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Abstract

ImageNet pre-training has been regarded as essential for

training accurate object detectors for a long time. Recently,

it has been shown that object detectors trained from ran-

domly initialized weights can be on par with those fine-

tuned from ImageNet pre-trained models. However, the

effects of pre-training and the differences caused by pre-

training are still not fully understood. In this paper, we

analyze the eigenspectrum dynamics of the covariance ma-

trix of each feature map in object detectors. Based on our

analysis on ResNet-50, Faster R-CNN with FPN, and Mask

R-CNN, we show that object detectors trained from Ima-

geNet pre-trained models and those trained from scratch

behave differently from each other even if both object de-

tectors have similar accuracy. Furthermore, we propose a

method for automatically determining the widths (the num-

bers of channels) of object detectors based on the eigen-

spectrum. We train Faster R-CNN with FPN from randomly

initialized weights, and show that our method can reduce

∼27% of the parameters of ResNet-50 without increasing

Multiply-Accumulate operations and losing accuracy. Our

results indicate that we should develop more appropriate

methods for transferring knowledge from image classifica-

tion to object detection (or other tasks).

1. Introduction

Object detection and instance segmentation are impor-

tant tasks, with many real-world applications in robotics,

healthcare, etc. Up until now, most detection and segmenta-

tion tasks have relied on ImageNet [59] fine-tuning [13, 82].

With fine-tuning, learned parameters or features of source

tasks may be forgotten after learning target tasks [27], and

domain similarity between tasks being important for trans-

fer learning [84]. Furthermore, transferring knowledge be-

tween dissimilar tasks may cause negative transfer [58, 75].

Thus many works have discussed task difference between

image classification and object detection [56, 65, 68, 6] and
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Do object detectors I and S converge to similar models?

Figure 1. R-CNN [13] shows that object detectors I, which fine-

tuned from ImageNet pre-trained models, can achieve high accu-

racy. “Rethinking ImageNet Pre-training” [18] shows that object

detectors S, which trained from scratch, can achieve similar ac-

curacy to I under appropriate conditions. In this paper, we show

that I and S behave differently from each other even if both object

detectors have similar accuracy.

the effects of pre-training for object detectors [25, 69, 48,

31]. However, the influence caused by the task difference is

still an open problem, and what and how to transfer knowl-

edge from image classification to object detection are un-

clear. Avoiding these problems, it was recently shown that

models trained on COCO [36] from random initialization

can be on par with models trained (fine-tuned) from Ima-

geNet pre-trained models [18], but it is not clear whether or

not models with similar performance have different proper-

ties. To further understand the effects of fine-tuning object

detectors, we analyze the eigenspectrum dynamics of the

covariance matrix of each feature map in object detectors,

and propose a method to automatically determine the num-

bers of channels necessary for performance. (Each feature

map includes channel dimension in this paper.)

More specifically, motivated by the accurate object de-

tectors trained from scratch [18, 86], we focus on the fol-

lowing research question. Do object detectors fine-tuned

from ImageNet pre-trained models and those trained from

scratch converge to similar models? If the answer is “Yes,”

we will have a better understanding of the task difference

and the behavior of deep neural networks, and if the answer

is “No, these object detectors do not converge to similar



models, but show similar accuracy by chance,” we should

incorporate the benefits of both object detectors.

To answer this question, we train object detectors as

shown in Figure 1, and analyze the redundancy of feature

maps in the detectors. To be more precise, we analyze the

intrinsic dimensionalities of the feature maps, which repre-

sent how much information the feature maps memorize. In-

trinsic dimensionalities can be quantified by calculating the

eigenspectra of the covariance matrices of the feature maps,

and are related to generalization error [70]. In this paper,

we use the numbers of eigenvalues greater than a threshold

as a simple metric of intrinsic dimensionalities, and we call

the sets of intrinsic dimensionalities in a certain network the

intrinsic architecture.

Our contributions are as follows.

• We analyze the eigenspectrum dynamics of the covari-

ance matrix of each feature map in object detectors,

and show that object detectors trained from ImageNet

pre-trained models and those trained from scratch be-

have differently from each other even if both object

detectors have similar accuracy.

• We propose a method for automatically determining

the widths (the numbers of channels) of object detec-

tors. We report the results of Faster R-CNN with FPN

trained from scratch, and show that our method can re-

duce ∼27% of the parameters of ResNet-50 without

increasing Multiply-Accumulate operations (MACs)

and losing accuracy, and can improve COCO AP by

0.3% without increasing parameters (See Sec. 4.5).

