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Abstract

Despite the remarkable progress of semantic segmenta-
tion in recent years, much remains to be addressed in order
to achieve better semantic coherence and boundary delin-
eation. In this paper, we propose a novel convolutional neu-
ral network (CNN) architecture for semantic segmentation
which explicitly addresses these two issues. Specifically,
we propose a categorical attention mechanism to propa-
gate consistent category-oriented information across multi-
granularity contextual interpretations to close the semantic
gap residing in CNN feature hierarchy. This novel design
alleviates the semantic information loss during the feature
combination and transformation process in decoder net-
work. We further integrate a contour branch in our archi-
tecture to enhance the boundary awareness of the semantic
feature derived in the form of a novel element-wise contour
attention at each level of feature hierarchy. Additionally, we
introduce a cross-granularity contour enhancement mech-
anism to propagate rich boundary cues from early layers
to deep layers. We perform extensive quantitative evalua-
tions in close proximity to object boundaries which confirms
its superior effectiveness in boundary delineation. These
novel mechanisms which boost the essentials in segmen-
tation, i.e., region-wise semantic coherence and accurate
object contour localization, allow our architecture “Mesh-
Net” to obtain state-of-the-art performance on two chal-
lenging datasets, i.e., PASCAL VOC 2012 and Cityscapes.

1. Introduction

Recently, semantic image segmentation has achieved
significant improvements in accuracy by utilizing convolu-
tional neural networks (CNNs) [38] due to rich information
of object categories and scene semantics learned from di-
verse set of images.

However, the state-of-the-art CNN architectures are still
challenged by semantic ambiguities and poor boundary de-
lineation as shown in Figure 1. The former problem, i.e.
semantic ambiguities, is mainly caused by the semantic gap
between feature hierarchies of CNN layers, where earlier
layers are lacking sufficient semantic knowledge to make
accurate semantic labelling based on local features, despite
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Figure 1: Comparison on images with semantically ambigu-
ous object (i.e. table in the first row) and thin structures (i.e.
bicycle in the second row). The state-of-the-art encoder-
decoder architecture DeepLabv3+ [15] (the second column)
fails to either recognize the partially occluded table or de-
lineate the boundaries of bicycle, whereas the proposed ar-
chitecture “MeshNet” (the third column) excels in both sit-
uations.

of their high spatial resolution. Albeit this issue is alle-
viated to some extent by the adoption of skip connections
in encoder-decoder architectures [38, 42, 2, 15], repeatedly
merging features with lower-level features of earlier layers
inevitably dilutes semantic information. This is also the root
of the poor boundary delineation issue since the boundary
information is mainly preserved in earlier layers that conse-
quently gets smoothed out by the coarse feature map from
deeper layers during the iterative combination and transfor-
mation process. More importantly, this extracted boundary
related information is isolated from the semantic informa-
tion which might harm the intra-class homogeneity during
dense prediction. This poor boundary awareness might in
turn deteriorate the semantic prediction as psychophysical
studies [5, 50] show that human beings can recognize ob-
jects using fragments of outline contour alone.

Motivated by the above, in this paper we design a novel
deep encoder-decoder architecture to principally address



both the semantic gap and boundary diminishing prob-
lems in semantic segmentation with three main contribu-
tions. Firstly, we explicitly bridge the semantic gap be-
tween feature hierarchies by proposing a cross-granularity
categorical attention mechanism. Leveraging deep super-
vision, our categorical attention module is able to enforce
the feature adaptation at each hierarchy to follow the con-
sistent top-down categorical attention, selecting the most
category-relevant feature across the spatial granularities.
This novel cross-granularity categorical attention mecha-
nism alleviates the semantic information loss during the fea-
ture combination and transformation process. Secondly, we
embed contour detection in a novel form of element-wise
contour attention at each layer of feature hierarchy to ex-
plicitly integrate contour information to enforce semantic
regions to obey discriminative visual features in the im-
age. Thirdly, we introduce a cross-granularity contour en-
hancement mechanism to propagate the rich boundary cues
from shallower layers to deeper layers. To the best of our
knowledge, we are the first to introduce multiple contour
detection networks with accordance to CNN feature hierar-
chy to explicitly extract boundary information and propose
cross layer propagation in order to resolve the long standing
boundary diminishing problem.

