture by running inference on the Cityscapes fine validation

dataset using the architecture path within the supernetwork

as shown in Figure 4. After validating the 200 architec-

tures, we choose one from this estimated pareto-optimal

frontier and retrain the singular architecture. The MAC-

optimized networks are chosen to have comparable MACs to

the MobileNetV3 segmentation networks, and the Latency-

optimized networks are chosen to have inference latencies

comparable with our MAC-optimized baseline networks.

5.3.2 Training Details

For comparability with other results, we follow a similar

pretraining scheme to that used in [20]. After the archi-

tecture search is complete, we pretrain our sampled net-

works on ImageNet classification using the training regime

used in ResNet[22]. We then do a stage of training on

COCO [43] segmentation masks using the scheme used in

Figure 5: MACs vs mIOU on Cityscapes valida-

tion set. SqueezeNAS MAC-optimized and latency-

optimized models compared to MobileNetV3[36]

segmentation models.

Figure 6: Latency vs mIOU on Cityscapes valida-

tion set. SqueezeNAS MAC-optimized and latency-

optimized models compared to MobileNetV3[36]

segmentation models.

Architecture Class mIOU Latency (ms) MACs (G) MACs/sec (G) Params (M)

C3[41] 61.96 - 6.29 - 0.19

EDANet[42] 65.11 - 8.97 - 0.68

MobileNetV2[40] 70.71 - 21.27 - 5.75

MobileNetV3-Small[36] 68.38 44.01 2.90 65.89 0.47

MobileNetV3-Large[36] 72.36 92.78 9.74 104.97 1.51

SqueezeNAS MAC Small 66.76 46.01 3.01 65.37 0.30

SqueezeNAS MAC Large 72.40 102.90 9.39 91.21 0.73

SqueezeNAS MAC XLarge 74.62 156.41 21.84 139.63 1.80

SqueezeNAS LAT Small 68.02 34.57 4.47 129.17 0.48

SqueezeNAS LAT Large 73.62 98.28 19.57 199.17 1.90

SqueezeNAS LAT XLarge 75.19 152.98 32.73 213.94 3.00

Table 1: Cityscapes Validation mIOU of MAC-Aware Searched, Latency-Aware Searched, and published state-of-the-art

models. The latency values were benchmarked on the NVIDIA Xavier on the 30 watt power mode. Latency values for the

MobileNetV3[36] segmentation networks were obtained using an open source re-implementation.

DeepLabV3+[20]. Then, we train on the Cityscapes coarse

training set annotations for 40 epochs, and finally we train on

the Cityscapes fine training set annotations for 100 epochs,

cutting the learning rate by 10 at 50 and 75 epochs. All

segmentation training uses patch sizes of 768x768 pixels

and are optimized with SGD with momentum, using a base

learning rate of 0.05 and a weight-decay of 1e-5.

We use servers with 8 Nvidia Turing GPUs with 24GB

of VRAM and train in mixed precision, allowing us to both

leverage the tensor cores on the GPUs and fit a larger batch in

VRAM. When we search larger supernetworks, we employ

Synchronized BatchNorm[44] to keep our BatchNorm[45]

batch sizes large enough for training stability.

5.4. Results

First, our hardware-agnostic NAS method is able to pro-

duce networks that are competitive with the state-of-the-

art with respect to both MACs and latency. Compared

to expert designed networks found without NAS such as

EDANet [42] and MobileNetV2 [40], our MAC-optimized

networks achieve higher accuracy at a fraction of the MACs,

as shown in Table 1. Our SqueezeNAS-MAC-Small network

achieves more than 3% higher absolute mIOU compared to

the EDANet [42] segmentation network, which has three

times more MACs than ours. Our SqueezeNAS-MAC-Large

network achieves more than 2.5% higher absolute mIOU

compared to the MobileNetV2[40] segmentation network,

which has more than double the MACs of our network.

Our hardware-aware networks all have higher accuracy

while having less latency compared to their hardware-

agnostic counterparts. The SqueezeNAS-LAT-Small network

is 1.3% more accurate, 35% faster, and has 50% more MACs

compared to SqueezeNAS-MAC-Small. The SqueezeNAS-

LAT-Large network is 1.2% more accurate, 4% faster, and

has more than double the number of MACs compared to

SqueezeNAS-MAC-Large. This means that we’re able to

achieve double the number of operations in the same infer-

ence time window, as seen in Figure 10. This allows us to

have much more expressive models that yield better accuracy

while running at the same framerate.

