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Abstract

This paper proposes that despite the success of deep

learning methods in computer vision, the dominance we see

would not have been possible by the methods of deep learn-

ing alone: the tacit change has been the evolution of em-

pirical practice in computer vision. We demonstrate this

by examining the distribution of sensor settings in vision

datasets, only one potential dataset bias, and performance

of both classic and deep learning algorithms under vari-

ous camera settings. This reveals a strong mismatch be-

tween optimal performance ranges of theory-driven algo-

rithms and sensor setting distributions in common vision

datasets.

1. Introduction

There are many classic volumes that define the field of

computer vision (e.g., [15]). There, the theoretical foun-

dations of image and video processing, analysis, and per-

ception are developed theoretically and practically, repre-

senting what we term theory-driven computer vision. A

geometrical and physical understanding of the image for-

mation process, from illuminant to camera optics to image

creation, as well as the material properties of the surfaces

that interact with incident light was mathematically mod-

eled so that when those equations were simulated by a com-

puter, they would result in the percepts of human vision.

It is difficult to deny the theoretical validity of those ap-

proaches and from the earliest days of computer vision, the

performance of these theory-based solutions had always ap-

peared promising, with much supporting literature (see [14]

for early reviews).

However, during most of the history of computer vision,

the discipline suffered from two main problems [1]. Firstly,

computational power and memory were too meagre to deal

with the requirements of vision [16]. Secondly, the avail-

ability of large sets of test data that could be shared and

could permit replication of results was limited. An empiri-

cal methodology and tradition to guide testing and replica-

tion was also missing.

The first problem improved as Moore’s Law played out.

Especially important, was the advent of GPUs in the late

1990s, with their rapid general availability. Major progress

was made on the second problem with the introduction of

cheaper memory and the possibility of large collections of

images. Whereas the early scarcity of data precluded ex-

tensive use of learning methods, the emergence of large im-

age sets encouraged exploration of learning systems. Early

papers pointed to the utility of images of handwritten dig-

its for testing recognition and learning methods (e.g., [6])

so the creation of the MNIST set [7] was timely and im-

pactful. The community witnessed the emergence of data-

driven computer vision models created by extracting sta-

tistical regularities from a large number of image samples.

The MNIST set was soon joined by others; PASCAL Visual

Object Classes (VOC) Challenge [3], ImageNet [13], and

more. The contribution of these data sets and challenges

is undeniable towards the acceleration of developments in

computer vision.

2. Effect of Sensor Settings for Interest Point

and Saliency Algorithms

Previous work explored how performance of several in-

terest point and saliency algorithms changes with varying

camera parameters [1]. The experiments revealed a strong

dependence on settings. Performance patterns seemed or-

derly as if determined by some physical law, exhibiting a

strong and clear structure.

The authors created a dataset that reflected different cam-

eras, camera settings, and illumination levels (experimental

details in [1]). They tested several algorithms (including

Harris-Affine and Hessian-Affine region detectors [10]) to

reveal the effects of camera shutter speed and voltage gain,

under simultaneous changes in illumination, and demon-

strated significant differences in their sensitivities.

Figure 1 shows two examples; several others can be seen

in [1]. The results show that such algorithms have very spe-

cific ranges where good performance can be obtained. Sim-

ply put, if one wished to use one of these specific algorithms

for a particular application, then it is necessary to ensure

that the images processed are acquired using the sensor set-

ting ranges that yield good performance (Figure 1). Such



(a) Harris (b) Hessian

Figure 1: a) Harris-Affine; b) Hessian-affine. Adapted from

[1] showing precision-recall values for combinations of

sensor settings (collapsed across illumination conditions).

Shutter speed increases from top to bottom and gain in-

creases from left to right. [1] thresholds precision and recall

values at 0.5; here, those bins are set to 0.5.

considerations are rarely observed.

