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Abstract

Efficient inference of Convolutional Neural Networks is

a thriving topic recently. It is desirable to achieve the maxi-

mal test accuracy under given inference budget constraints

when deploying a pre-trained model. Network pruning is

a commonly used technique but it may produce irregular

sparse models that can hardly gain actual speed-up. Group

convolution is a promising pruning target due to its reg-

ular structure; however, incorporating such structure into

the pruning procedure is challenging. It is because struc-

tural constraints are hard to describe and can make pruning

intractable to solve. The need for configuring group convo-

lution architecture, i.e., the number of groups, to maximise

test accuracy also increases difficulty.

This paper presents an efficient method to address this

challenge. We formulate group convolution pruning as find-

ing the optimal channel permutation to impose structural

constraints and solve it efficiently by heuristics. We also

apply local search to exploring group configuration based

on estimated pruning cost to maximise test accuracy. Com-

pared to prior work, results show that our method pro-

duces competitive group convolution models for various

tasks within a shorter pruning period and enables rapid

group configuration exploration subject to inference budget

constraints.

1. Introduction

Convolutional Neural Networks (CNNs) are deployed

on devices ranging from large servers to small edge sys-

tems that have various computing capability. While deploy-

ing pre-trained CNN models, we intend to maximise their

test accuracy under inference budget constraints, e.g., max-

imum numbers of parameters and operations. Pruning is

a promising approach that removes parameters contribut-

ing little to test accuracy, and its success has been demon-

strated in numerous prior works [6, 5, 29, 24]. However,

many pruned models can hardly achieve practical test-time

speed-up due to irregular sparsity, which results in imbal-

anced workloads that only customised GPU kernels or spe-
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Figure 1: The overall work-flow. Symbols are explained in

Section 3.

cialised hardware [5] can handle. Therefore, we are moti-

vated to prune pre-trained models into compact, accurate,

and regular sparse models.

Group convolution (GConv) [17, 45, 15] is a promising

pruning target. A GConv layer consists of multiple identi-

cally configured convolution layers, which as a whole can

be considered as a regular sparse convolution layer with

equivalent sparsity across its channels. GConv also has

good learning capability as presented in [45, 15, 50]. Given

these potential benefits, we expect that pruning pre-trained

CNNs into GConv-based models can improve test-time per-

formance regarding speed and accuracy.

However, pruning into GConv is a challenging struc-

tured pruning problem, i.e., pruned parameters should fol-

low patterns of their positions on input and output chan-

nel axes. These structural constraints turn pruning into a

hard-to-solve combinatorial optimisation problem. Mean-

while, the number of groups should be determined for all

layers, which is not a trivial procedure as well. These

two challenges have not been properly addressed by prior

work [51, 32, 12]: some may require training from scratch,

manually determining group configuration, or adding over-

head during inference. There is still room for improvement.
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Figure 2: An overview of our pruning objective. The convolution layer has 6 input and output channels and we intend to

prune it into a group convolution with 3 groups. Our method will figure out which channels should belong to which groups.

The measurement of kernel importance is explained in Section 3.

This paper presents a novel GConv pruning method that

addresses both challenges. For the structured pruning prob-

lem, we formulate it as finding the optimal channel permu-

tation that implicitly imposes the structural constraints of

GConv and solve it efficiently through heuristics. This so-

lution is referred to as layer-wise pruner (Section 3.2). To

determine the number of groups for each layer, we employ

the layer-wise pruner to estimate the cost of pruning with

different given numbers of groups, and apply local search

to explore feasible solutions within limited time. This part

is introduced as model pruner (Section 3.3). Finally, we

prune the model by the best sparsity configuration that has

been explored. We follow the spirit in [25] to either fine-

tune the pruned model or train from scratch the topology.

Empirically compared to prior papers, our method produces

GConv models that run efficiently in test-time, requires

shorter pruning period, and further allows the exploration

of sparsity configurations subject to inference budget con-

straints (Section 4). Our code-base is publicly available1.

2. Background and Related Work

Group Convolution. A GConv layer works by partition-

ing its input channels into disjoint groups and separately

convolving each with a group-specific set of filters. Con-

cretely, given an input tensor shaped (Cin, H,W ), we run

G convolution layers between each pair of (Cin/G,H,W )
input partition and (Cout/G,Cin/G,Kh,Kw) weight group.