• We explain why architectures and learning schedules

of prior object detectors trained from scratch work well

in Sec. 5.2. We bridge recent theoretical analysis on

generalization error [70] and the experimental results

of recent object detectors [18].

2. Related Work

2.1. Neural Network Generalization

One of the most important mysteries of neural networks

is its generalization ability. To understand it, some work

has discussed the relation between generalization and com-

pressibility [66, 50, 1, 70]. Information Bottleneck [66,

62] and Canonical Correlation Analysis (CCA) [53, 50]

are used for analyzing the dynamics of neural networks.

[66] showed that training with Stochastic Gradient Descent

(SGD) has two phases (a label fitting phase and a represen-

tation compression phase). [62] shows that networks with

ReLU do not necessarily exhibit the compression phase, and

that fitting to task-relevant information and the compression

of task-irrelevant information occur simultaneously. [50]

shows that generalizing/larger networks converge to more

similar solutions than memorizing/smaller networks. Using

CCA, Transfusion [54] analyzes the effects of pre-training

for classifying medical images, which are clearly different

from natural images in ImageNet and COCO.

The most related theoretical analysis to this paper is

the degree of freedom of reproducing kernel Hilbert spaces

(RKHSs), which is defined in [70]. Suzuki [70] shows

the following two important properties of neural networks

which motivate our work. (i) “if the eigenvalues of the

kernels decreases rapidly, then the degree of freedom gets

smaller, and we achieve a better generalization by using a

simpler model.” (ii) “the effective dimension of the network

is less than the actual number of parameters.” Spectral-

Pruning [71], which uses the degree of freedom [70] as

the intrinsic dimensionality of models, is applicable to com-

press complicated networks. Our method and analysis are

based on eigenspectrum [70, 71] and the dynamics of neural

networks [66, 53, 50]. However, these prior works do not

analyze the behavior of neural networks when fine-tuned for

object detection from ImageNet pre-trained models.

2.2. Neural Architecture Search (NAS)

NAS has been a hot research topic on deep learn-

ing since the success of NAS with reinforcement learn-

ing [87], and efficient methods have broadened its applica-

bility [88, 38, 2]. Genetic CNN [79] and NASNet [88] trans-

fer architectures learned on a proxy dataset (e.g., CIFAR-

10) to large-scale datasets (e.g., ImageNet). On the other

hand, ProxylessNAS [2] reduces memory consumption by

path-level binarization, and directly learns architectures for

a large-scale dataset. In addition to NAS for image clas-

sification, a few works focus NAS for semantic segmenta-

tion [63, 4, 37] and object detection [11, 5]. NAS-FPN [11]

and DetNAS [5] search the architectures of Feature Pyra-

mid Networks [35] and backbones for object detectors re-

spectively. However, these prior works [11, 5] do not deter-

mine the widths of feature maps automatically, and compu-

tational costs for training will become higher if their search

space includes the widths.

Determining the widths of feature maps in CNNs can

be considered as a subset of NAS. Although various ap-

proaches have been proposed [9, 21, 8, 43], shrink-and-

expand [15, 52] is a more suitable approach for object detec-

tors because of its simplicity and scalability. MorphNet [15]

shrinks and linearly expands networks. The shrinking im-

poses L1 regularization on the scaling factors of Batch Nor-

malization to identify and prune unimportant channels like

Network Slimming [42], and takes into account specific re-

source constraints (e.g., the number of floating point op-

erations). Neural Rejuvenation [52] revives dead neurons

(reallocates and reinitializes useless channels) during train-

ing. Although the effectiveness of these methods [15, 52] is

verified on ImageNet, it is unknown whether these methods

can be applied to object detectors.
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Figure 2. Overview of Intrinsic Architecture Search. The width of each rectangle is proportional to the output width of each layer. 7×7,

1×1, and 3×3 convolutions are denoted in purple, green, and blue respectively, and bottleneck building blocks are denoted in gray like [15].

(a): The ResNet-50 backbone of an object detector I fine-tuned from an ImageNet pre-trained model. (e): The ResNet-50 backbone of

an object detector S trained from scratch. (a) and (e) have the same (extrinsic) architecture, and I and S have similar accuracy. Thus

the difference between I and S is unclear. To clarify it, we shrink (by extracting intrinsic architectures), adjust, and expand widths. See

Sec. 3.2 for the details of our algorithm. See Sec. 4.3 for the details of models used in our experiments.