2. Related Work

Significant improvement in semantic segmentation has
been witnessed since the development of Fully Convolu-
tional Networks (FCNs) [44, 38]. Various FCN based ar-
chitectures [19, 17, 7, 66, 33, 15, 60, 62, 6, 64, 61, 27, 63]
have been proposed to prevalently exploit contextual infor-
mation from feature pyramid or attention mechanism. Yet,
previous works addressing the semantic gap and boundary
awareness issues in FCN’s are sparse.

Spatial pyramid pooling:

Diverse range of contextual information is playing an
important role in capturing finer feature delineation and is
widely employed in different semantic segmentation tasks.
PSPNet [65], for instance, captures and aggregates features
from multiple receptive fields. In addition, DeepLabv2 [12]
introduces Atrous Spatial Pyramid Pooling (ASPP) to com-
bine multi-scale features from parallel atrous convolution
layers with different dilation rates. Recently, DenseA-
SPP [60] utilizes densely connected atrous convolutions to
generate large scale range features densely.

Encoder-decoder:

FCNs naturally encode multi-scale contextual informa-
tion in different levels of features. Encoder-decoder archi-
tectures [2, 42, 15] have been proposed to integrate fea-
ture hierarchies from encoder to refine the final prediction.
This line of work is mainly motivated by the need of re-
covering the reduced spatial information of CNN caused by
strided convolution and pooling operations. For example,
DeconvNet [41] employs deep deconvolutions and unpool-
ing layers to construct the final semantic segmentation re-

sult. U-net [42] has a contracting path and a symmetric ex-
panding path with skip connections between each encoder
and corresponding decoder layer. RefineNet [33] exploits
features with a multi-path refinement network in a recur-
sive manner. Bilinski and Prisacariu [6] add dense shortcut
connections from feature hierarchy to merge semantic fea-
ture maps from all previous decoder levels. Most recently,
DeepLabv3+ [15] adopts a simple decoder with one skip
connection from low stage to recover the object boundaries.

Attention mechanism:

Recent studies have shown the gains of introducing at-
tention insights into different structural prediction tasks.
From image classification [57, 9, 24, 40], localization [8, 1],
visual captioning [59, 29], visual question answering [10]
to natural language processing [3]. For semantic segmenta-
tion, Chen et al. [14] proposes an attention module to softly
weight multi-scale features. SENet [27] exploits channel
dependences by squeezing global spacial information into
channel-wise statistics. EncNet [63] selectively highlights
class-dependent feature maps and integrates global context
information by a separate encoding layer. DFN [62] utilizes
global average pooling to introduce channel-wise attention
into network concerning the selection of more discrimina-
tive features. Inspired by the pioneering work, we propose a
cross-granularity categorical attention mechanism to bridge
the semantic gap between the feature maps of deeper lay-
ers and shallower layers; we also introduce a novel cross-
granularity contour enhancement mechanism to convey rich
boundary information from lower hierarchy to higher hier-
archy, and an element-wise contour attention module to ex-
plicitly enhance the semantic boundary awareness at each
feature hierarchy.

Contour detection:

Although some recent CNN based contour detectors [4,
45, 28, 58] have been proposed, previous works explicitly
incorporating contour feature to improve semantic segmen-
tation in an end-to-end manner are sparse in the literature.
Lately, DFN [62] combines a decoupled border prediction
network in parallel with its proposed segmentation decoder
network to adapt the early feature representation from the
encoder network with respect to semantic boundaries. The
boundary information is not effectively utilized to enahance
the feature representations. On the contrary, our architec-
ture directly embeds a contour detection network in accor-
dance to each layer of the feature hierarchy and introduces
an element-wise contour attention module to explicitly en-
hance boundary awareness of semantic features.

3. Methods

Our MeshNet architecture consists of two main parts:
an encoder and a decoder, as illustrated in Figure 2. The
encoder comprises of four layers according to the size of
feature maps, namely Layer-1, -2, -3 and -4 respectively,
whilst the rest of the blocks constitute the decoder. Encoder
extracts appearance and contextual information at various
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(a) An overview of our proposed architecture MeshNet.
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Figure 2: (a) An overview of our proposed architecture MeshNet. Four mesh units MU-; take as input of the feature maps
from encoder, which propagate consistent categorical information (red arrows) in a top-down manner across feature hierarchy
and explicitly enhance boundary awareness of semantic features by incorporating contour features (blue arrows) from early
hierarchy. (b) Architecture of MU-¢. In each MU-¢, the feature maps from Layer-¢ are fed into two branches, i.e., semantic
branch (SB) and contour branch (CB). The features from two branches are fused by an element-wise Contour Attention (CA)
module to explicitly enhance the semantic boundary awareness at each feature hierarchy. The dashed blocks in each MU-¢
are associated with the auxiliary loss functions defined in Section 3.5 during training. (c) Architecture of proposed CGCA

module. CGCA: Cross-Granularity Categorical Attention, and CGCE: Cross-Granularity Contour Enhancement.