We also compare our networks to the efficient segmen-

tation networks proposed in MobileNetV3[36]. These net-

works were optimized for image classification using NAS

and were then modified for the semantic segmentation task.

The SqueezeNAS-MAC-Large network is able to match the

accuracy of the MobileNetV3-Large network while using

Architecture Class mIOU Latency (ms) MACs (Giga) Params (M)

MobileNet V3-Small[36] 69.4 44.01 2.90 0.47

MobileNet V3-Large[36] 72.6 92.78 9.74 1.51

SqueezeNAS LAT Small 66.8 34.57 4.47 0.48

SqueezeNAS LAT Large 72.5 98.28 19.57 1.90

Table 2: Test mIOU of Different Architectures on Cityscapes. The latency values were benchmarked on the NVIDIA Xavier

on the 30 Watt power setting.

Architecture Search Time (GPU Days)

NAS with RL[7] 22,400

NASNet[34] 2,000

MnasNet[35] 2,000 3

MobileNetV3[36] > 2,000 4

AmoebaNet[6] 3,150

FBNet[9] 9

DARTS[8] 4

SqueezeNAS MAC Small 7.0

SqueezeNAS MAC Large 9.7

SqueezeNAS MAC XLarge 14.6

SqueezeNAS LAT Small 8.7

SqueezeNAS LAT Large 9.4

SqueezeNAS LAT XLarge 11.5

Table 3: Search times of SqueezeNAS Networks compared

to other NAS methods.

less MACs as seen in Table 1. It should be noted that the

SqueezeNAS-MAC-Small network does perform worse than

MobileNetV3-Small. However, the MobileNetV3 networks

do use Squeeze-Excitation[46] and Hard Swish[47] activa-

tions which our networks do not. SqueezeNAS-LAT-Small

runs 20% faster than MobileNetV3-Small while achieving

an mIOU that is only 0.26% lower. SqueezeNAS-LAT-Large

achieves over 1.2% higher accuracy with less than 6% higher

latency.

We have noticed a small gap in our validation and test ac-

curacies. This may be due to the small size of the Cityscapes

dataset or the lack of our use of test-time augmentations.

The full validation set results are shown in Table 1. Test

set results are shown in Table 2. Each network was found

in less than 15 GPU-days, which is more than 100 times

less than some reinforcement learning and genetic search

methods as shown in Table 3.

6. Network Analysis
We now compare the block choices of the hardware-

agnostic, hardware-aware, and MobileNetV3 segmentation

networks. Since the three families all use the same In-

verted Residual blocks, we can place MobileNetV3’s build-

ing blocks into our 13 candidate blocks which can be seen

3Approximated from TPUv2 Hours. In the literature, it has been sug-

gested that one 8-core TPUv2 is comparable to 8 NVIDIA V100s [48].
4Starts with a MnasNet network (search time is approximated from

TPUv2 Hours) and adapts it with the NetAdapt NAS algorithm. The Ne-

tAdapt search time is not included since it is not reported in the paper[36].

Figure 7: Visualization of the search space. Each of these

blocks represent a MobileNetV2[40] Inverted Residual block

as seen in Figure 2. k represents the kernel size of the middle

depthwise convolution layer. e represents the expansion

multiple for the depthwise convolution. d represents the

dilation rate of the depthwise convolution. g represents the

number of groups(1 if not listed) in the 1x1 convolutions.

Finally we have a no-op skip connection that can be chosen.

Figure 8: Small Networks. Networks are lined up at their

down-sampling block represented by the color red.

in Figure 7. One caveat to note is that we are not accounting

for the Squeeze-Excitation[46] blocks that are in some Mo-

bileNetV3 blocks for visualization, and the expansion ratios

are approximated to be either 1, 3, or 6.

We visualize the small networks in Figure 8. We first

examine our SqueezeNAS-MAC-Small network and see that it

uses a mix of low and high expansion blocks. It also uses the

highest compute candidate block possible for its second and

third downsampling blocks. The last thing to note is that our

NAS method chose to use dilated 3x3 blocks for the last stage

of the network. This is a very common trend that we see

Figure 9: Large Networks. Networks are lined up at their

down-sampling block represented by the color red.

in expert designed, high resolution semantic segmentation

networks such as DeepLabV3[19] and PSPNet[49].

The next small network we examine is our SqueezeNAS-

LAT-Small, which is more accurate and lower latency than

the previous network. A radical difference that we immedi-

ately see is that the network uses many more skip connec-

tions instead of low expansion blocks. This makes the macro-

architecture look very similar to that of MobileNetV3-Small,

also visualized in Figure 8. Both networks do aggressive

down-sampling and push their compute (via higher expan-

sion ratios) later in the network, where the resolution is lower

and the base channel count is higher. This yields a higher

arithmetic-intensity.5 On devices like GPUs, which are typi-

cally memory bandwidth bound, higher arithmetic-intensity

allows for more operations for the same memory bandwidth.