2.3. Object Detection and Instance Segmentation

Object detection is one of the core technologies in com-

puter vision, and has advanced rapidly with deep neural

networks [64, 10, 13, 12, 57, 55, 41, 35, 68] (Refer to a

survey [39] for details). In addition, instance segmenta-

tion [7, 33, 19, 40], which is the task of segmenting and

classifying individual objects, is important for further de-

tailed object recognition. Most methods for these tasks train

models from ImageNet pre-trained models for better accu-

racy. However, pre-training backbones in object detectors

on image classification dataset causes learning bias and lim-

its architecture design [65, 86].

To avoid the problems of pre-training, training object de-

tectors from scratch (from randomly initialized weights) has

been discussed in some literature [65, 32, 34, 28, 86, 18].

DSOD [65] shows that deep supervision [29] is criti-

cal for training single-shot object detectors from scratch,

and adopts implicit deep supervision via dense connec-

tions [24]. ScratchDet [86] shows that Batch Normaliza-

tion [26, 61] helps training from scratch to converge, and

redesigns the backbone of single-shot object detectors. [18]

shows that Mask R-CNN trained from scratch with appro-

priate normalization and longer training (instead of pre-

training) can be on par with those fine-tuned from ImageNet

pre-trained models.

The most similar work to ours is DetNet [34], which is

a specialized backbone for object detection. DetNet mainly

focuses on scales (the receptive fields and the spatial res-

olutions of feature maps) to overcome drawbacks of Ima-

geNet pre-trained models designed for image classification.

However, its widths are manually determined. On the other

hand, our method does not aim to determine the spatial res-

olutions. Using our method and DetNet complementarily

would be beneficial.

3. Intrinsic Architecture Search

In this section, we propose a method for automatically

determining the widths (the numbers of channels) of fea-

ture maps. Our method reflects intrinsic architectures by

calculating the redundancy of feature maps, and is applica-

ble to complicated networks, such as Faster R-CNN with

FPN and Mask R-CNN. Figure 2 shows an overview of

our method. We call our algorithm Intrinsic Architecture

Search, and we call architectures discovered by our algo-

rithm ResiaNet whose base backbone is ResNet.

3.1. Determining Widths

Optimizing the widths of feature maps is formulated as

O∗
1:M = argmin

c(O1:M )≤ζ

min
θ

L(θ), (1)

where M is the total number of layers, O1:M are the widths

of output feature maps, θ is the parameters (weights) in neu-

ral networks, L is a loss function for training neural net-



works, c is a function for calculating resource consumption

(e.g., Multiply-Accumulate operations (MACs)), and ζ is a

specified maximum allowable resource consumption. This

formulation is exactly the same as [15], and most notations

in this section and some descriptions in Algorithm 1 follow

MorphNet [15] for ease of comparing methods.

Although MorphNet [15] and Neural Rejuvenation [52]

also tackle the determination of widths, these methods need

to change training and intrinsic dimensionalities. In addi-

tion, applying them to object detection and instance seg-

mentation poses some difficulties below. (i) These methods

depend on Batch Normalization [26]. Therefore, applying

them to networks with other normalization layers [78, 46]

is not trivial. Furthermore, when we apply them to net-

works without normalization layers [85], we need to add

Batch Normalization layers [52]. (ii) These methods use

additional regularizers. Since object detection and instance

segmentation are multi-task learning including classifica-

tion and localization, we might need to balance regulariza-

tion. (iii) These methods need to train multiple models [15]

or tune additional hyperparameters [52]. This is a serious

problem especially for object detection and instance seg-

mentation because training for these tasks takes a long time

(See model zoos of [14, 3, 49]).

3.2. Overview

We propose a method for determining the widths of ob-

ject detectors using eigenspectrum [70]. Algorithm 1 shows

the whole process, where S1:M are the eigenspectra of fea-

ture maps, d1:M are the intrinsic dimensionalities of the fea-

ture maps, T is a threshold for calculating intrinsic dimen-

sionalities (e.g., 10−3), len is a function for counting num-

bers which meet the condition, and ω is a width multiplier.

