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Abstract

ImageNet pre-training has been regarded as essential for
training accurate object detectors for a long time. Recently,
it has been shown that object detectors trained from ran-
domly initialized weights can be on par with those fine-
tuned from ImageNet pre-trained models. However, the
effects of pre-training and the differences caused by pre-
training are still not fully understood. In this paper, we
analyze the eigenspectrum dynamics of the covariance ma-
trix of each feature map in object detectors. Based on our
analysis on ResNet-50, Faster R-CNN with FPN, and Mask
R-CNN, we show that object detectors trained from Ima-
geNet pre-trained models and those trained from scratch
behave differently from each other even if both object de-
tectors have similar accuracy. Furthermore, we propose a
method for automatically determining the widths (the num-
bers of channels) of object detectors based on the eigen-
spectrum. We train Faster R-CNN with FPN from randomly
initialized weights, and show that our method can reduce
~27% of the parameters of ResNet-50 without increasing
Multiply-Accumulate operations and losing accuracy. Our
results indicate that we should develop more appropriate
methods for transferring knowledge from image classifica-
tion to object detection (or other tasks).

1. Introduction

Object detection and instance segmentation are impor-
tant tasks, with many real-world applications in robotics,
healthcare, etc. Up until now, most detection and segmenta-
tion tasks have relied on ImageNet [59] fine-tuning [13, 82].
With fine-tuning, learned parameters or features of source
tasks may be forgotten after learning target tasks [27], and
domain similarity between tasks being important for trans-
fer learning [84]. Furthermore, transferring knowledge be-
tween dissimilar tasks may cause negative transfer [58, 75].
Thus many works have discussed task difference between
image classification and object detection [56, 65, 68, 6] and
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Do object detectors Z and S converge to similar models?

Figure 1. R-CNN [13] shows that object detectors Z, which fine-
tuned from ImageNet pre-trained models, can achieve high accu-
racy. “Rethinking ImageNet Pre-training” [18] shows that object
detectors S, which trained from scratch, can achieve similar ac-
curacy to Z under appropriate conditions. In this paper, we show
that Z and S behave differently from each other even if both object
detectors have similar accuracy.

the effects of pre-training for object detectors [25, 69, 48,
31]. However, the influence caused by the task difference is
still an open problem, and what and how to transfer knowl-
edge from image classification to object detection are un-
clear. Avoiding these problems, it was recently shown that
models trained on COCO [36] from random initialization
can be on par with models trained (fine-tuned) from Ima-
geNet pre-trained models [18], but it is not clear whether or
not models with similar performance have different proper-
ties. To further understand the effects of fine-tuning object
detectors, we analyze the eigenspectrum dynamics of the
covariance matrix of each feature map in object detectors,
and propose a method to automatically determine the num-
bers of channels necessary for performance. (Each feature
map includes channel dimension in this paper.)

More specifically, motivated by the accurate object de-
tectors trained from scratch [18, 86], we focus on the fol-
lowing research question. Do object detectors fine-tuned
from ImageNet pre-trained models and those trained from
scratch converge to similar models? 1If the answer is “Yes,”
we will have a better understanding of the task difference
and the behavior of deep neural networks, and if the answer
is “No, these object detectors do not converge to similar



models, but show similar accuracy by chance,” we should
incorporate the benefits of both object detectors.

To answer this question, we train object detectors as
shown in Figure 1, and analyze the redundancy of feature
maps in the detectors. To be more precise, we analyze the
intrinsic dimensionalities of the feature maps, which repre-
sent how much information the feature maps memorize. In-
trinsic dimensionalities can be quantified by calculating the
eigenspectra of the covariance matrices of the feature maps,
and are related to generalization error [70]. In this paper,
we use the numbers of eigenvalues greater than a threshold
as a simple metric of intrinsic dimensionalities, and we call
the sets of intrinsic dimensionalities in a certain network the
intrinsic architecture.

Our contributions are as follows.

e We analyze the eigenspectrum dynamics of the covari-
ance matrix of each feature map in object detectors,
and show that object detectors trained from ImageNet
pre-trained models and those trained from scratch be-
have differently from each other even if both object
detectors have similar accuracy.

e We propose a method for automatically determining
the widths (the numbers of channels) of object detec-
tors. We report the results of Faster R-CNN with FPN
trained from scratch, and show that our method can re-
duce ~27% of the parameters of ResNet-50 without
increasing Multiply-Accumulate operations (MACs)
and losing accuracy, and can improve COCO AP by
0.3% without increasing parameters (See Sec. 4.5).

e We explain why architectures and learning schedules
of prior object detectors trained from scratch work well
in Sec. 5.2. We bridge recent theoretical analysis on
generalization error [70] and the experimental results
of recent object detectors [18].