3. Effect of Sensor Settings on Object Detection

Algorithms

The same test for more recent recognition algorithms,

both classic and deep learning methods, was performed in

[19] where experimental details can be found. Four popu-

lar object detection algorithms were evaluated including the

Deformable Part Models (DPM) [4] and the Bag-of-Words

model (BoW) [18], shown in Figure 2; the others can be

seen in [19]. Mean average precision (mAP) values were

not thresholded and are plotted intact. Although not shown

here, [19] also showed that performance depends signifi-

cantly on illumination level as well as sensor settings and

does not easily generalize across these variables. As before,

if one wished to use one of these specific algorithms for

a particular application, then it is necessary to ensure that

the images are acquired using the sensor setting ranges that

yield good performance (Figure 2).

In general, it can be seen that there is less orderly struc-

ture when compared to the previous set of tests (thus mak-

ing any characterization of ‘good performing’ sensor set-

tings more difficult) and the authors wondered about the

reason. Could the difference be due to an uneven distri-

bution of training samples along those dimensions? Could

overall performance be influenced by such bias?

4. Distributions of Sensor Parameters in Com-

mon Computer Vision Datasets

As mentioned, the two above studies caused us to be cu-

rious about the reasons behind the uneven and unexpected

performance patterns across algorithms. After thorough

verifications of the methods employed, we concluded that

some imbalance in data distribution across sensing param-
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Figure 2: Results for 2 object detection algorithms (DPM

and BoW) for different shutter speed and gain values for

the high illumination condition (adapted from [19]). Shut-

ter speed increases from top to bottom and gain increases

from left to right. mAP values are shown for sensor setting

combinations.

eters might be the cause. Surprisingly, among works on

various biases in vision datasets, few acknowledge the exis-

tence of sensor bias (or capture bias [15]) and none provide

quantitative statistics.

To explore this further, we selected two common

datasets, Common Objects in Context (COCO) [9] and

VOC 2007, the dataset used in the PASCAL Visual Object

Classes Challenge in 2007 [2]. Since both datasets consist

of images gathered from Flickr, we used Flickr API to re-

cover EXIF data (tags for camera settings provided by the

camera vendor) for each image. We examined both sets

in detail, but present results from COCO here, while those

from VOC can be found in [17]. In the COCO dataset 59%

and 58% of train and validation data respectively had EXIF

data available. We use the trainval35K split commonly

used for training object detection algorithms.
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Figure 3: Distribution of exposure times and ISO in a)

training and b) validation sets in terms of % of the total im-

ages in the COCO set (with EXIF data). Some of the bins

are empty since there are no images in the dataset obtained

with those camera settings.

Using shutter speed, f-number and ISO we can compute

exposure value (EV) using the formula in [20]. From EV we

can derive the illumination level. We define low illumina-



tion between -4 and 7 EV (up to 320lx), mid-level illumina-

tion between 8 and 10 EV (640 to 2560lx) and high-level il-

lumination above 11 EV (more than 5120lx) which approx-

imately matches the setup in [19]. The distributions of ex-

posure times (shutter speeds) shows that ‘auto settings’ on

cameras dominate (see [17]). We also tabulated the image

counts in each illumination level, not surprisingly, nearly

90% of all images are acquired under high to medium illu-

mination conditions (see [17]).

5. Object Detection on Images With Different

Sensor Parameters from COCO Dataset

We next investigated how different sensor parameters

affect the performance of object detection algorithms,

namely, Faster R-CNN [12], Mask R-CNN [5], YOLOv3

[11] and RetinaNet [8], state-of-the-art object detection al-

gorithms trained on COCO trainval35K set. Figures

3a and 3b show the percentages of images for a range of the

shutter speed and ISO settings in COCO train and validation

sets. The bin edges of heatmaps approximately match the

ranges reported in [1] and [19]. Since shutter speed in the

previous studies was limited to 1s, in our setup all images

with exposure time > 1s fall into the last bin and exposure

time values between 0 and 1s are split into 8 equal intervals.

Both [1] and [19] report gain, which is not available on most

consumer cameras, therefore we use ISO values as a proxy.

The following ISO bin ranges [0, 100, 200, 400, 800, 1600,

3200, 6400, 10000] approximately correspond to the gain

values used in [1] and [19].