The details of Algorithm 1 are described below. In Step

1, we set initial weights. Weights in a base backbone (e.g.,

ResNet-50) are initialized from one of the ImageNet pre-

trained models, or randomly initialized. Weights out of the

base backbone are randomly initialized. In Step 2, we train

the whole network (e.g., Faster R-CNN with FPN or Mask

R-CNN) with the base backbone. In Step 3, we calculate

the eigenspectrum of each feature map in the whole net-

work (See Sec. 3.3 for details). Eigenvalues are normalized

with the largest eigenvalue of each feature map. In Step

4, we shrink the widths of each feature map by extracting

an intrinsic architecture (See Sec. 3.4 for details). In Step

5, we adjust the widths mainly for networks with multiple

branches (See Sec. 3.5 for details). In Step 6, we expand

the widths by linear expanding (See Sec. 3.6 for details).

3.3. Calculating Eigenspectra

When we calculate the eigenspectra of feature maps

which have spatial resolutions (i.e. almost all feature maps

in CNNs), we normalize the covariance matrices by the res-

Algorithm 1 Intrinsic Architecture Search

1: Set initial weights.

2: Train the whole network to find

θ∗ = argmin
θ

L(θ).

3: Calculate eigenspectra S1:M .

4: Calculate intrinsic dimensionalities d1:M by

d1:M = len(S1:M > T ).
5: Determine new widths O′

1:M by adjusting d1:M .

6: Find the largest ω such that c(ω ·O′
1:M ) ≤ ζ.

7: return ω ·O′
1:M .

olutions. Specifically, the (non-centered) covariance matrix

Σ of a feature map F is calculated as

Σ =
1

n

n∑

i=1

1

WiHi

Wi∑

x=1

Hi∑

y=1

Fi,x,yF
⊤
i,x,y, (2)

where n is the number of images (we randomly sample

5,000 images from the training set in our experiments),

Wi, Hi are the spatial width and height of the feature map,

and Fi,x,y is a feature vector whose coordinates are (x, y)
in the feature map for the i-th image. Not only Fi,x,y but

also Wi, Hi depend on images feed-forwarded because in-

put image resolutions may change in the case of COCO.

We calculate the eigenspectra of feature maps before or

after convolutional layers, fully connected layers, and trans-

posed convolutional layers. Note that feature maps after L-

th convolutional layer and feature maps before (L + 1)-th
convolutional layer generally do not match due to normal-

ization layers and activation layers.

3.4. Shrinking Widths

We calculate intrinsic dimensionalities from the eigen-

spectra. We use the numbers of eigenvalues greater than a

predefined threshold as intrinsic dimensionalities. (Using

degree of freedom [71] may be better, though we do not use

pruning and we set random values to the initial weights.)

Although we set 10−3 to the threshold in our experiment,

we may get better accuracy if we tuned the threshold as a

hyperparameter.

3.5. Adjusting Widths

If the network has multiple branches, adjusting intrin-

sic dimensionalities is necessary to determine new widths,

because either the input feature maps or the output feature

maps of branches may have to have the same widths. Es-

pecially for ResNet with bottlenecks, where the widths of

feature maps which pass through shortcuts are set to the

maximum intrinsic dimensionalities in the same stage for

preserving most information which flows shortcut. Further-

more, we set the same output widths to the first and the



Figure 3. Dropping of eigenvalues. Some feature maps in the

stage 5 of ResNet-50 become highly redundant in the first 10k it-

erations, though it is irredundant before fine-tuning (0k iterations).

second convolutional layers of all residual blocks in the

same stage by calculating the geometric mean of intrinsic

dimensionalities. This setting has some advantages: (i) The

second convolutional layers of residual blocks can be re-

placed with depthwise convolutional layers like [60]. (ii)

Using the same widths is efficient considering memory ac-

cess cost [47]. (iii) Implementation is easy and thus modifi-

cations to the code of ResNet are minimized.

3.6. Expanding Widths

Our expanding method is basically the same as that

of [15]. Specifically, the output width of each layer is mul-

tiplied by a uniform width multiplier ω to fit a target re-

source consumption. The optimal ω can be found by a bi-

nary search because c(ω · O′
1:M ) monotonically increases

with ω in our experiments. c(O1:M ) is calculated as

c(O1:M ) =

M+1∑

L=1

ILOLK
2
LWLHL, (3)

when targeting MACs, and

c(O1:M ) =

M+1∑

L=1

ILOLK
2
L, (4)

when targeting the number of parameters, where IL, OL are

the widths of the input/output feature map, KL is the kernel

size, and WL, HL are the spatial width and height of the

output feature map, for each layer L = 1, . . . ,M + 1. We

consider OM+1 is a fixed number (e.g., 1,000 for ImageNet

classification). For simplicity, we consider the spatial width

and height of kernel size to be the same in each layer, and

omit the resource consumption of biases.