G denotes the number of groups and indicates the sparsity

of the GConv layer. A GConv is sparser when G is larger.

Cout is the number of output channels and (Kh,Kw) is the

kernel shape. Output from these convolution layers are con-

catenated along the channel axis to produce the final result.

To improve the learning capacity, we need to encourage

information exchange among groups [50]. [45, 15, 32] sug-

gest using pointwise convolution, which applies 1 × 1 ker-

nels to correlate channels (Figure 3a). It is versatile while it

can incur unbearable overhead: CinCout additional parame-

1https://github.com/kumasento/gconv-prune
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Figure 3: Two variants of GConv that are different in information

exchange mechanism.

ters and CinCoutHW more FMA2 operations are required.

Additionally, it cannot deal with 1 × 1 group convolution,

which is critical since recent efficient CNN heavily rely on

them [10, 36, 50]. [51] applies block Hadamard transform,

which is more efficient but still requires extra computation.

On the other hand, permuting channels is a much simpler

way to mingle groups (Figure 3b) since neither additional

FMA nor parameter is required. [50, 49, 44] permute by

interleaving channels from different groups, which is also

called channel shuffle. We apply permutation as well for its

efficiency and the optimisation purpose (Section 3).

To construct a CNN by GConv, one can build and train

from scratch [50, 15, 45, 51, 43], or prune from pre-trained

models. CondenseNet [12] prunes by a multi-stage, from-

scratch training and regularisation procedure. FLGC [40]

follows a similar approach to optimise the GConv topol-

ogy while training from scratch. Peng et al. [32] consider

a GConv layer as a low-rank approximation of a convolu-

tion layer. This approach produces models with high test

accuracy but always needs to add pointwise layers.

2FMA stands for fused multiply-add operation.



Network Pruning. Our method can be regarded as struc-

tural, sensitivity-based network pruning. Sensitivity prun-

ing selects weights that contribute little to test accuracy and

removes them directly based on specific criteria, includ-

ing: magnitude, e.g., L1, L2 norms [27, 5, 20, 26], first-

order [29, 3] or second-order [19, 7, 2] gradients, average

percentage of zero [26, 11], singular values [32, 28]. [47]

considers the importance as a global score. Each criterion

has different computation efficiency and measurement ac-

curacy on contribution from weights.

Alternatively, there are regularisation based methods that

sparsify models through curated regularisers so that mod-

els can have enough time to adapt. L1 norm is studied for

sparsifying CNN models in [24, 5], and it normally pro-

duces unstructured, irregular models. Some other methods

use group LASSO [48] to encode specific structures dur-

ing regularisation, such as channel or filter level pruning

[30, 41, 18]. Specifically, CondenseNet [12] adapts this

method to GConv pruning. Pruning by LASSO regularisers

is more difficult due to non-differentiability around optimal

points and hyperparameters are hard to tune.

Neural Architecture Search (NAS). NAS is a recently

developed technique that enables automatic exploration of

neural network architectures under specific constraints. The

core mechanism behind is normally the REINFORCE algo-

rithm [42], specifically, [52, 53, 37, 38] consider searching

architectures under different platform constraints. Evolu-

tionary algorithm is another option [33, 1, 22]. To make

NAS more efficient, using gradient-based method [23] or

reducing the search space [21] is proposed as well. Parts

of our method overlap the objective of NAS: we intend to

search for the group configuration under inference budget.

This is a novel objective and we provide an efficient solu-

tion based on our pruning method, and we are intrigued to

see how mainstream NAS algorithms can be applied to this

research question.

3. Method

Our objective is to prune a pre-trained CNN model into

a GConv based model (Figure 2). The following sections

formulate GConv pruning as an optimisation problem that

searches for channel permutations, demonstrate the layer-

wise heuristic pruning algorithm that efficiently solves this

problem, and show how to explore model sparsity under in-

ference budget constraints.