Figure 4 shows evaluation results in terms of mean aver-

age precision (mAP) for object detection algorithms trained

on COCO and evaluated on the portion of COCO 5K mini-

val set with available EXIF data and presented in the same

style as the previous tests. However, it is difficult to com-

pare our results with the results of the previous works di-

rectly because of the differences in the evaluation datasets,

algorithms (interest point vs object detection), camera pa-

rameters (gain vs ISO), inability to precisely establish illu-

mination level in common vision datasets and possible in-

consistencies in computing average precision in each case.

Note that nearly 90% of training and validation data in

COCO is concentrated in the top row of the diagram (very

short exposure times and ISO values of up to 800). Fig-

ure 4 reveals very similar results from all 4 algorithms that

are trained on this dataset suggesting possible training bias.

It is also apparent that the mAP values in the top row are

consistent with the reported performance of the algorithms

but fluctuate wildly in bins that contain less representative

camera parameter ranges. It is hard to attribute this fluctua-

tion entirely to sensor bias, as other factors may be at play

(e.g. types and number of objects, small number of images

in the underrepresented bins). This should be investigated

further. It is never a useful property for an algorithm to dis-
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Figure 4: Performance of a) YOLOv3, b) Faster R-CNN,

c) Mask R-CNN and d) RetinaNet on minival subset of

COCO for different sets of shutter speed and gain values.

mAP for bounding boxes at 0.5 IoU (mAP IoU=.50) is com-

puted for each bin using COCO API.

play such significant sensitivity to small parameter changes.

One might expect a small shift in shutter speed, for exam-

ple, to lead to only small changes in subsequent detection

performance; this experiment shows this is not the case.

6. Discussion

This topic deserves far more discussion but in this short

paper, space will not permit (but see [17]). First, theory-

based algorithms seem to have an orderly pattern of per-

formance with respect to the sensor settings we examined.

This may be due to their analytic definitions; they were not

designed to be parameterized for the full range of sensor

settings. If good performance is sought from any of these

algorithms, they should be employed with cameras set to

the algorithm’s inherent optimal ranges. Second, the same

test on modern algorithms reveals a haphazard performance

pattern. It might be that some of the variations are due to bi-

ases in the data, maybe some due to the particular objects in

question, others may be due to the properties of the network

architectures. This needs more extensive analysis. Third,

an examination of two popular image sets, VOC2007 and

COCO, shows that image metadata (sensor settings, camera

pose, illumination, etc.) is often not available. This means

that for any given “in the wild” set of images, the perfor-

mance of data-driven methods may be predicted by how

well the distribution of images along dimensions of sensor

setting and illumination parameters of a test set matches the

distribution resulting from the training set. This requires



further verification. Finally, as can be seen in Figure 3,

the variability required to train is not even available in the

large datasets we considered. The distributions of images

across these parameters was uneven so training algorithms

are impeded with respect to learning the variations. Any ex-

pectation of generalization may be misplaced. It might be

good practice to require specification of image distributions

across relevant parameters in order to ensure that not only

training, but evaluations, are properly performed.

With all due respect to all the terrific advances made in

computer vision, we propose here and provide some justifi-

cation, that the empirical methodology that led to the turn-

ing point in the discipline was based on an oversight that

none of us noticed at the time. Sensor settings matter and

each algorithm, perhaps most especially the theory-driven

ones, have ranges within which one might expect good per-

formance and ranges where one should not expect it. Test-

ing outside the ranges is unfair and inappropriate.

The evolution of our discipline’s empirical methodology

may need a corrective push. If sensor settings (maybe also

illumination levels or other variables) had been properly ac-

counted for in the large scale testing of theory-driven algo-

rithms, perhaps they would have performed at higher levels.

In comparing the data-driven with theory-driven algorithms,

the distribution of camera settings favored the data-driven

algorithms because they were trained on such a random dis-

tribution while the theory-driven algorithms were tested on

data for which they were not designed to operate. But no

one realized this at the time. Thus the empirical strategy

favored data-driven models.

A sound empirical method involves the use of objec-

tive, quantitative observation in a systematically controlled,

replicable situation, in order to test or refine a theory. At

the very least, a discussion on how to firm up empiricism in

computer vision needs to take place.
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