To avoid odd widths [15], we round ω · O′
1:M to

hardware-friendly multiples (e.g., multiples of 4, 8, 16, or

32). This rounding is also useful for networks with Group

Normalization layers [78]. When resource fittings are too

coarse, we may fill the gaps by increasing widths greedily.

Figure 4. Rebounding of eigenvalues. The numbers of eigenvalues

greater than 10
−3 increase immediately after the first learning rate

decay (210k iterations) in some feature maps.

4. Experiments

To analyze the effects of pre-training for object detectors

and to verify the effectiveness of our method, we conduct

experiments on COCO.

4.1. Experimental Settings

The experimental settings mainly follow Mask R-

CNN [19] in Detectron [14] (which includes implementa-

tion by the authors of Mask R-CNN) like [18]. Our imple-

mentation is based on Detectron.pytorch [74], which is a

PyTorch implementation of Detectron.

We use ResNet-50 [20] as a base backbone. We

train Faster R-CNN [57] with Feature Pyramid Network

(FPN) [35] and Mask R-CNN [19] in an end-to-end man-

ner [57]. We use Group Normalization (GN) [78], be-

cause appropriate normalization is a key factor for training

from scratch [86, 18], and GN has several advantages [78]

compared to Synchronized Batch Normalization [51]. The

learning rate settings follow [18]. Specifically, the initial

learning rate is 0.02 with warm-up [16], and the learning

rate is reduced by 10×. Iterations for the first decay, the

second decay, and ending training are 60k, 80k, 90k for

1× schedule, 120k, 160k, 180k for 2× schedule, and 210k,

250k, 270k for 3× schedule. We use synchronous SGD

with an effective batch size of 16 (= 2 images/GPU × 8

GPUs), a momentum of 0.9, and a weight decay of 10−4.

All models are trained on COCO train2017 set

(118,287 images) and evaluated on COCO val2017 set

(5,000 images) with COCO metrics unless otherwise stated.

4.2. Eigenspectrum Dynamics

To analyze the effects of pre-training for object detec-

tors, we observed the dynamics of the eigenspectrum of

Mask R-CNN. Figure 3 shows the eigenspectrum of a fea-

ture map after the conv5 1 3 (the third convolutional layer

in conv5 1 bottleneck building block. We call the convolu-

tional layers of ResNet in this manner.) of ResNet-50. In

the case of this layer, the eigenspectrum drops fast in the



Figure 5. Intrinsic dimensionalities. Object detectors trained from ImageNet pre-trained models vs. those trained from scratch. These

detectors behave differently from each other even if both detectors have similar accuracy. Left: Feature maps before conv2 1 1. Lower

layers in backbones converge to similar eigenspectra. Freezing the weights initialized from ImageNet pre-trained models in lower layers

is a reasonable choice. Middle: Feature maps before conv5 1 1. Higher layers in backbones converge to dissimilar eigenspectra. Right:

Feature maps before conv5 2 1. In the case of the models trained from an ImageNet pre-trained model with GN layers, the feature maps

close to the output layer (for ImageNet classification) do not use over half of the dimensions, and they are not reused even after fine-tuning.

first 10k iterations. Similar behavior can be seen in feature

maps with 32× strides after conv5 2 3, conv5 3 3, and pro-

jection shortcut in conv5 1.

This result demonstrates that some information obtained

in ImageNet pre-training is forgotten. There are three possi-

ble reasons. (i) Features for 1000-class image classification

are too rich for most object detection tasks (e.g., Classifica-

tion ability needed for COCO detection is 81-class classifi-

cation including a background class). (ii) In pre-training on

ImageNet, the stage 5 of ResNet is very close to the output

layer. Layers which are close to the output layer may com-

press information to minimum needed for the pre-training

task. (iii) The strides of conv5 x are too coarse to localize

objects. DetNet [34] and ScratchDet [86] also discuss this

problem and change the strides for object detection. Unlike

these works, our finding is that SGD (with other regulariza-

tion methods) automatically limits the intrinsic dimension-

alities of standard ResNet without changing the strides.

Eigenspectrum dynamics can capture not only the for-

getting of ImageNet pre-trained features but also the acqui-

sition of features for COCO. Figure 4 shows the numbers of

eigenvalues greater than 10−3. Eigenvalues first down, then

up, in some layers. This rebound occurs when the learning

rate decays and may relate to the learning rate schedules and

a finding in [18] (See discussions in Sec. 5.2).