hierarchies, with decreasing spatial details and increasing
semantic information from Layer-1, -2, -3 to Layer-4. At
each layer Layer-i (i = 1,2,3,4), the encoder interfaces
with the proposed decoder by providing the feature map as
input to its corresponding Mesh Unit (MU), i.e. MU-i.

3.1. Mesh Unit

Denoting the feature dimension from Layer-i as D;, the
corresponding mesh unit MU-¢ firstly reduces the feature
dimension to D;/4, using either an 1x 1 convolutional layer
(for MU-1, -2 and -3) or an Atrous Spatial Pyramid Pooling
(ASPP) [13] (for MU-4). Thereafter, the feature map goes
though a 3x3 convolution layer with N neurons, where N
is the number of categories, whereby the feature map is
explicitly projected into the categorical feature space with
category-wise deep supervisions (see Section 3.5). Thereby,
the redundancies of features, which are irrelevant with re-
spect to semantic prediction, are suppressed, leaving com-
pact and essential features encoding more “focused” cate-
gorical information.

This categorical feature is forwarded to the proposed
cross-granularity categorical attention module (Section
3.2) for enhancing the categorical information with adjacent
mesh units, which is consecutively projected back to D;/4
dimensions and fused with the feature map from contour

branch in the proposed contour attention module (Section
3.3). The fused feature is thereafter projected back to D;. In
order to enable fast convergence and avoid feature degrada-
tion, two residual connections [26] are added to each mesh
unit whereby D, and D;/4 feature maps are summed respec-
tively. The feature map is then gradually projected to output
space via 3x3 convolution layers after concatenation with
features from deeper mesh unit.

3.2. Cross-Granularity Categorical Attention

Most modern semantic segmentation networks neglect
the semantic ambiguity issue caused by the semantic gap
between feature hierarchies from CNN, where deeper layers
encodes rich semantic information while earlier layers are
lacking sufficient semantic knowledge to make accurate se-
mantic labelling despite of their high spatial resolution. Re-
cent encoder-decoder architectures attempt to address this
issue by means of skip connections, whereas repeatedly in-
tegrating features across granularities dilutes semantic in-
formation and decreases inter-class distinction. We pro-
pose cross-granularity categorical attention (CGCA) mod-
ule aiming to guide the category-oriented information prop-
agation across multi-granularity structural interpretations as
illustrated in Figure 2c.

In each CGCA, global average pooling followed by a
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Figure 3: Intermediate semantic predictions before (top row) and after (bottom row) CGCA. The corresponding attention
weight vector below each label map demonstrates the efficacy of the proposed architecture where the semantic ambiguity is-
sue residing in the lower-level features is effectively resolved and the categorical feature becomes more attentive on consistent

categories, i.e. background (0) and people (15) in this example.

sigmoid function is applied to the /N-channel categorical
feature map from higher layer (or mesh unit), which ex-
tracts the essence of categorical information, i.e. the global
categorical attention. CGCA is achieved by multiplying
the global categorical attention, i.e. the weight vector, with
the current feature map to adjust channel-wise responses
with respect to the predicted categories informed by higher
layers. Finally, different from DFN [62], the category-
enhanced feature is summed with the current lower-level
feature map in order to preserve current hierarchical fea-
tures. This attention plays a crucial role in maintaining con-
sistent categorical information across feature hierarchy and
bridging the semantic gaps. Figure 3 shows the intermedi-
ate semantic labellings as well as the categorical attentions
before and after the CGCA module, where we can see that
CGCA significantly resolves the semantic ambiguity issue
residing in the lower-level features and renders the features
more attentive on consistent categories, i.e. background (0)
and people (15) in this example.