2. Related Work
2.1. Neural Network Generalization

One of the most important mysteries of neural networks
is its generalization ability. To understand it, some work
has discussed the relation between generalization and com-
pressibility [66, 50, 1, 70]. Information Bottleneck [66,
62] and Canonical Correlation Analysis (CCA) [53, 50]
are used for analyzing the dynamics of neural networks.
[66] showed that training with Stochastic Gradient Descent
(SGD) has two phases (a label fitting phase and a represen-
tation compression phase). [62] shows that networks with
ReLU do not necessarily exhibit the compression phase, and
that fitting to task-relevant information and the compression
of task-irrelevant information occur simultaneously. [50]
shows that generalizing/larger networks converge to more
similar solutions than memorizing/smaller networks. Using

CCA, Transfusion [54] analyzes the effects of pre-training
for classifying medical images, which are clearly different
from natural images in ImageNet and COCO.

The most related theoretical analysis to this paper is
the degree of freedom of reproducing kernel Hilbert spaces
(RKHSSs), which is defined in [70]. Suzuki [70] shows
the following two important properties of neural networks
which motivate our work. (i) “if the eigenvalues of the
kernels decreases rapidly, then the degree of freedom gets
smaller, and we achieve a better generalization by using a
simpler model.” (ii) “the effective dimension of the network
is less than the actual number of parameters.” Spectral-
Pruning [71], which uses the degree of freedom [70] as
the intrinsic dimensionality of models, is applicable to com-
press complicated networks. Our method and analysis are
based on eigenspectrum [70, 71] and the dynamics of neural
networks [66, 53, 50]. However, these prior works do not
analyze the behavior of neural networks when fine-tuned for
object detection from ImageNet pre-trained models.

2.2. Neural Architecture Search (NAS)

NAS has been a hot research topic on deep learn-
ing since the success of NAS with reinforcement learn-
ing [87], and efficient methods have broadened its applica-
bility [88, 38, 2]. Genetic CNN [79] and NASNet [88] trans-
fer architectures learned on a proxy dataset (e.g., CIFAR-
10) to large-scale datasets (e.g., ImageNet). On the other
hand, ProxylessNAS [2] reduces memory consumption by
path-level binarization, and directly learns architectures for
a large-scale dataset. In addition to NAS for image clas-
sification, a few works focus NAS for semantic segmenta-
tion [63, 4, 37] and object detection [11, 5]. NAS-FPN [11]
and DetNAS [5] search the architectures of Feature Pyra-
mid Networks [35] and backbones for object detectors re-
spectively. However, these prior works [11, 5] do not deter-
mine the widths of feature maps automatically, and compu-
tational costs for training will become higher if their search
space includes the widths.

Determining the widths of feature maps in CNNs can
be considered as a subset of NAS. Although various ap-
proaches have been proposed [9, 21, 8, 43], shrink-and-
expand [15, 52] is a more suitable approach for object detec-
tors because of its simplicity and scalability. MorphNet [15]
shrinks and linearly expands networks. The shrinking im-
poses L1 regularization on the scaling factors of Batch Nor-
malization to identify and prune unimportant channels like
Network Slimming [42], and takes into account specific re-
source constraints (e.g., the number of floating point op-
erations). Neural Rejuvenation [52] revives dead neurons
(reallocates and reinitializes useless channels) during train-
ing. Although the effectiveness of these methods [15, 52] is
verified on ImageNet, it is unknown whether these methods
can be applied to object detectors.
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Figure 2. Overview of Intrinsic Architecture Search. The width of each rectangle is proportional to the output width of each layer. 7x7,
1x 1, and 3x3 convolutions are denoted in purple, green, and blue respectively, and bottleneck building blocks are denoted in gray like [15].
(a): The ResNet-50 backbone of an object detector Z fine-tuned from an ImageNet pre-trained model. (e): The ResNet-50 backbone of
an object detector S trained from scratch. (a) and (e) have the same (extrinsic) architecture, and Z and S have similar accuracy. Thus
the difference between Z and S is unclear. To clarify it, we shrink (by extracting intrinsic architectures), adjust, and expand widths. See

Sec. 3.2 for the details of our algorithm. See Sec. 4.3 for the details of models used in our experiments.