4.3. Intrinsic Architecture

Here, we investigate whether models fine-tuned from

an ImageNet pre-trained model and a model trained from

scratch converge to similar intrinsic architectures.

We compare three models below. (i) S3 trained from

scratch with 3× schedule (APbbox: 39.0%, APmask: 34.8%),

(ii) I1 trained from an ImageNet pre-trained model with

1× schedule (APbbox: 38.9%, APmask: 34.6%), and (iii) I3
trained from an ImageNet pre-trained model with 3× sched-

ule (APbbox: 40.3%, APmask: 35.7%).

Figure 2(b) and Figure 2(f) show the intrinsic architec-

tures of I1 and S3, and Figure 5 shows some characteristic

intrinsic dimensionalities. The intrinsic architecture of the

model trained from scratch (S3) is different from that of the

models trained from the ImageNet pre-trained model (I1,

I3), even if the models show similar AP (S3 vs. I1). The

accuracy of object detectors will be improved if we prop-

erly incorporate the benefits of ImageNet pre-training and

random initialization.

4.4. Discovered Backbones

Next, we apply Intrinsic Architecture Search to S3, I1,

and I3 for new backbones. Figure 2(d) and Figure 2(h)

show the architectures of ResiaNet I1-50 (MACs) and Re-

siaNetS3-50 (MACs), whose target resource consumption is

the MACs of ResNet-50. The architecture of ResiaNet I3-

50 is similar to that of ResiaNet I1-50. Specifically, its

width settings (the numbers in Figure 2(d) from below)

are (64, 64, 224, 128, 576, 256, 1152, 544, 896) for Re-

siaNet I3-50 (MACs), and (64, 64, 256, 160, 608, 288, 1216,

544, 960) for ResiaNet I3-50 (params) whose target is the

number of parameters of ResNet-50.

ResiaNet I1-50 and ResiaNet I3-50 have fewer widths

in stage 5 and have more widths in stages 3 and 4 than

ResNet. Reducing widths in stage 5 is caused by the charac-

teristic of models trained from ImageNet pre-trained mod-

els (Figure 5 Right). Increasing widths in stages 3 and

4 may be caused by the object scales in COCO and the

number of residual blocks (The information which flows

through shortcuts is stacked gradually (Figure 2(b)), and

the total amount of information may depend on the number

of residual blocks). By contrast, ResiaNetS3-50 does not

widen the widths of feature maps which pass through short-

cuts in stages 3 and 4 so much. We conjecture that this flat

architecture is effective for maintaining edge information

and localizing objects, but not suitable for classification.



Backbone Normalization
Classification COCO (2× schedule) COCO (1×)

MACs #params AP AP50 AP75 APS APM APL AP

ResNet-50 [34] SyncBN 3.8 G — 34.5 55.2 37.7 20.4 36.7 44.5 —

ResNet-50⋆ GN 4.09 G 25.5 M 35.5 55.6 38.5 21.3 37.5 45.3 29.4

ResiaNetS3-50 (MACs) GN 4.06 G 18.6 M 35.4 55.4 38.6 21.5 37.3 45.2 28.9

ResiaNet I1-50 (MACs) GN 4.05 G 21.7 M 35.5 55.5 38.6 21.4 37.3 46.0 29.2

ResiaNet I3-50 (MACs) GN 4.07 G 22.0 M 35.4 55.6 38.4 21.3 37.8 45.5 29.3

ResiaNet I3-50 (params)⋆ GN 4.92 G 24.7 M 35.8 55.9 38.9 21.8 38.0 45.6 —

DetNet-59 [34] SyncBN 4.8+ G — 36.3 56.5 39.3 22.0 38.4 46.9 —

DetNet-59† GN 5.00+ G 18.3+ M 36.2 56.0 39.3 22.1 38.3 46.0 —

DetiaNet I2-59 (MACs) GN 4.94+ G 17.4+ M 36.2 56.0 39.3 22.5 38.1 46.0 —

Table 1. Efficiency on COCO object detection. All detectors are trained from randomly initialized weights. The characters like S3 and

I1 in backbone names denote which models are used to determine widths. SyncBN: Synchronized Batch Normalization, GN: Group

Normalization. +: Additional MACs and #params for an additional stage out of the backbone are needed. †: Our implementation. ⋆:

We show the mean of five runs in the columns of COCO (2× schedule). The difference of COCO AP between these two backbones is

statistically significant (p < 0.05 in two-sided Welch’s t-test).