It is interesting to see how both of the latency optimizing

NAS methods produce similar networks that follow intuition

from a computer architecture perspective. The networks dif-

fer in that our network uses more blocks but with a smaller

kernel sizes near the end of the network. (3x3 dilated vs 5x5).

Which is consistent with our hardware-agnostic network and

other related segmentation work.

We now visually compare the large networks in Figure 9.

Both SqueezeNAS-MAC-Large and SqueezeNAS-LAT-Large,

follow the a trend similar to our smaller networks where

they all have high compute down-sampling blocks, as well

as heavy use of dilated convolutions in the second half of the

networks. If we compare the MAC and latency networks, we

see that the MAC network has the majority of its compute

in the middle, whereas the latency network pushes its com-

5Arithmetic Intensity is the ratio of MACs to memory traffic [50]. When

arithmetic intensity drops below a certain threshold, the latency is dominated

by the time to access data from memory.

Figure 10: Comparison of Throughput (GigaMACs

per second) vs Latency, of SqueezeNAS networks and

MobileNetV3[36] segmentation networks.

pute towards the end where it would yield a higher overall

arithmetic-intensity for the network. This also has the side-

effect of more than doubling the total number of MACs but

still decreasing latency. We can conclude with saying that

our NAS method is effective at producing high-throughput

networks while maintaining low latency as seen in Figure 10.

7. Conclusion
In Section 1, we presented a playbook for replacing

architecture-transfer with neural architecture search to de-

velop DNNs that are optimized for specific tasks and for

specific computing platforms. After following this playbook

throughout this paper, we have learned the following.

First, by doing a proxyless search on a semantic segmen-

tation dataset, our NAS produced the SqueezeNAS family of

models, which achieve superior latency-accuracy tradeoffs

relative to MobileNetV3 on the semantic segmentation vali-

dation set. We attribute our superior results, at least in part,

to the fact that the backbone of the MobileNetV3 semantic

segmentation network was designed by NAS for the proxy

task of image classification on mobile phones (that is to

say, it was not designed in a proxyless manner for semantic

segmentation on embedded GPU devices).

Second, while the MobileNetV3 authors searched for

thousands of GPU days, our approach produced these results

in 7 to 15 GPU days per search. In other words, modern

supernetwork-based NAS can now produce state-of-the-art

results in less than a weekend of search time on an 8 GPU

server.

Third, recall that we did two sets of NAS experiments:

one in which we searched for low-MAC models, and one

where we searched for low-latency models on a target com-

puting platform. We achieved substantially faster and more

accurate models when searching for latency on the target

platform. Finally, given the growing diversity of chips and

computing platforms designed for deep neural networks, we

believe that using NAS to optimize for low latency on a target

computing platform will continue to grow in importance.

References

[1] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and

L. Fei-Fei, “Imagenet: A large-scale hierarchical image

database,” in CVPR, 2009, pp. 248–255.

[2] A. Krizhevsky, “Learning multiple layers of features

from tiny images,” Tech. Rep., 2009.

[3] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf,

W. J. Dally, and K. Keutzer, “SqueezeNet: AlexNet-

level accuracy with 50x fewer parameters and <0.5mb

model size,” CoRR, vol. abs/1602.07360, 2016.

[Online]. Available: http://arxiv.org/abs/1602.07360

[4] K. Simonyan and A. Zisserman, “Very deep convo-

lutional networks for large-scale image recognition,”

CoRR, vol. abs/1409.1556, 2014.

[5] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and

O. Wang, “The unreasonable effectiveness of deep fea-

tures as a perceptual metric,” in CVPR, 2018.

[6] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Reg-

ularized evolution for image classifier architecture

search,” in AAAI Conference on Artificial Intelligence,

2019.

[7] B. Zoph and Q. V. Le, “Neural architecture search with

reinforcement learning,” in International Conference

on Learning Representations, 2017.

[8] H. Liu, K. Simonyan, and Y. Yang, “DARTS:

Differentiable architecture search,” in International

Conference on Learning Representations, 2019.

[Online]. Available: https://openreview.net/forum?id=

S1eYHoC5FX

[9] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu,

Y. Tian, P. Vajda, Y. Jia, and K. Keutzer, “Fbnet:

Hardware-aware efficient convnet design via differ-

entiable neural architecture search,” in Proceedings of

the IEEE Conference on Computer Vision and Pattern

Recognition, 2019, pp. 10 734–10 742.