2.3. Object Detection and Instance Segmentation

Object detection is one of the core technologies in com-
puter vision, and has advanced rapidly with deep neural
networks [64, 10, 13, 12, 57, 55, 41, 35, 68] (Refer to a
survey [39] for details). In addition, instance segmenta-
tion [7, 33, 19, 40], which is the task of segmenting and
classifying individual objects, is important for further de-
tailed object recognition. Most methods for these tasks train
models from ImageNet pre-trained models for better accu-
racy. However, pre-training backbones in object detectors
on image classification dataset causes learning bias and lim-
its architecture design [65, 86].

To avoid the problems of pre-training, training object de-
tectors from scratch (from randomly initialized weights) has
been discussed in some literature [65, 32, 34, 28, 86, 18].
DSOD [65] shows that deep supervision [29] is criti-
cal for training single-shot object detectors from scratch,
and adopts implicit deep supervision via dense connec-
tions [24]. ScratchDet [86] shows that Batch Normaliza-
tion [26, 61] helps training from scratch to converge, and
redesigns the backbone of single-shot object detectors. [18]
shows that Mask R-CNN trained from scratch with appro-
priate normalization and longer training (instead of pre-
training) can be on par with those fine-tuned from ImageNet
pre-trained models.

The most similar work to ours is DetNet [34], which is
a specialized backbone for object detection. DetNet mainly

focuses on scales (the receptive fields and the spatial res-
olutions of feature maps) to overcome drawbacks of Ima-
geNet pre-trained models designed for image classification.
However, its widths are manually determined. On the other
hand, our method does not aim to determine the spatial res-
olutions. Using our method and DetNet complementarily
would be beneficial.

3. Intrinsic Architecture Search

In this section, we propose a method for automatically
determining the widths (the numbers of channels) of fea-
ture maps. Our method reflects intrinsic architectures by
calculating the redundancy of feature maps, and is applica-
ble to complicated networks, such as Faster R-CNN with
FPN and Mask R-CNN. Figure 2 shows an overview of
our method. We call our algorithm Intrinsic Architecture
Search, and we call architectures discovered by our algo-
rithm ResiaNet whose base backbone is ResNet.

3.1. Determining Widths

Optimizing the widths of feature maps is formulated as
Oj.p = argmin min £(0), (1)
e(Oran)<¢

where M is the total number of layers, O1.,, are the widths
of output feature maps, 6 is the parameters (weights) in neu-
ral networks, £ is a loss function for training neural net-



works, ¢ is a function for calculating resource consumption
(e.g., Multiply-Accumulate operations (MACs)), and ( is a
specified maximum allowable resource consumption. This
formulation is exactly the same as [15], and most notations
in this section and some descriptions in Algorithm 1 follow
MorphNet [15] for ease of comparing methods.

Although MorphNet [15] and Neural Rejuvenation [52]
also tackle the determination of widths, these methods need
to change training and intrinsic dimensionalities. In addi-
tion, applying them to object detection and instance seg-
mentation poses some difficulties below. (i) These methods
depend on Batch Normalization [26]. Therefore, applying
them to networks with other normalization layers [78, 46]
is not trivial. Furthermore, when we apply them to net-
works without normalization layers [85], we need to add
Batch Normalization layers [52]. (ii) These methods use
additional regularizers. Since object detection and instance
segmentation are multi-task learning including classifica-
tion and localization, we might need to balance regulariza-
tion. (iii) These methods need to train multiple models [15]
or tune additional hyperparameters [52]. This is a serious
problem especially for object detection and instance seg-
mentation because training for these tasks takes a long time
(See model zoos of [14, 3, 49]).

3.2. Overview

We propose a method for determining the widths of ob-
ject detectors using eigenspectrum [70]. Algorithm 1 shows
the whole process, where S.); are the eigenspectra of fea-
ture maps, d1.ps are the intrinsic dimensionalities of the fea-
ture maps, 7' is a threshold for calculating intrinsic dimen-
sionalities (e.g., 1073), len is a function for counting num-
bers which meet the condition, and w is a width multiplier.