3.1. Group Convolution Pruning

Group convolution. We can formulate GConv by map-

ping from Figure 3b to (1). X and Y are both 3D tensors

indicating input and output feature maps; Xc and Yf are

2D images belong to input channel c and output channel

f respectively; and W ∈ R
Cout×Cin×Kh×Kw is a 4D ten-

sor denoting weights. Iin and Iout are two sets of chan-

nel indices that specify permutation, e.g., Iin(c) is per-

muted to c. When performing GConv, we permute X

into X̃ by input channel indices Iin, partition X̃ into G

groups {X̃
g
∈ R

Cin/G×H×W }Gg=1 along channel, run a con-

volution layer (∗) between X
g and weight group W

g ∈
R

Cout/G×Cin/G×Kh×Kw for each group g, concatenate their

output {Ỹ
g
}Gg=1 into a tensor Ỹ by channel, and permute Ỹ

by output channel indices Iout to produce the result Y.

X̃c = XIin(c) Ỹ
g
= W

g ∗ X̃
g

Yf = ỸIout(f)

∀ 1 ≤ f ≤ Cout 1 ≤ c ≤ Cin 1 ≤ g ≤ G
(1)

Alternatively, we can treat GConv as a sparse convolu-

tion. To illustrate this idea, we reshape W into a 6D tensor

W ∈ R
G×G×Cout/G×Cin/G×Kh×Kw by partitioning the input

and output channels of W into G groups. Considering each

Kh ×Kw kernel as a single element, this representation can

be viewed as a generalised block matrix with G×G number

of Cout/G × Cin/G sized blocks. Similarly, we can parti-

tion X and Y into 4D tensors X ∈ R
G×Cin/G×H×W and

Y ∈ R
G×Cout/G×H×W and view them as generalised block

vectors. Note that 2D images are considered as elements in

these block matrices.

Ygf =
G
∑

gc=1

Wgfgc ∗ Xgc ∀ 1 ≤ gf ≤ G (2)

Y = diag({Wgg}
G
g=1) ∗ X

=

⎡

⎢

⎢

⎢

⎣

W11 0 · · · 0
0 W22 · · · 0
...

...
. . .

...

0 0 · · · WGG

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

X1

X2

...

XG

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

X1 ∗W11

X2 ∗W22

...

XG ∗WGG

⎤

⎥

⎥

⎥

⎦

(3)

We can define convolution among group partitioned ten-

sors Y = W ∗ X as a generalised block matrix-vector mul-

tiplication. Here, the multiplication between entries in W
and X is interpreted as convolution. For example, (2) il-

lustrates the dot-product routine that computes the convolu-

tion between two blocks in W and X . Interestingly, if W
is a generalised block-diagonal matrix, i.e, only Wgg are

non-zero, then this convolution becomes a group convolu-

tion (3). Ignoring permutations in (1) and considering Wgg

as W
g , Xg as X

g , and Yg as Y
g , it is obvious that (1) is

equivalent to (3). This is the basis of the following analysis.

⎡

⎣

w11 w12 w13

w21 w22 w23

w31 w32 w33

⎤

⎦

Iout={2,1,3}
−−−−−−−→
Iin={1,3,2}

⎡

⎣

w21 w23 w22

w11 w13 w12

w31 w33 w32

⎤

⎦ (4)



Pruning and channel permutation. Pruning means re-

moving weights with low contribution to model accuracy

from a trained model based on a specific criterion. (3)

shows that removing weights to form a block-diagonal ma-

trix is equivalent to pruning into GConv. A straightforward

approach to prune is just removing kernels outside the diag-

onal. It can hardly perform well since we cannot guarantee

that kernels around the diagonal are important to the model

accuracy. Since we allow channel permutation on both in-

put and output, we can formulate pruning as an optimisation

problem that targets at finding the channel permutation that

can move most of the important kernels to diagonal blocks.

To be specific on permutation, (4) shows an example result

after applying a pair of permutation indices Iout and Iin on

weights. wij denotes a single kernel, and rows and columns

represent output and input channel axes respectively.