3.3. Contour Branch and Contour Attention

Contour features are capable of localizing objects in
space and scale which in turn provide better boundary de-
lineation and shape context cues for semantic segmentation
task against within-class variations [52, 54, 46, 47]. Ex-
isting FCN based segmentation networks largely pay lit-
tle attention to the boundary awareness due to its inherent
design limitations, i.e. the boundary information is mainly
preserved in earlier layers and its extraction is isolated from
the semantic information residing in deeper layers. In order
to incorporate object contour information at all hierarchical
feature layers, and shift the contour information seamlessly
to the segmentation task, we propose a simple yet effective

contour branch (CB) and contour attention (CA) modules.

As illustrated in Figure 2(b), the contour branch consists
of four convolutional layers with kernel size 3x3 and chan-
nel dimensions D;/16, 1, D;/16, and D;/4 respectively. The
contour prediction is trained with the supervision of bound-
aries that are generated by simply adopting Sobel edge de-
tection on the segmentation ground-truth data whose loss
is defined in Section 3.5. Note that, accurate contour pre-
diction from the proposed contour branch is neither ex-
pected nor required since our ultimate goal is semantic seg-
mentation and fragmental contour feature is sufficient to
strengthen the boundary awareness and intra-class homo-
geneity of features.

Given the features of contour branch, we further propose
a novel element-wise contour attention module to seam-
lessly integrate the learned boundary information with the
semantic-rich features of segmentation task. As illustrated
in Figure 4, the feature map with contour information from
CB firstly goes through a sigmoid function without global
pooling and then enhances the semantic features by an
element-wise multiplication and a summation with the se-
mantic branch features.

3.4. Cross-Granularity Contour Enhancement

Deeper layers usually have poor boundary delineation is-
sue since the contour information is mainly preserved in
shallow layers that consequently gets smoothed out while
the model going deeper. In order to propagate the rich con-
tour information from early layer to each deeper layer, we
propose an effective cross-granularity contour enhancement
(CGCE) module. CGCE achieves contour enhancement by
simple element-wise summation between the learned con-
tour information from early layer and the contour detection
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Figure 4: The architecture of contour attention module
(CA). CA seamlessly integrate the learned boundary infor-
mation from CB with the semantic-rich features of SB by
passing CB features through a sigmoid function and then
enhancing the semantic features by an element-wise mul-
tiplication and a summation with the SB features. CA:
Contour Attention, CB: Contour Branch, and SB: Seman-
tic Branch.

of current layer. Figure 5 shows the element-wise contour
enhancement of four mesh units respectively, which demon-
strates that the contour branch from each mesh unit is able
to capture object boundaries despite of its simplicity and the
proposed CGCE module significantly enhances the bound-
ary awareness especially the deeper layers, e.g. MU-4.

3.5. Deep Supervision

To facilitate the learning of categorical and con-
tour features w.r.t. CGCA and CGCE modules respec-
tively, deep supervisions [31, 48] are adopted for both
branches of each mesh unit. We denote the train-
ing dataset by T = {(Xp,Yr),k = 1,2,3,....,K},
where Vi, = {y¥ oy vk .., yé%xk } denotes the pixel-
wise ground truth of the raw input image sample X; =
{ak ak 2k . x’f;.xk }, Px, is the total pixel counts of in-
put image X}, and K is the number of training set samples.
The value of yf is in the range of {0,1,2,..., N — 1}, and
N is the total number of categories of the training dataset.
Denoted as Zj, = {2}, 25,25, ..., 2F'} with 2/ € {0, 1}, the
object boundary ground-truth is produced by running a So-
bel operator on each segmentation ground-truth. In addition
to the principal softmax loss used to supervise the output of
the whole MeshNet, two auxiliary loss functions are added
to each mesh units — one to supervise the learning of cat-
egorical features, and the other to supervise contour feature
learning. For simplicity, we denote the set of corresponding
network weights as W = {W(, 0y, W54, W(c,i)}» where
s and c represent semantic and contour predictions respec-
tively, and 7 (¢ € {0, 1,2, 3,4}) refers to either the princi-
pal prediction (0) or auxiliary mesh unit predictions (1-4).

Thereby, the final weighted loss function is defined as,
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where ¢, represents the softmax loss function for semantic
prediction task, ¢. denotes the adaptive mini-batch weighted
loss function for contour prediction tasks, « is the weight
for each loss, which decides the contribution of each loss
and a5 ;) = a(c4) = 0.025 are empirically chosen for our
training.