The details of Algorithm 1 are described below. In Step
1, we set initial weights. Weights in a base backbone (e.g.,
ResNet-50) are initialized from one of the ImageNet pre-
trained models, or randomly initialized. Weights out of the
base backbone are randomly initialized. In Step 2, we train
the whole network (e.g., Faster R-CNN with FPN or Mask
R-CNN) with the base backbone. In Step 3, we calculate
the eigenspectrum of each feature map in the whole net-
work (See Sec. 3.3 for details). Eigenvalues are normalized
with the largest eigenvalue of each feature map. In Step
4, we shrink the widths of each feature map by extracting
an intrinsic architecture (See Sec. 3.4 for details). In Step
5, we adjust the widths mainly for networks with multiple
branches (See Sec. 3.5 for details). In Step 6, we expand
the widths by linear expanding (See Sec. 3.6 for details).

3.3. Calculating Eigenspectra

When we calculate the eigenspectra of feature maps
which have spatial resolutions (i.e. almost all feature maps
in CNNs), we normalize the covariance matrices by the res-

Algorithm 1 Intrinsic Architecture Search

1: Set initial weights.
2: Train the whole network to find
0* = argmin £(6).
0

3: Calculate eigenspectra S7.p;.

4: Calculate intrinsic dimensionalities dy.ps by
di.p = len(Sl;M > T)

5. Determine new widths O, by adjusting dy.,.

6: Find the largest w such that c¢(w - Of.,,) < C.

7. return w - O, ;.

olutions. Specifically, the (non-centered) covariance matrix
> of a feature map F' is calculated as

E:li : %HF Fl )
n im1 WiHi syt iyl gy

where n is the number of images (we randomly sample
5,000 images from the training set in our experiments),
W, H; are the spatial width and height of the feature map,
and F; , , is a feature vector whose coordinates are (x,y)
in the feature map for the -th image. Not only Fj , , but
also W;, H; depend on images feed-forwarded because in-
put image resolutions may change in the case of COCO.

We calculate the eigenspectra of feature maps before or
after convolutional layers, fully connected layers, and trans-
posed convolutional layers. Note that feature maps after L-
th convolutional layer and feature maps before (L + 1)-th
convolutional layer generally do not match due to normal-
ization layers and activation layers.

3.4. Shrinking Widths

We calculate intrinsic dimensionalities from the eigen-
spectra. We use the numbers of eigenvalues greater than a
predefined threshold as intrinsic dimensionalities. (Using
degree of freedom [71] may be better, though we do not use
pruning and we set random values to the initial weights.)
Although we set 1073 to the threshold in our experiment,
we may get better accuracy if we tuned the threshold as a
hyperparameter.

3.5. Adjusting Widths

If the network has multiple branches, adjusting intrin-
sic dimensionalities is necessary to determine new widths,
because either the input feature maps or the output feature
maps of branches may have to have the same widths. Es-
pecially for ResNet with bottlenecks, where the widths of
feature maps which pass through shortcuts are set to the
maximum intrinsic dimensionalities in the same stage for
preserving most information which flows shortcut. Further-
more, we set the same output widths to the first and the
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Figure 3. Dropping of eigenvalues. Some feature maps in the

stage 5 of ResNet-50 become highly redundant in the first 10k it-
erations, though it is irredundant before fine-tuning (Ok iterations).

second convolutional layers of all residual blocks in the
same stage by calculating the geometric mean of intrinsic
dimensionalities. This setting has some advantages: (i) The
second convolutional layers of residual blocks can be re-
placed with depthwise convolutional layers like [60]. (ii)
Using the same widths is efficient considering memory ac-
cess cost [47]. (iii) Implementation is easy and thus modifi-
cations to the code of ResNet are minimized.

3.6. Expanding Widths

Our expanding method is basically the same as that
of [15]. Specifically, the output width of each layer is mul-
tiplied by a uniform width multiplier w to fit a target re-
source consumption. The optimal w can be found by a bi-
nary search because c(w - Of,,,;) monotonically increases
with w in our experiments. ¢(O1.;7) is calculated as

M+1

(Orn) = Y ILOLK}WLH, 3
L=1

when targeting MACs, and

M+1

c(O1m) = Y ILOLKE, )
L=1

when targeting the number of parameters, where I, Oy, are
the widths of the input/output feature map, Ky, is the kernel
size, and Wy, Hy, are the spatial width and height of the
output feature map, for each layer L = 1,..., M + 1. We
consider Oj41 is a fixed number (e.g., 1,000 for ImageNet
classification). For simplicity, we consider the spatial width
and height of kernel size to be the same in each layer, and
omit the resource consumption of biases.