Optimisation problem. (5) formulates the optimisation

problem of finding optimal permutations I∗
in and I∗

out. We

need to find the pair of permutations such that, after apply-

ing it on the original weights W, the importance reduction

caused after removing weights outside the diagonal will be

minimal. {W̃gg}
G
g=1 denotes all the diagonal-blocks of per-

muted weights. C is the criterion that measures the impor-

tance (Section 2). We choose a magnitude-base criterion

that sums the L2 norm of all kernels, based on the assump-

tion that kernels with greater magnitude contribute more to

model accuracy [20].

argmin
I∗

in ,I
∗

out

C(W)− C
(

diag({W̃gg}
G
g=1)

)

s.t. W̃gfgc ≡ W̃
gfgc

W̃fc = WI∗

out(f)I
∗

in(c)

(5)

We notice that solving this problem requires similar ef-

forts as solving the Bottleneck Travelling Salesman Prob-

lem (BTSP) [4], which is known to be NP-complete. Since

the number of channels can be hundreds or even thousands,

directly solving this problem is computationally intractable.

Next section presents a heuristic algorithm that produces

satisfiable solutions within a limited time.

3.2. Prune a Layer

This section focuses on the layer-wise pruning problem:

for a given sparsity, indicated by the number of groups G,

we aim to find the pair of column-wise and row-wise permu-

tations that minimise the pruning objective defined in (5).

Column and row refer to input and output channel axes of

weights respectively.

max
Iout,Iin

G
∑

g=1

Cout/G
∑

f=1

Cin/G
∑

c=1

∥

∥

∥
W̃ggfc

∥

∥

∥
(6)

We start from replacing C with L2 norm to convert the

original problem to an equivalent maximisation problem

that maximises the sum of L2 norm of weight kernels in di-

agonal blocks of W̃ , as shown in (6).

σc(c, g) =
∑

g
G
Cout

f= g−1

G
Cout+1

‖Wfc‖

σf(f, g) =
∑

g
G
Cin

c= g−1

G
Cin+1

‖Wfc‖

(7)

Sub-problem. Suppose we only maximise the sum-of-

norm for the G-th block diagonal component WG,G, and

we are only allowed to permute input channels, an intuitive

solution for this sub-problem is sorting input channels by

σc(c,G) (7). Under the given restrictions, sorting by σc in

an increasing order practically moves the most important

weights to WGG. Similarly, if only output channels are per-

mitted to permute, we can sort them by σf(f,G) as well to

maximise the importance of WGG.

Heuristic Algorithm. This intuition leads us to a heuris-

tic algorithm that solves (6). Instead of considering this

problem as a whole, we dissect it into sub-problems similar

to the example above, which can be solved block by block

through sorting with regards to σc and σf . Specifically:

(i) Our algorithm runs in G iterations and the g-th itera-

tion works on optimising block WG−g+1,G−g+1 only.

(ii) Each iteration sorts input and output channels by

σc(c, g) and σf(f, g) respectively for NS rounds.

(iii) All channels related to previously resolved blocks re-

main frozen, i.e., the upper bounds for f and c that can

be sorted are (G−g+1)Cout/G and (G−g+1)Cin/G.

Figure 4 illustrates an intermediate step of this algorithm.

NS is a hyperparameter that denotes the number of sorting

rounds for each block. A sorting round means sorting in-

put channels and then output channels. NS is necessary

since we permit sorting both input and output channels: af-

ter finishing a sorting round, the increasing order of input

channels regarding σc may be violated, and running a new

round may fix it. For example, as shown in Figure 4, kernels

in the white region are not covered in σc when sorting input

channels at first, and after output channels are sorted, some

may enter the blue region and affect the evaluation of σc.

What we present here is a polynomial time algorithm and

its complexity is O(GNS × (Cin

G log(Cin

G )+ Cout

G log(Cout

G ))).

recovery ratio =

∑

g,f,c

∥

∥

∥
W̃∗

ggfc

∥

∥

∥

∑

g,f,c ‖Wggfc‖
(8)
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Figure 4: This figure shows W that is being sorted. It is running

at the 3rd block (green). Kernels covered by previous blocks (red)

are now frozen for further sorting (gray). When updating the 3rd

block, input channels (columns) are sorted by σc(c, 3) in range 1©
and output channels (rows) are sorted by σf(f, 3) in range 2©.