Due to the highly imbalanced distribution of the contour
and non-contour pixels of most natural images, we adopt
an adaptive loss balancing weight [58] 8 = Bz_/Byz and
1—-p3 =By " /By to trade off recall and precision by in-
creasing and decreasing the cost, where Bz, and Bz_ de-
note the total pixels number of contour and non-contour re-
gion from the ground-truth labels of each mini batch, re-
spectively. Specifically, the weighted cross-entropy loss
function /. for contour loss is defined as,
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where p((w(c,i), %)) is the contour prediction probability
that calculated by a sigmoid function.

3.6. Encoder

We use Xception65 [16] pretrained on ImageNet-1k
dataset [43], as the encoder network for feature extraction.
Xception65 can be generally divided into 4 layers accord-
ing to the size of feature maps, as illustrated in Figure 2.
Let output_stride: OS [13, 15] denote the ratio between the
size of input image and the final encoder output resolution.
OS = 16 is adopted by applying atrous convolutions [13, 15]
with dilation rate of 2 in Layer-4.

4. Experiments and Results

We evaluate the proposed architecture on two public
datasets: PASCAL VOC 2012 [20] and Cityscapes [17].
The performance is measured in terms of pixel mean
Intersection-over-Union (mlIoU). We firstly introduce the
datasets and implementation details. Thereafter we inves-
tigate the contribution of each proposed component. Fi-
nally, the comparisons with start-of-the-art approaches are
presented.

4.1. Datasets and Implementation Details

PASCAL VOC 2012: The PASCAL VOC 2012 dataset
consists of 20 foreground object classes and one back-
ground class. The original dataset includes 1,464 (train),



Figure 5: Intermediate contour predictions before (top row) and after (bottom row) CGCE. CGCE enhances the boundary
awareness of the deeper layer features, especially the boundary attention of MU-4.

1,449 (val) and 1,456 (test) images with pixel-level anno-
tations. The dataset is augmented by [25], contributing
10,582 (trainaug) training images.

Cityscapes: The Cityscapes dataset is a large, diverse
set of high resolution 2048 x 1024 streets scene images from
50 different cities. The dataset contains 30 classes, and 19
of them are considered to train and evaluate our method.
Cityscapes consists of 5,000 images with high quality pixel-
level annotations, and 19,998 additional images with coarse
annotations.

Implementation Protocol: Our implementation is built
on TensorFlow [23]. We employ a “poly” learning rate
policy where the learning rate is multiplied by (1 —
%)pow” with power 0.9 and initial learning rate
4e=3. A gradient multiplier of 10 is applied to the gradi-
ent of decoder to accelerate the training procedure. The
network with mini-batch stochastic gradient descent (SGD),
momentum 0.9, weight decay 4e~>. Dropout = 0.9 opera-
tors are applied in this work to accelerate training and avoid
over-fitting. Moreover, we adopt dataset augmentation by
random scaling on 6 scales {0.50, 0.75, 1.00, 1.25, 1.50,
1.75} and random horizontal flipping during training for all
both datasets.

4.2. Ablation Study

In this section, we investigate the contribution of each
component introduced in our architecture through ablation
study.

Baselines

As a naive decoder design, adding a bilinear upsampling
layer with a factor of 16 is considered as one of the base-
line network, i.e. Xception65-BU, which attains the perfor-
mance of 71.07% on PASCAL VOC 2012 val set. We adopt
DeepLabv3+ [15] as the second baseline network which has
performance of 79.93% on PASCAL VOC 2012 val set.

Method mloU (%)
Xception65-BU 71.07
DeepLabv3+ 79.93

- Xception65-SB 78.61
Xception65-SB-CB 79.16
Xception65-SB-CB-CGCA 80.58
Xception65-SB-CB-CGCA-CGCE 80.86

Table 1: Ablation studies of our proposed architecture
on PASCAL VOC 2012 val set. Xception65-BU and
DeepLabv3+ are two baseline networks in this paper. BU:
Bilinear Upsampling, SB: Semantic Branch, CB: Contour
Branch, CGCA: Cross-Granularity Categorical Attention,
and CGCE: Cross-Granularity Contour Enhancement.