4.5. Efficiency on COCO Object Detection

To quantify the impact on accuracy caused by the dif-

ference of intrinsic architectures and identify better back-

bones than ResNet, we trained Faster R-CNN with FPN

from scratch. Table 1 shows the results.

ResiaNetS3 (MACs), ResiaNet I1 (MACs), and Re-

siaNet I3 (MACs), which trained with 2× schedule, achieve

similar AP to ResNet with fewer parameters than ResNet.

ResiaNetS3 (MACs) has ∼27% fewer parameters than

ResNet, and it is the most efficient. However, it may

slightly degrade classification accuracy considering AP50.

ResiaNet I3 (params) achieves better AP than ResNet with

the similar number of parameters. (Note that simple width

multipliers [23, 83] cannot improve AP without increasing

parameters. In addition, they degrade AP by ∼0.6% to re-

duce parameters by ∼27%.)

ResiaNet I1 (MACs) and ResiaNet I3 (MACs) achieve

higher AP than ResiaNetS3 (MACs) if they are trained with

1× schedule. Thus, the intrinsic architectures of I1 and I3
have the effect of speeding up convergence. These results

are different from [18] because we reinitialize weights. Be-

sides, the differences of AP by the schedules indicate that

using shorter training as a proxy task [11] is insufficient for

this case.

In addition, we verify the effectiveness of DetiaNet I2-

59 (MACs), whose base backbone is DetNet-59 with GN

(APbbox: 39.9%) which trained from an ImageNet pre-

trained model with 2× schedule. We set 10−3.5 to the

threshold for eigenvalues because the number of parame-

ters increases if it is 10−3. Table 1 shows the results. De-

tiaNet I2 (MACs) achieves similar AP to DetNet with ∼5%

fewer parameters than DetNet. Although the parameter re-

duction of DetNet is more difficult than that of ResNet, our

method is also effective for DetNet.

Backbone #params Top-1 err Top-5 err

ResNet-50⋆ 25.5 M 23.78 6.97

ResiaNetS3-50 (MACs) 18.6 M 24.71 7.40

ResiaNet I1-50 (MACs) 21.7 M 24.04 7.18

ResiaNet I3-50 (MACs)⋆ 22.0 M 23.83 6.98

ResiaNet I3-50 (params)⋆ 24.7 M 23.45∗ 6.85∗

Table 2. Evaluation with transferring from COCO to ImageNet.

⋆: We show the mean of five runs. *: Statistically significant dif-

ferences from ResNet-50 (p < 0.05 in two-sided Welch’s t-test).

4.6. Efficiency on COCO Instance Segmentation

To verify effectiveness on instance segmentation, we

also trained Mask R-CNN from scratch with 2× sched-

ule. ResiaNet I3-50 (MACs) achieves similar AP (APbbox,

APmask: 36.6%, 33.1%) to ResNet-50 (36.6%, 33.0%).

ResiaNetS3-50 (MACs) has slightly lower AP (36.5%,

32.8%). This result means that the parameter reduction of

Mask R-CNN is more difficult than that of Faster R-CNN,

and reflects that the intrinsic dimensionalities of networks

trained on difficult tasks are large [71].

4.7. Transferring Architecture to ImageNet

We investigate whether ResiaNet also improves parame-

ter efficiency if we transfer the intrinsic architectures of the

models trained on COCO to ImageNet classification. Ta-

ble 2 shows the results. ResiaNetS3 (MACs) has higher er-

ror rates than ResNet. Its widths are effective for COCO

but not suitable for ImageNet classification. ResiaNet I3
(MACs) achieves similar error rates to ResNet with fewer pa-

rameters than ResNet. This result indicates that the widths

of ResiaNet I3 mainly depend on the redundancy inherited

from an ImageNet pre-trained model (Figure 5 Right).



5. Discussion and Conclusions

In this section, we first summarize our results and discuss

the need to develop appropriate knowledge-transfer meth-

ods for object detectors. After that, we discuss why archi-

tectures and learning schedules of prior work, which trains

object detectors from scratch, work well. Finally, we de-

scribe the limitations and weakness of our method.