[10] M. Almeida, S. Laskaridis, I. Leontiadis, S. I. Venieris,

and N. D. Lane, “EmBench: Quantifying performance

variations of deep neural networks across modern com-

modity devices,” in International Workshop on Embed-

ded and Mobile Deep Learning (EMDL), 2019.

[11] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. En-

zweiler, R. Benenson, U. Franke, S. Roth, and

B. Schiele, “The cityscapes dataset for semantic urban

scene understanding,” in Proc. of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR),

2016.

[12] NVIDIA, “Jetson AGX Xavier developer kit,” 2018.

[Online]. Available: https://developer.nvidia.com/

embedded/jetson-agx-xavier-developer-kit

[13] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and

A. Torralba, “Scene parsing through ade20k dataset,”

in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2017.

[14] P. K. Nathan Silberman, Derek Hoiem and R. Fergus,

“Indoor segmentation and support inference from rgbd

images,” in ECCV, 2012.

[15] M. Everingham, L. Van Gool, C. K. I. Williams,

J. Winn, and A. Zisserman, “The pascal visual object

classes (voc) challenge,” International Journal of Com-

puter Vision, vol. 88, no. 2, pp. 303–338, Jun. 2010.

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Im-

agenet classification with deep convolutional neural

networks,” in Advances in Neural Information Process-

ing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou,

and K. Q. Weinberger, Eds. Curran Associates, Inc.,

2012, pp. 1097–1105.

[17] E. Shelhamer, J. Long, and T. Darrell, “Fully

convolutional networks for semantic segmentation,”

IEEE Trans. Pattern Anal. Mach. Intell., vol. 39,

no. 4, pp. 640–651, Apr. 2017. [Online]. Available:

https://doi.org/10.1109/TPAMI.2016.2572683

[18] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy,

and A. L. Yuille, “DeepLab: Semantic image

segmentation with deep convolutional nets, atrous

convolution, and fully connected CRFs,” CoRR,

vol. abs/1606.00915, 2016. [Online]. Available:

http://arxiv.org/abs/1606.00915

[19] L. Chen, G. Papandreou, F. Schroff, and H. Adam,

“Rethinking atrous convolution for semantic image

segmentation,” CoRR, vol. abs/1706.05587, 2017.

[Online]. Available: http://arxiv.org/abs/1706.05587

[20] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and

H. Adam, “Encoder-decoder with atrous separable con-

volution for semantic image segmentation,” in Proceed-

ings of the European conference on computer vision,

2018, pp. 801–818.

[21] M. Zeiler and R. Fergus, “Visualizing and understand-

ing convolutional networks,” in ECCV, 2014, pp. 818–

833.

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual

learning for image recognition,” in CVPR, 2016, pp.

770–778.

[23] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko,

W. Wang, T. Weyand, M. Andreetto, and H. Adam,

“MobileNets: Efficient convolutional neural net-

works for mobile vision applications,” CoRR,

vol. abs/1704.04861, 2017. [Online]. Available:

http://arxiv.org/abs/1704.04861

[24] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet:

An extremely efficient convolutional neural network

for mobile devices,” in Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition,

2018, pp. 6848–6856.

[25] L.-C. Chen, M. Collins, Y. Zhu, G. Papandreou,

B. Zoph, F. Schroff, H. Adam, and J. Shlens, “Search-

ing for efficient multi-scale architectures for dense im-

age prediction,” in Advances in Neural Information

Processing Systems, 2018, pp. 8699–8710.

[26] G. Ghiasi, T.-Y. Lin, and Q. V. Le, “Nas-fpn: Learn-

ing scalable feature pyramid architecture for object

detection,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2019, pp.

7036–7045.

[27] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár,

“Focal loss for dense object detection,” in CVPR, 2017,

pp. 2980–2988.

[28] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn:

Towards real-time object detection with region pro-

posal networks,” in Advances in Neural Information

Processing Systems, C. Cortes, N. D. Lawrence, D. D.

Lee, M. Sugiyama, and R. Garnett, Eds., 2015, pp.

91–99.

[29] S. Xie, H. Zheng, C. Liu, and L. Lin, “SNAS:

stochastic neural architecture search,” in International

Conference on Learning Representations, 2019.