Semantic Branch

We firstly investigate the impact of introducing the ba-
sic mesh units SB without advanced features of CB, CA,
CGCA and CGCE on top of our baseline Xception65-BU.
We observe a performance improvement from 71.07% to
78.61% when the basic mesh unit with SB is chosen, as
shown in Table 1. We owe this performance gain to the
unit-wise category-orientated feature learning. Despite of
the lack of categorical information propagation mechanism
between the mesh units, each mesh unit adapts the feature
map from encoder to focus on category related subspace
which in turn improves the final semantic prediction.

Contour Branch and Contour Attention:

Boundary information is proven effective for localizing ob-
jects in space and scale which in turn provide better bound-
ary delineation and shape context cues for semantic seg-
mentation task against within-class variations [51, 53, 55].
Contour branch (CB) improves performance from 78.61%
to 79.16% by complementing the SB with the element-wise



contour attention (CA) unit. This performance gain agrees
with our hypothesis that embedding contour information
provides better boundary delineation and shape context cues
for semantic segmentation.

Cross-Granularity Categorical Attention:

In order to enforce consistent semantic knowledge across
the feature hierarchy to explicitly address the semantic
gap issue, CGCA unit is added to the aforementioned ar-
chitecture. Its efficacy can be clearly observed from Ta-
ble 1, where the performance is improved from 79.16% to
80.58%. This quantitative gain coincides with the visual
interpretation of CGCA in Figure 3, where CGCA success-
fully mitigates the erroneous semantic information present
in features by propagating a top-down category-orientated
information flow in the form of attentions.

Cross-Granularity Contour Enhancement:

Cross-granularity rich contour cues from shallow mesh
units are propagated to compensate the poor boundary de-
lineation at deeper layers. It significantly enhances the
boundary awareness of feature representations, especially
at the deeper layers e.g. MU-4 in Figure 5. As shown in
Table 1, the contour enhancement by CGCE boosts the seg-
mentation accuracy from 80.58% to 80.86%.

As suggested in [18], mIoU might be a good measure for
region-based accuracy whereas its value overlooks how well
the segmentation algorithm is at delineating object bound-
aries, which, nonetheless is one of the most crucial aspects
of segmentation accuracy. We argue that the actual segmen-
tation quality improvement of adding our proposed CGCE
is higher than that is measured by mloU score. To reflect
this improvement, we measure the segmentation accuracy
along the object boundaries with the trimap experiments in
Section 4.3. Additionally, our qualitative improvement can
be observed in the supplementary material.

4.3. Performance Evaluation along Object Bound-
aries with Trimap Bands

In this section, we extensively evaluate the segmenta-
tion accuracy of each architecture component from ablation
study along the object boundaries with the trimap experi-
ments [30, 11, 15]. Specifically, we apply distance trans-
form [21] operations on the “void” label annotations which
generally appear along the val set objects boundaries. We
noticed that not all the “void” labels in the val set con-
cur with object boundaries. As shown in Figure 6b, some
“void” area are annotated to block objects for not being con-
sidered during evaluation. In order to quantify the accuracy
of discussed methods near object boundaries more accu-
rate, we further execute the distance transform operations
on the sobel edges (Figure 6¢) of val dataset. The distance
transformation generates a staircase distance map which ex-
tends out pixel by pixel from the center object boundaries.
We compute the mloU within the trimap bands of center
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Figure 6: (a) Ground truth. (b) “Void” 20-pixel trimap. (c)
“Sobel” 20-pixel trimap. (d) mloU accuracy of architec-
ture components from ablation studies with varying width
of trimap band. The encoder “Xception65” is omitted here,
and “void” boundary is marked as “o”, “sobel” boundary is
marked as “x”. (e) mloU accuracy (with MS-COCO pre-
training) of our MeshNet and DeepLabv3+ with varying

width of trimap band.

Method train set MS_Flip mloU (%)
MeshNet 80.86
MeshNet v 81.82
MeshNet v v 82.93

Table 2: Performance on PASCAL VOC 2012 val set (with-
out MS-COCO pre-training). MS_Flip: Multi-Scale and
left-right flipping.

“void” and “sobel” boundaries. To better visualize the im-
provements in close proximity to object boundaries of each
discussed architecture components in Section 4.2, we cal-
culate the mloU within 10-pixel trimap band in Figure 6d.
The top 4 curves in Figure 6d are from “sobel” boundaries
and the bottom 4 curves are from “void” boundaries. As
shown in Figure 6d, the method with CGCE, compared with
“SB-CB-CGCA”, achieves significant performance gains of
1.17% and 2.15% near “void” and ‘“‘sobel” boundaries re-
spectively on 1-pixel trimap. We also compare our best
model with DeepLabv3+ [15] on 50-pixel trimap, as shown
in Figure 6e. The improvement is more significant when
evaluating on the narrow trimap bands, which confirms our
superior quality of boundary delineations.