5.1. Appropriate Knowledge Transfer

Although ImageNet pre-training increases intrinsic di-

mensionalities in higher layers (Figure 2(b)), the increase

of parameters caused by them does not improve COCO AP

(Table 1). These results do not necessarily mean that Im-

ageNet pre-training is inefficient and meaningless for ob-

ject detection. This is because the increase of parameters in

higher layers brings us better classification ability (Table 2).

The problem is not ImageNet pre-training itself but rather

the forgetting of ImageNet pre-trained features (Figure 3).

We need to take care of the compression of task-irrelevant

information [62]. Information for classification may be re-

garded as task-irrelevant for localization, and vice versa.

Considering the above-mentioned results, the current

standard architectures and fine-tuning methods of object de-

tectors are insufficient for utilizing pre-training. For train-

ing better object detectors, methods for appropriately trans-

ferring the knowledge of ImageNet will be needed. The

ideas of Decoupled Classification Refinement (DCR) [6]

will be helpful. [6] decouples features for classification and

localization, and the added classifier is trained not to for-

get translation-invariant ImageNet pre-trained features. To

improve the efficiency of DCR, multi-task learning with au-

tomatic branching [44] may also be needed.

5.2. Understanding Prior Work with Our Results

DetNet [34] and ScratchDet [86] eliminate feature maps

with 32× strides from backbones, and weigh those with

finer strides relatively heavily. These manual designs can

imitate the architecture in Figure 2(h). Considering the fea-

ture forgetting (Sec. 4.2), the designs can avoid wasting pa-

rameters even if detectors are pre-trained. Choosing strides

automatically with [63, 37, 76, 2] will be more effective.

DetNet [34] uses 1×1 convolution projection instead of

identity mapping although stages 4, 5, and 6 have the same

spatial resolution. Our results (Figure 5 Right) imply that

the design keeps stages 4 and 5 away from the output layer,

and avoids too sparse representation.

Our results (Figure 5 Right) also imply that current pre-

training for object detectors can be considered as deep su-

pervision [29]. This is because ImageNet pre-training de-

termines the weights of backbones only, and the regulariza-

tion effect of deep supervision remains even if the weights

are fine-tuned. Although recent work [86, 18] emphasizes

the effectiveness of normalization layers for training object

detectors from scratch, it is worth exploring other forms of

regularization including deep supervision [29, 24, 65].

He et al. [17, 18] found that “training longer for the first

(large) learning rate is useful, but training for longer on

small learning rates often leads to overfitting” on training

Mask R-CNN. The increase of eigenspectrum in our results

(Figure 4) with [70] can explain the overfitting as follows:

(i) The learning rates for training object detectors decay.

(ii) The detectors capture more detailed information about

training data by finer optimization with the small learning

rates. (iii) The eigenvalues and the intrinsic dimensionali-

ties of the detectors increase. (iv) The bias decreases and

the variance increases. (v) The detectors overfit if trained

for longer on the small learning rates.

As described above, eigenspectrum dynamics are useful

for analyzing which feature map is responsible for what in-

formation at which time. We believe that eigenspectrum

dynamics can be a tool for analyzing neural architectures

and learning rate schedules, or early stopping by predicting

generalization error with eigenspectrum of training data.

5.3. Limitations and Weakness

We use ResNet and its variants, FPN, and Faster/Mask

R-CNN in our experiments. It would be also interesting to

conduct experiments with single-shot object detectors like

SSD [41] and VGG-16 [67] without FPN. However, we be-

lieve that our analysis is meaningful for the computer vision

community since Faster/Mask R-CNN are standard meth-

ods for object detection and instance segmentation.

Our method can only determine the widths of feature

maps. Combining our method with compound scaling [73]

and gradient-based NAS [38, 2, 80] to determine network

depth, image resolution, and operations would give us fur-

ther advantages.

We only consider MACs and the number of parame-

ters as metrics of model efficiency. We should consider

other metrics like memory footprint [60], memory access

cost [47], and real latency on target platforms [81, 72, 77, 8].

Our method resets weights by random initialization. This

choice is practical for complicated object detectors because

it makes codes and experiments simple. However, applying

pruning methods [30, 22, 45, 71] to object detectors may be

better to train more efficient and accurate models.

We trained parameters after the determination of ar-

chitectures in this paper. Considering the results of re-

cent work [52], the simultaneous optimization of architec-

tures and parameters is a highly important future direction,

though the idea is classical (e.g., TWEANNs; Topology and

Weight Evolving Artificial Neural Networks). We believe

that our analysis, method, and results are beneficial for the

optimization since eigenspectrum is related to both archi-

tectures and parameters.
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