Empirical Evaluation. We empirically justify this algo-

rithm by running it on randomly generate sample weights

and real-world pre-trained models. We first create a block-

diagonal matrix, then permute it by random indices, and try

to recover the original permutation as much as possible. We

measure the quality by the recovery ratio defined by (8), in

which W̃∗ denotes weights permuted by optimal permuta-

tions decided by our algorithm. We notice that the recovery

ratio becomes higher for more samples when NS increases,

and when NS = 10, most samples can achieve 100% recov-

ery ratio. It shows that by using our heuristic algorithm with

NS = 10 we can move most important weights to diagonal

blocks, which implicitly guarantees our GConv pruning per-

formance since we remove weights out of diagonal blocks.

We also measure the recovery ratio on weights from pre-

trained ResNet-503: as shown on the right of Figure 5, com-

pared with the baseline that does no sorting (NS = 0), our

method can recover about 3% more for different numbers

of groups. Besides the recovery ratio, we compare the fi-

nal test accuracy between using and not using our heuristic

method in Table 3. In the future, we will provide formal

proof regarding the performance of this heuristic algorithm.

3.3. Optimise Group Configuration

To prune a whole CNN model into one that uses GConv,

we need to determine the group configuration, which is a

combination of all layers’ numbers of groups. Group con-

figuration can affect both the model accuracy and the infer-

ence budget, and therefore, finding an optimal group con-

3Pre-trained models are downloaded from https://pytorch.org/

docs/stable/torchvision/models.html

Figure 5: Evaluation results on the heuristic algorithm. Recov-

ery ratio is the percentage of magnitude, measured by L2 norm,

retained in the diagonal blocks after pruning.

figuration is an optimisation problem that maximises accu-

racy under budget constraints. Prior papers use some ad-

hoc rules to decide group configuration, e.g., using a uni-

form group number for all layers [12] or scaling the number

of groups by the number of channels [32, 51]. When us-

ing these methods, the only way to find the configuration

that gives the highest model accuracy is by trial-and-error,

i.e., manually picking a group configuration and fine-tuning

from it, which is cumbersome. To address this problem,

we propose a group configuration optimisation algorithm,

which finds near-optimal configuration regarding model ac-

curacy by utilising pre-trained weights through our GConv

pruning algorithm.

argmin
G

L
∑

l=1

cost(W(l),Gl)

s.t.
L
∑

l=1

N
(l)
par

Gl
≤ Nmax

par

L
∑

l=1

N
(l)
ops

Gl
≤ Nmax

ops

(9)

This method is formulated as (9). The variable G is a

vector that specifies the number of groups of each layer

l. The function cost denotes the minimal pruning cost re-

turned from solving (5). We assume that the lower the prun-

ing cost, the higher the accuracy of a pruned model. The

objective is to minimise the sum of estimated pruning cost

of all layers subject to constraints on the maximum numbers

of parameters Nmax
par and operations Nmax

ops .

Our approach is a local search algorithm [35]. We no-

tice that by adding the number of groups of a layer, the total

cost increases and the numbers of parameters and opera-

tions decrease. Based on this observation, we devise this

local search algorithm by starting with a G that sets G to

1 for all layers, and in each of the following iterations, se-

lecting one layer that minimally increases the cost when its

number of groups is changed to the nearest larger candi-

date. The whole procedure terminates when the resource

constraints are satisfied. To estimate pruning cost more pre-

cisely, we can optionally prune and fine-tune the model by



Table 1: Evaluation on CIFAR-10 (C10) and CIFAR-100 (C100). Number of parameters (# Param.) and operations (# FLOPS) are

measured on CIFAR-100. Note that we consider one FMA as two operations. Pruned ResNet-164 models are labelled by X% pruned,

which indicates the ratio of pruned channels as in [24]. When pruning by our method, since we cannot prune away a whole channel, we

only take the number of parameters of the corresponding models from [24] as the optimisation constraint.