To avoid odd widths [15], we round w - O}, to
hardware-friendly multiples (e.g., multiples of 4, 8, 16, or
32). This rounding is also useful for networks with Group
Normalization layers [78]. When resource fittings are too
coarse, we may fill the gaps by increasing widths greedily.
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Figure 4. Rebounding of eigenvalues. The numbers of eigenvalues
greater than 10~ increase immediately after the first learning rate
decay (210k iterations) in some feature maps.

4. Experiments

To analyze the effects of pre-training for object detectors
and to verify the effectiveness of our method, we conduct
experiments on COCO.

4.1. Experimental Settings

The experimental settings mainly follow Mask R-
CNN [19] in Detectron [14] (which includes implementa-
tion by the authors of Mask R-CNN) like [18]. Our imple-
mentation is based on Detectron.pytorch [74], which is a
PyTorch implementation of Detectron.

We use ResNet-50 [20] as a base backbone. We
train Faster R-CNN [57] with Feature Pyramid Network
(FPN) [35] and Mask R-CNN [19] in an end-to-end man-
ner [57]. We use Group Normalization (GN) [78], be-
cause appropriate normalization is a key factor for training
from scratch [86, 18], and GN has several advantages [78]
compared to Synchronized Batch Normalization [51]. The
learning rate settings follow [18]. Specifically, the initial
learning rate is 0.02 with warm-up [16], and the learning
rate is reduced by 10x. Iterations for the first decay, the
second decay, and ending training are 60k, 80k, 90k for
1x schedule, 120k, 160k, 180k for 2x schedule, and 210k,
250k, 270k for 3x schedule. We use synchronous SGD
with an effective batch size of 16 (= 2 images/GPU x 8
GPUs), a momentum of 0.9, and a weight decay of 104,

All models are trained on COCO train2017 set
(118,287 images) and evaluated on COCO val2017 set
(5,000 images) with COCO metrics unless otherwise stated.

4.2. Eigenspectrum Dynamics

To analyze the effects of pre-training for object detec-
tors, we observed the dynamics of the eigenspectrum of
Mask R-CNN. Figure 3 shows the eigenspectrum of a fea-
ture map after the conv5_1_3 (the third convolutional layer
in conv5_1 bottleneck building block. We call the convolu-
tional layers of ResNet in this manner.) of ResNet-50. In
the case of this layer, the eigenspectrum drops fast in the
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Figure 5. Intrinsic dimensionalities. Object detectors trained from ImageNet pre-trained models vs. those trained from scratch. These
detectors behave differently from each other even if both detectors have similar accuracy. Left: Feature maps before conv2_1_1. Lower
layers in backbones converge to similar eigenspectra. Freezing the weights initialized from ImageNet pre-trained models in lower layers
is a reasonable choice. Middle: Feature maps before conv5_1_1. Higher layers in backbones converge to dissimilar eigenspectra. Right:
Feature maps before conv5_2_1. In the case of the models trained from an ImageNet pre-trained model with GN layers, the feature maps
close to the output layer (for ImageNet classification) do not use over half of the dimensions, and they are not reused even after fine-tuning.

first 10k iterations. Similar behavior can be seen in feature
maps with 32x strides after conv5_2_3, conv5_3_3, and pro-
jection shortcut in conv5_1.

This result demonstrates that some information obtained
in ImageNet pre-training is forgotten. There are three possi-
ble reasons. (i) Features for 1000-class image classification
are too rich for most object detection tasks (e.g., Classifica-
tion ability needed for COCO detection is 81-class classifi-
cation including a background class). (ii) In pre-training on
ImageNet, the stage 5 of ResNet is very close to the output
layer. Layers which are close to the output layer may com-
press information to minimum needed for the pre-training
task. (iii) The strides of conv5_x are too coarse to localize
objects. DetNet [34] and ScratchDet [86] also discuss this
problem and change the strides for object detection. Unlike
these works, our finding is that SGD (with other regulariza-
tion methods) automatically limits the intrinsic dimension-
alities of standard ResNet without changing the strides.