[Online]. Available: https://openreview.net/forum?id=

rylqooRqK7

[30] H. Cai, L. Zhu, and S. Han, “ProxylessNAS:

Direct neural architecture search on target task

and hardware,” in International Conference on

Learning Representations, 2019. [Online]. Available:

https://openreview.net/forum?id=HylVB3AqYm

[31] A. Shaw, B. Dai, W. Liu, and L. Song, “Bayesian

meta-network architecture learning,” CoRR, vol.

abs/1812.09584, 2018. [Online]. Available: http:

//arxiv.org/abs/1812.09584

[32] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean,

“Efficient neural architecture search via parameters

sharing,” in International Conference on Machine

Learning, 2018, pp. 4095–4104. [Online]. Available:

http://proceedings.mlr.press/v80/pham18a.html

[33] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-

J. Li, L. Fei-Fei, A. Yuille, J. Huang, and K. Murphy,

“Progressive neural architecture search,” in Proceedings

of the European Conference on Computer Vision, 2018,

pp. 19–34.

[34] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learn-

ing transferable architectures for scalable image recog-

nition,” in The IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2018.

[35] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler,

A. Howard, and Q. V. Le, “Mnasnet: Platform-aware

neural architecture search for mobile,” in Proceedings

of the IEEE Conference on Computer Vision and Pat-

tern Recognition, 2019, pp. 2820–2828.

[36] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen,

M. Tan, W. Wang, Y. Zhu, R. Pang, V. Vasudevan,

Q. V. Le, and H. Adam, “Searching for MobileNetV3,”

arXiv:1905.02244, 2019.

[37] H. Cai, T. Chen, W. Zhang, Y. Yu, and J. Wang, “Ef-

ficient architecture search by network transformation,”

in AAAI Conference on Artificial Intelligence, 2018.

[38] C. Liu, L.-C. Chen, F. Schroff, H. Adam, W. Hua,

A. L. Yuille, and L. Fei-Fei, “Auto-deeplab: Hierar-

chical neural architecture search for semantic image

segmentation,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2019, pp.

82–92.

[39] E. Jang, S. Gu, and B. Poole, “Categorical reparame-

terization with gumbel-softmax,” in International Con-

ference on Learning Representations, 2017.

[40] M. B. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov,

and L.-C. Chen, “MobileNetV2: Inverted residuals and

linear bottlenecks,” 2018, pp. 4510–4520.

[41] H. Park, Y. Yoo, G. Seo, D. Han, S. Yun, and

N. Kwak, “Concentrated-comprehensive convolutions

for lightweight semantic segmentation,” CoRR,

vol. abs/1812.04920, 2018. [Online]. Available:

http://arxiv.org/abs/1812.04920

[42] S. Lo, H. Hang, S. Chan, and J. Lin, “Ef-

ficient dense modules of asymmetric convolu-

tion for real-time semantic segmentation,” CoRR,

vol. abs/1809.06323, 2018. [Online]. Available:

http://arxiv.org/abs/1809.06323

[43] T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B.

Girshick, J. Hays, P. Perona, D. Ramanan, P. Dollár,

and C. L. Zitnick, “Microsoft COCO: Common objects

in context,” in ECCV, 2014.

[44] C. Peng, T. Xiao, Z. Li, Y. Jiang, X. Zhang, K. Jia,

G. Yu, and J. Sun, “Megdet: A large mini-batch object

detector,” in The IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), June 2018.

[45] S. Ioffe and C. Szegedy, “Batch normalization: Ac-

celerating deep network training by reducing internal

covariate shift,” in International Conference on Ma-

chine Learning, 2015, pp. 448–456.

[46] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation

networks,” in Proceedings of the IEEE conference on

computer vision and pattern recognition, 2018, pp.

7132–7141.

[47] P. Ramachandran, B. Zoph, and Q. V. Le,

“Searching for activation functions,” CoRR,

vol. abs/1710.05941, 2017. [Online]. Available:

http://arxiv.org/abs/1710.05941

[48] S. Reitsma, “Cost comparison of deep

learning hardware: Google TPUv2 vs

Nvidia Tesla V100,” 2019. [Online]. Avail-

able: https://medium.com/bigdatarepublic/cost-

comparison-of-deep-learning-hardware-google-

tpuv2-vs-nvidia-tesla-v100-3c63fe56c20f

[49] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid

scene parsing network,” in Proceedings of the IEEE

conference on computer vision and pattern recognition,

2017, pp. 2881–2890.

[50] S. Williams, A. Waterman, and D. Patterson, “Roofline:

An insightful visual performance model for floating-

point programs and multicore architectures,” Lawrence

Berkeley National Lab.(LBNL), Berkeley, CA (United

States), Tech. Rep., 2009.