Test Error (%)

Model C10 C100 # Param. Pruned # FLOPS Pruned

ResNet-164 (Baseline) 4.81 22.83 1.73M — 504M —

ResNet-164 (40% pruned) 4.91 22.71 1.46M 15.5% 462M 8.4%

ResNet-164 (60% pruned) 5.08 23.66 1.21M 29.7% 430M 14.7%

ResNet-164 (40% pruned) [24] 5.08 22.87 1.46M 15.5% 333M 33.3%

ResNet-164 (60% pruned) [24] 5.27 23.91 1.21M 29.7% 247M 50.6%

DenseNet-86 (Baseline) [12] 4.44 20.57 2.03M — 506.1M —

DenseNet-86 (G = 4) 5.94 25.96 0.59M 70.94% 132.7M 73.77%

DenseNet-86 (opt. for 50% budget) 4.98 22.41 1.00M 50.74% 256.5M 49.33%

CondenseNet-86 (G = 4) [12] 5.00 23.64 0.59M 70.94% 132.7M 73.77%

the current G at the end of each iteration. This algorithm is

summarised in Algorithm 1.

Algorithm 1: The local search algorithm to

solve (9)

1 G ← maximal numbers of groups of all layers;

2 while budget of G is under constraints do

3 i ← layer that reduces cost the most;

4 G(i) ← next larger number of groups for i;
5 (optional) prune model by G and then fine tune;

6 return G;

As a final step, based on the optimised G, we prune and

fine-tune the given model again to improve its model accu-

racy as much as possible. Empirically we find this algo-

rithm works well. As shown in the next section (Figure 6),

we can explore configurations within given budget and the

explored models perform competitively compared to ad-hoc

configurations.

4. Experiments

This section presents various experiments to empirically

evaluate our method.

4.1. Experiment Setup

Datasets and models. Our method is evaluated on

CIFAR-10/100 [16] and ImageNet [34]. [46] is used to

build and train CIFAR-10/100 baseline models. Regarding

ImageNet, we evaluate on ILSVRC2012 and augment data

by random cropping and then random horizontal flipping

and the validation accuracy is evaluated by center-cropping.

We choose various CNN models for evaluation: ResNet-

110 [8], ResNet-164 [9], and DenseNet-86 [13] for CIFAR-

10/100; ResNet-18/34/50/101 [8] for ImageNet. Our mod-

els are all implemented by PyTorch [31] v1.1.

Pruning and fine-tuning. When deciding group config-

uration G, we may use a uniform G value for all layers, a

configuration borrowed from a prior work, or one generated

by solving (9). Once G is settled, we run the heuristic layer-

wise pruning algorithm (Section 3.2) to get channel permu-

tation, which indicates which weights should be pruned and

how to permute input and output channels. The hyperpa-

rameter NS is normally set to 10 based on Figure 5.

After pruning the model, in the fine-tuning phase, we

normally choose a relatively small learning rate to train the

pruned model for a few more epochs. The fine-tuning pe-

riod could be around one third of the original training from

scratch time. We will tune training hyperparameters further

in the future to see at least how much workload is required

to recover the accuracy of a pruned model.

4.2. Results

ResNet-164 on CIFAR. We list our results on CIFAR-10

and 100 in Table 1. We first compare ResNet-164 with net-

work slimming [24], a state-of-the-art channel-wise struc-

tured pruning method based on regularisation. Their mod-

els are pruned with respect to the percentage of removed

channels, which are quite different from our GConv-based

results. To compare our method with them at a similar prun-

ing level, we set the number of parameters of their mod-

els as constraints for our group configuration optimisation,

and use optimised configurations to prune ResNet-164. As

shown in Table 1, our models have much smaller test error

than their counterparts with the same number of parameters.

Considering model topology, our resulting models are also

easier to process: convolution layers with arbitrary amount

of channels produced by [24] may not be friendly to low-

level accelerator, while ours are basically GConv, which

runs efficiently on modern hardware.

One drawback of our method on this ResNet-164 case

is the relatively higher FLOP number, which is caused by



the fact that layers closer to the output normally have lower

pruning cost but less contribution to FLOP. Our method

tends to give these layers higher pruning priority. This issue

will be mitigated by introducing FLOP into the pruning cost

measurement in our future work.

Comparison with CondenseNet. CondenseNet [12] in-

troduces a multi-staged, group-lasso regularisation based

GConv pruning procedure. With a given group configura-

tion, this paper provides the state-of-the-art GConv pruning

results on variants of DenseNet [14]. For the comparison

purpose, we select DenseNet-86, a variant of DenseNet and

is pruned to CondenseNet-86 in [12], as a baseline model.