Eigenspectrum dynamics can capture not only the for-
getting of ImageNet pre-trained features but also the acqui-
sition of features for COCO. Figure 4 shows the numbers of
eigenvalues greater than 10~3. Eigenvalues first down, then
up, in some layers. This rebound occurs when the learning
rate decays and may relate to the learning rate schedules and
a finding in [18] (See discussions in Sec. 5.2).

4.3. Intrinsic Architecture

Here, we investigate whether models fine-tuned from
an ImageNet pre-trained model and a model trained from
scratch converge to similar intrinsic architectures.

We compare three models below. (i) S3 trained from
scratch with 3x schedule (APP™%: 39.0%, AP™K: 34 8%),
(ii) Z1 trained from an ImageNet pre-trained model with
1x schedule (AP*®*: 38.9%, AP™>k: 34.6%), and (iii) Z3
trained from an ImageNet pre-trained model with 3 x sched-
ule (APP™%: 40.3%, AP™*¢: 35.7%).

Figure 2(b) and Figure 2(f) show the intrinsic architec-
tures of Z1 and S3, and Figure 5 shows some characteristic
intrinsic dimensionalities. The intrinsic architecture of the
model trained from scratch (S3) is different from that of the
models trained from the ImageNet pre-trained model (71,
13), even if the models show similar AP (S3 vs. Z1). The
accuracy of object detectors will be improved if we prop-
erly incorporate the benefits of ImageNet pre-training and
random initialization.

4.4. Discovered Backbones

Next, we apply Intrinsic Architecture Search to S3, 71,
and Z3 for new backbones. Figure 2(d) and Figure 2(h)
show the architectures of ResiaNet Z1-50 (MACs) and Re-
siaNet $3-50 (MACs), whose target resource consumption is
the MACs of ResNet-50. The architecture of ResiaNet Z3-
50 is similar to that of ResiaNetZ1-50. Specifically, its
width settings (the numbers in Figure 2(d) from below)
are (64, 64, 224, 128, 576, 256, 1152, 544, 896) for Re-
siaNet Z3-50 (MACs), and (64, 64, 256, 160, 608, 288, 1216,
544, 960) for ResiaNet Z3-50 (params) whose target is the
number of parameters of ResNet-50.

ResiaNet Z1-50 and ResiaNet Z3-50 have fewer widths
in stage 5 and have more widths in stages 3 and 4 than
ResNet. Reducing widths in stage 5 is caused by the charac-
teristic of models trained from ImageNet pre-trained mod-
els (Figure 5 Right). Increasing widths in stages 3 and
4 may be caused by the object scales in COCO and the
number of residual blocks (The information which flows
through shortcuts is stacked gradually (Figure 2(b)), and
the total amount of information may depend on the number
of residual blocks). By contrast, ResiaNet S3-50 does not
widen the widths of feature maps which pass through short-
cuts in stages 3 and 4 so much. We conjecture that this flat
architecture is effective for maintaining edge information
and localizing objects, but not suitable for classification.



. Classification COCO (2x schedule) COCO (1x)

Backbone Normalization

MACs #params AP APso AP7; APs APy APL AP
ResNet-50 [34] SyncBN 3.8G — 345 552 3777 204 36.7 445 —
ResNet-50* GN 409G 255M 355 556 385 213 375 453 29.4
ResiaNet $3-50 (MACs) GN 406G 18.6 M 354 554 386 215 373 452 28.9
ResiaNet Z1-50 (MACs) GN 405G 21.7M 355 555 38.6 214 373 46.0 29.2
ResiaNet Z3-50 (MACs) GN 407G 22.0M 354 556 384 213 37.8 455 29.3
ResiaNet Z3-50 (params)* GN 492G 247M 358 559 389 21.8 38.0 45.6 —
DetNet-59 [34] SyncBN 4.8+ G — 363 56.5 393 22.0 384 46.9 —
DetNet-591 GN 500+G 183+M 362 56.0 393 22.1 383 46.0 —
DetiaNet 72-59 (MACs) GN 494+ G 174+ M 362 56.0 393 225 38.1 46.0 —

Table 1. Efficiency on COCO object detection. All detectors are trained from randomly initialized weights. The characters like S3 and
71 in backbone names denote which models are used to determine widths. SyncBN: Synchronized Batch Normalization, GN: Group
Normalization. +: Additional MACs and #params for an additional stage out of the backbone are needed. f: Our implementation. *:
We show the mean of five runs in the columns of COCO (2x schedule). The difference of COCO AP between these two backbones is

statistically significant (p < 0.05 in two-sided Welch’s ¢-test).