4.4. Performance Evaluation

Performance Evaluation on PASCAL VOC 2012
Datasets

In evaluation, we adopt multi-scaling input with scales
{0.50,0.75,1.00,1.25,1.50,1.75} along with horizontal



Method mloU (%)
FCN-8s [38] 62.2
ParseNet [36] 69.8
DeepLabv2-CRF [12] 71.6
DeconvNet [41] 72.5
DPN [37] 74.1
Piecewise [34] 75.3
LRR-CREF [22] 75.9
PSPNet [65] 82.6
DFN [62] 82.7
EncNet [63] 82.9
" Res101-MeshNet 835
Xception65-MeshNet 84.5
MS-COCO pre-training
DLC [32] 82.7
DUC [49] 83.1
RefineNet [33] 84.2
ResNet-38 [56] 84.9
PSPNet [65] 85.4
DeepLabv3(0S=8) [13] 85.7
EncNet [63] 85.9
DFN [62] 86.2
DIS [39] 86.8
DeepLabv3+(0S=8) [15] 87.8
~ Xception65-MeshNet(OS=16) 876

Table 3: Performance on PASCAL VOC 2012 test set.

flipping operation. As PASCAL VOC 2012 dataset pro-
vides train set with higher quality annotations than the aug-
mented dataset provided by [25], our architecture is further
fine-tuned on train set before the evaluation on val set. The
quantitative and qualitative results are shown in Table 2 and
the supplementary material respectively.

For evaluation on test set, we further fine-tune MeshNet
on PASCAL VOC 2012 trainval set. As a result, our pro-
posed method achieves performance of 84.5% and 87.6%
on PASCAL VOC 2012 test set without and with pre-
training on additional MS-COCO dataset [35]. We com-
pare with state-of-the-art methods on PASCAL VOC 2012
test set, and the results are listed in Table 3. It is worth
noting that all our MeshNet methods are trained with out-
put_stride: OS=16 while DeepLabv3 and DeepLabv3+ has
OS=8 during training.

Performance Evaluation on Cityscapes Datasets

We also evaluate our architecture on Cityscapes dataset. In
training, the crop size is 769x769. The quantitative and
qualitative results are presented in Table 4, Figure 7 and
the supplementary material respectively in comparison with
state-of-the-art methods.

5. Conclusions

We have proposed probably one of the first deep end-
to-end trainable semantic segmentation architectures with

Method mloU (%)
FCN-8s [38] 65.3
DPN [37] 66.8
DeepLabv2-CRF [12] 70.4
Piecewise [34] 71.6
RefineNet [33] 73.6
DUC [49] 77.6
PSPNet [65] 78.4
BiSeNet [61] 78.9
DFN [62] 79.3
DenseASPP [60] 80.6
" Res101-MeshNet 794

Xception65-MeshNet 80.7

Table 4: Performance on Cityscapes test set.

(a) DenseASPP

(b) MeshNet

Figure 7: Example results on Cityscapes dataset. Ellipses
highlight the fine structures and small objects which are
mis-segmented by Dense ASPP, whereas our MeshNet pro-
duces regions with strong semantic coherence and accurate
boundary delineation.

focuses on bridging the semantic gap and promoting bound-
ary awareness in a unified framework. These have been
long standing problems in semantic segmentation and yet
are largely ignored by the state-of-the-art architectures. To
this end, we have proposed a categorical attention mecha-
nism leveraging the deep supervisions to impose semantic
consistency across multi-granularity feature hierarchy. We
further explicitly integrated a contour detection branch in
our architecture to enhance the boundary awareness of the
semantic feature in the form of element-wise contour atten-
tion at each feature hierarchy. Additionally, we introduce a
cross-granularity contour enhancement mechanism to prop-
agate rich boundary cues from early layers to deep lay-
ers. These novel contributions delivered significantly im-
proved region-wise semantic coherency and accurate object
contour localization. We have performed extensive evalua-
tions of our architectures and obtained state-of-the-art per-
formance on challenging datasets.
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