Since they put more efforts in training and regularisa-

tion, it is hard for our post-training pruning method to sur-

pass their level of accuracy. Table 1 shows that our G = 4
result is around 1-2% worse on CIFAR-10/100 validation

accuracy than the CondenseNet counterpart. This accuracy

loss can be explained by the additional regularisation effect

introduced while training CondenseNet.

Even though using our method is still beneficial in some

scenarios. CondenseNet can only be trained by a fixed,

manually picked group configuration, while we can explore

the group configuration from pre-trained DenseNet models.

We can find more accurate models under different inference

budget, e.g., in Table 1 we show a better option under a

looser budget of 50%. Performing similar exploration in

CondenseNet will take much longer time due to the need to

train from scratch.

Group Configuration Exploration. One of our major

benefits is that we can explore group configuration under

given inference budget constraints, as mentioned earlier. To

evaluate the quality of the exploration, we gradually reduce

the upper bound of number of parameters and run the model

pruner. Results for ResNet-164 on CIFAR-100 are in Fig-

ure 6. The granularity of exploration here is 0.1M and we

use the same training schedule for each sparsity configura-

tion. Results demonstrate that explored models can perform

on par with manually selected configurations.

ImageNet. We evaluate various pre-trained ResNet mod-

els on ImageNet [8] . The fine-tuning phase has 30 epochs

(1/3 of what [8] uses) with learning rate starting at 1e−3 and

being multiplied by 0.1 every 10 epochs. Limited by hard-

ware resources, we only select uniform numbers of groups.

Results are listed in Table 2. Since models for ImageNet

are rarely sparse, removing many parameters in one-shot

normally degrades the accuracy significantly. For ResNet-

18, we can reduce 83% parameters and 95% FLOPS with

an increase of 14.5% in test error. It is not promising re-

garding the high test error, but this performance is on par

with [51], even if they have higher budget in both training

Figure 6: Change in ResNet-164 on CIFAR-100 accuracy while

reducing number of parameters. Each sample point is collected

from the model found by our model pruning algorithm under the

given number of parameters constraint. Manually configured mod-

els either use uniform group size G or set a maximum channel

number GM . The latter approach assigns each layer a group num-

ber that ensures max(Cin/G,Cout/G) ≤ GM . We also list the

estimated pruning cost for each explored sparsity configuration.

Accuracy numbers listed here are collected from fine-tuning.

Table 2: ImageNet evaluation results. The first sample in each

section is the baseline.

Model # Params. # FLOPS Top-1 Error

ResNet-18 11.69M 3.64G 30.24%

ResNet-18 G=8 1.91M 0.20G 44.71%

ResNet-18 G=8 [51] 1.91M 0.33G 44.60%

ResNet-34 21.80M 7.34G 26.70%

ResNet-34/A 17.36M 3.48G 28.42%

ResNet-34/B 9.05M 1.89G 32.44%

ResNet-34/A[32] 18.2M 3.98G 27.05%

ResNet-34/B[32] 11.1M 2.62G 27.75%

ResNet-50 25.56M 8.21G 23.85%

ResNet-50 G=2 13.82M 3.77G 25.90%

ResNet-101 44.55M 15.7G 22.63%

ResNet-101 G=2 23.34M 7.50G 24.22%

and inference phases: their ResNet-18 example is trained

from scratch and the Hadamard transform adds overhead.

We also compare ResNet-34 to [32], which uses low-

rank approximation to perform GConv pruning. This

method requires adding pointwise 1 × 1 convolution af-

ter each GConv. Since they use more parameters that po-

tentially increase learning capacity, their accuracy can be

higher. For the two configurations from [32], ResNet-34/A

and /B, models produced by us are smaller but less accu-

rate. However, as mentioned before, their GConv is always

appended by a pointwise convolution, which means with



Table 3: Comparison of the top-1 test error (%) between using

the heuristic algorithm and not using (plain). ResNet-50 results

are collected on ImageNet.

heuristic plain

Model C10 C100 C10 C100

ResNet-110 (G = 2) 6.69 27.63 7.13 28.08

ResNet-110 (G = 8) 9.39 33.28 11.17 37.29

ResNet-50 (G = 2) 25.90 28.04

Table 4: Comparison between pruning and training from scratch

for ResNet-164 on CIFAR-100 regarding top-1 train and test error.