4.5. Efficiency on COCO Object Detection Backbone #params Top-1err Top-5 err
To quantify the impact on accuracy caused by the dif- ResNet—SO* 25.5M  23.78 6.97

ference of intrinsic architectures and identify better back- ResiaNet §3-50 (MACs)  18.6 M 24.71 7.40

bones than ResNet, we trained Faster R-CNN with FPN Eesfzget%?gg Exigsi* éégﬁ ;ggg Z;g

f tch. Table 1 shows the results. estaneton s : ' '

rom seratehi. Table 1 SHows the Testis ResiaNet Z3-50 (params)* 247 M 23.45*  6.85*

ResiaNet S3 (MACs), ResiaNetZ1 (MACs), and Re-
siaNet Z3 (MACs), which trained with 2x schedule, achieve
similar AP to ResNet with fewer parameters than ResNet.
ResiaNet S3 (MACs) has ~27% fewer parameters than
ResNet, and it is the most efficient. However, it may
slightly degrade classification accuracy considering APj5.
ResiaNet Z3 (params) achieves better AP than ResNet with
the similar number of parameters. (Note that simple width
multipliers [23, 83] cannot improve AP without increasing
parameters. In addition, they degrade AP by ~0.6% to re-
duce parameters by ~27%.)

ResiaNet Z1 (MACs) and ResiaNetZ3 (MACs) achieve
higher AP than ResiaNet S3 (MACs) if they are trained with
1x schedule. Thus, the intrinsic architectures of Z1 and Z3
have the effect of speeding up convergence. These results
are different from [18] because we reinitialize weights. Be-
sides, the differences of AP by the schedules indicate that
using shorter training as a proxy task [11] is insufficient for
this case.

In addition, we verify the effectiveness of DetiaNet Z2-
59 (MACs), whose base backbone is DetNet-59 with GN
(APX:  39.9%) which trained from an ImageNet pre-
trained model with 2x schedule. We set 1073 to the
threshold for eigenvalues because the number of parame-
ters increases if it is 1073, Table 1 shows the results. De-
tiaNet Z2 (MACs) achieves similar AP to DetNet with ~5%
fewer parameters than DetNet. Although the parameter re-
duction of DetNet is more difficult than that of ResNet, our
method is also effective for DetNet.

Table 2. Evaluation with transferring from COCO to ImageNet.
*: We show the mean of five runs. *: Statistically significant dif-
ferences from ResNet-50 (p < 0.05 in two-sided Welch’s ¢-test).

4.6. Efficiency on COCO Instance Segmentation

To verify effectiveness on instance segmentation, we
also trained Mask R-CNN from scratch with 2x sched-
ule. ResiaNetZ3-50 (MACs) achieves similar AP (APPP°X,
AP™K: 36 6%, 33.1%) to ResNet-50 (36.6%, 33.0%).
ResiaNet $3-50 (MACs) has slightly lower AP (36.5%,
32.8%). This result means that the parameter reduction of
Mask R-CNN is more difficult than that of Faster R-CNN,
and reflects that the intrinsic dimensionalities of networks
trained on difficult tasks are large [71].

4.7. Transferring Architecture to ImageNet

We investigate whether ResiaNet also improves parame-
ter efficiency if we transfer the intrinsic architectures of the
models trained on COCO to ImageNet classification. Ta-
ble 2 shows the results. ResiaNet S3 (MACs) has higher er-
ror rates than ResNet. Its widths are effective for COCO
but not suitable for ImageNet classification. ResiaNetZ3
(MACs) achieves similar error rates to ResNet with fewer pa-
rameters than ResNet. This result indicates that the widths
of ResiaNet 73 mainly depend on the redundancy inherited
from an ImageNet pre-trained model (Figure 5 Right).



5. Discussion and Conclusions

In this section, we first summarize our results and discuss
the need to develop appropriate knowledge-transfer meth-
ods for object detectors. After that, we discuss why archi-
tectures and learning schedules of prior work, which trains
object detectors from scratch, work well. Finally, we de-
scribe the limitations and weakness of our method.