Train Err. (%) Test Err. (%)

Method G=2 G=4 G=2 G=4

Pruning 1.75 10.50 23.66 27.15

Shuffle 0.81 3.55 23.77 26.60

None 2.58 16.28 26.63 32.00

the same number of groups they use more resources, and

they cannot deal with 1 × 1 group convolution. Specifi-

cally, for ResNet-50/101 that heavily uses 1 × 1 kernels,

our method can still reduce around 50% budget without in-

creasing much test error.

4.3. Ablation Study

This section investigates the effect of different design

choices that may appear while using our method.

Effect from heuristic algorithm. We compare our algo-

rithm with a plain algorithm, which tries to perform GConv

pruning without sorting channels. Referring to Section 3.2,

this plain algorithm simply sets NS to 0. This compari-

son is performed under the same group configuration to see

whether our heuristic algorithm can improve the resulting

accuracy. Table 3 presents the comparison between both

approaches on ResNet-110 (CIFAR-10/100) and ResNet-50

(ImageNet) with uniform G. All experiments use the same

training scheme (learning rate, number of epochs, etc.).

We notice that by using the heuristic algorithm, the test

error of all variants on all datasets is reduced. This result is

also in line with the relative order of recovery ratio as shown

in Figure 5: NS=0 has less recovery ratio than NS=10 that

is used by our heuristic algorithm, and it performs worse

regarding the model accuracy. It can provide a concrete ev-

idence that maximising recovery ratio, or equivalently min-

imising pruned magnitude, is an effective approach to con-

duct GConv pruning.

Compare with training from scratch. Inspired by [25],

we try to investigate that besides the reduction in training

budget whether pruning can also achieve higher test ac-

curacy than training from scratch. We focus on training

GConv variants of ResNet-164 on CIFAR-100 by the same

training from scratch schedule as [46]. These variants use

uniform G numbers 2 and 4, and they may use channel shuf-

fle [50] to exchange information among groups or not. We

also provide models with the same G number produced by

our pruning method.

Table 4 shows that overall training from scratch with

channel shuffle performs better than other methods. Com-

paring pruning with channel shuffle, we notice that the

difference in train error is much larger than test error,

which implies that the worse performance from the prun-

ing method may due to its improper training setup, e.g., the

number of training epochs is too limited. But still, pruned

models perform much better than their counterparts that are

trained from scratch without channel permutation. It shows

that the permutation of channels after GConv is indeed an

important architectural choice.

4.4. Discussion

We show that our method can balance the trade-off be-

tween accuracy and workload size induced by group con-

figuration through our efficient pruning algorithm, and im-

prove the trade-off by rapid exploration of configurations

under given constraints. Large and small models, small and

large datasets are all covered. Compared with the state-

of-the-art structured pruning methods [24, 12, 32], our ap-

proach is significantly better regarding its exploration abil-

ity and efficiency. Regarding model accuracy, we already

perform on par with listed prior works, and we will try to

surpass their results by tuning hyperparameters harder.

5. Conclusion

This paper proposes a novel pruning method that prunes

a trained CNN model into one that is built on GConv. We

formulate the layer-wise pruning problem as finding opti-

mal permutations to incorporate the structural constraints

imposed by GConv, and we efficiently solve it through our

heuristic algorithm. We can further explore the best spar-

sity configuration of a whole model under specific inference

budget constraints. Empirical results show that with given

sparsity, our pruning algorithm can achieve competitive ac-

curacy as other prior work with a shorter pruning period;

and the sparsity configuration exploration, which used to be

intractable, can be efficiently performed by our method.

Future work includes exploring different importance cri-

teria (e.g., [39, 29]) to improve the quality of explored mod-

els, tuning the pruning hyperparameters to achieve higher

model accuracy after the fine-tuning phase, and investigat-

ing the contribution of the regularisation effect on the better

accuracy from CondenseNet. It is also possible to utilise

NAS to improve our group configuration optimisation so-

lution, since each group configuration basically determines

an architecture.
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