5.1. Appropriate Knowledge Transfer

Although ImageNet pre-training increases intrinsic di-
mensionalities in higher layers (Figure 2(b)), the increase
of parameters caused by them does not improve COCO AP
(Table 1). These results do not necessarily mean that Im-
ageNet pre-training is inefficient and meaningless for ob-
ject detection. This is because the increase of parameters in
higher layers brings us better classification ability (Table 2).
The problem is not ImageNet pre-training itself but rather
the forgetting of ImageNet pre-trained features (Figure 3).
We need to take care of the compression of task-irrelevant
information [62]. Information for classification may be re-
garded as task-irrelevant for localization, and vice versa.

Considering the above-mentioned results, the current
standard architectures and fine-tuning methods of object de-
tectors are insufficient for utilizing pre-training. For train-
ing better object detectors, methods for appropriately trans-
ferring the knowledge of ImageNet will be needed. The
ideas of Decoupled Classification Refinement (DCR) [6]
will be helpful. [6] decouples features for classification and
localization, and the added classifier is trained not to for-
get translation-invariant ImageNet pre-trained features. To
improve the efficiency of DCR, multi-task learning with au-
tomatic branching [44] may also be needed.

5.2. Understanding Prior Work with Our Results

DetNet [34] and ScratchDet [86] eliminate feature maps
with 32x strides from backbones, and weigh those with
finer strides relatively heavily. These manual designs can
imitate the architecture in Figure 2(h). Considering the fea-
ture forgetting (Sec. 4.2), the designs can avoid wasting pa-
rameters even if detectors are pre-trained. Choosing strides
automatically with [63, 37, 76, 2] will be more effective.

DetNet [34] uses 1x 1 convolution projection instead of
identity mapping although stages 4, 5, and 6 have the same
spatial resolution. Our results (Figure 5 Right) imply that
the design keeps stages 4 and 5 away from the output layer,
and avoids too sparse representation.

Our results (Figure 5 Right) also imply that current pre-
training for object detectors can be considered as deep su-
pervision [29]. This is because ImageNet pre-training de-
termines the weights of backbones only, and the regulariza-
tion effect of deep supervision remains even if the weights
are fine-tuned. Although recent work [86, 18] emphasizes

the effectiveness of normalization layers for training object
detectors from scratch, it is worth exploring other forms of
regularization including deep supervision [29, 24, 65].

He et al. [17, 18] found that “training longer for the first
(large) learning rate is useful, but training for longer on
small learning rates often leads to overfitting” on training
Mask R-CNN. The increase of eigenspectrum in our results
(Figure 4) with [70] can explain the overfitting as follows:
(i) The learning rates for training object detectors decay.
(i1) The detectors capture more detailed information about
training data by finer optimization with the small learning
rates. (iii) The eigenvalues and the intrinsic dimensionali-
ties of the detectors increase. (iv) The bias decreases and
the variance increases. (v) The detectors overfit if trained
for longer on the small learning rates.

As described above, eigenspectrum dynamics are useful
for analyzing which feature map is responsible for what in-
formation at which time. We believe that eigenspectrum
dynamics can be a tool for analyzing neural architectures
and learning rate schedules, or early stopping by predicting
generalization error with eigenspectrum of training data.

5.3. Limitations and Weakness

We use ResNet and its variants, FPN, and Faster/Mask
R-CNN in our experiments. It would be also interesting to
conduct experiments with single-shot object detectors like
SSD [41] and VGG-16 [67] without FPN. However, we be-
lieve that our analysis is meaningful for the computer vision
community since Faster/Mask R-CNN are standard meth-
ods for object detection and instance segmentation.

Our method can only determine the widths of feature
maps. Combining our method with compound scaling [73]
and gradient-based NAS [38, 2, 80] to determine network
depth, image resolution, and operations would give us fur-
ther advantages.

We only consider MACs and the number of parame-
ters as metrics of model efficiency. We should consider
other metrics like memory footprint [60], memory access
cost [47], and real latency on target platforms [81, 72, 77, 8].

Our method resets weights by random initialization. This
choice is practical for complicated object detectors because
it makes codes and experiments simple. However, applying
pruning methods [30, 22, 45, 71] to object detectors may be
better to train more efficient and accurate models.

We trained parameters after the determination of ar-
chitectures in this paper. Considering the results of re-
cent work [52], the simultaneous optimization of architec-
tures and parameters is a highly important future direction,
though the idea is classical (e.g., TWEANNSs; Topology and
Weight Evolving Artificial Neural Networks). We believe
that our analysis, method, and results are beneficial for the
optimization since eigenspectrum is related to both archi-
tectures and parameters.
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