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Abstract

Latest algorithms for automatic neural architecture
search perform remarkable but are basically directionless
in search space and computational expensive in the train-
ing of every intermediate architecture. In this paper, we
propose a method for efficient architecture search called
EENA (Efficient Evolution of Neural Architecture). Due
to the elaborately designed mutation and crossover oper-
ations, the evolution process can be guided by the informa-
tion have already been learned. Therefore, less computa-
tional effort will be required while the searching and train-
ing time can be reduced significantly. On CIFAR-10 classifi-
cation, EENA using minimal computational resources (0.65
GPU—days) can design highly effective neural architecture
which achieves 2.56% test error with 8.47M parameters.
Furthermore, the best architecture discovered is also trans-
ferable for CIFAR-100.

1. Introduction

Convolutional Neural Network has a prominent perfor-
mance in computer vision, object detection and other fields
by extracting features through neural architectures which
imitate the mechanism of human brain. Human-designed
neural architectures such as ResNet [14], DenseNet [17],
PyramidNet [13] and so on which contain several effective
blocks are successively proposed to increase the accuracy
of image classification. In order to design neural architec-
tures adaptable for various datasets, more researchers have a
growing interest in studying the algorithmic solutions based
on human experience to achieve automatic neural architec-
ture search [38, 23, 24, 27, 3, 4, 33].

Many architecture search algorithms perform remark-
able but demand for lots of computational effort. For ex-
ample, obtaining a state-of-the-art architecture for CIFAR-
10 required 7 days with 450 GPUs of evolutionary algo-
rithm [28] or used 800 GPUs for 28 days of reinforcement
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learning [38]. The latest algorithms based on reinforce-
ment learning (RL) [27], sequential model-based optimiza-
tion (SMBO) [22] and Bayesian optimization [19] over a
discrete space are proposed to speed up the search process
but the basically directionless search leads to a large number
of architectures evaluations required. Although several al-
gorithms based on gradient descent over a continuous space,
such as DARTS [24] and NAO [26] address this problem to
some extent, the training of every intermediate architecture
is still computational expensive.

In this work, we propose a method for efficient archi-
tecture search called EENA (Efficient Evolution of Neural
Architecture) guided by the experience gained in the prior
learning to speed up the search process and thus consume
less computational effort. The concept, guidance of ex-
perience gained, is inspired by Net2Net [5], which gen-
erate large networks by transforming small networks via
function-preserving. There are several precedents [1, 35, 2]
based on this for neural architecture search, but the basic
operations are limited to the experience in parameters and
are relatively simple, so the algorithms may degenerate into
a random search. We absorb more basic blocks of classical
networks, discard several ineffective blocks and even extend
the guidance of experience gained to the prior architectures
by crossover in our method. Due to the loss continue to
decrease and the evolution becomes directional, robust and
globally optimal models can be discovered rapidly in the
search space.

Our experiments (Sect. 4) of neural architecture search
on CIFAR-10 show that our method using minimal com-
putational resources (0.65 GPU—days') can design highly
effective neural architecture that achieves 2.56% test error
with 8.47M parameters. We further transfer the best archi-
tecture discovered on CIFAR-10 to CIFAR-100 datasets and
the results perform remarkable as well.

Our contributions are summarized as follows:

(1) We are the first to propose the crossover operation
guided by experience gained to effectively reuse the prior

'All of our experiments were performed using a NVIDIA Titan Xp
GPU.



learned architectures and parameters.
(2) We study a large number of basic mutation operations
absorbed from typical architectures and select the ones that
have significant effects.
(3) We achieve remarkable architecture search efficiency
(2.56% error on CIFAR-10 in 0.65 GPU-days) which we
attribute to the use of EENA.
(4) We show that the neural architectures searched by
EENA on CIFAR-10 are transferable for CIFAR-100
datasets.

Part of the code implementation and several models we
searched on CIFAR-10 of EENA is available at https:
//github.com/ICCV-5-EENA/EENA.

2. Related Work

In this section, we review human-designed neural archi-
tectures and automatic neural architecture search which are
most related to this work.

Human-Designed Neural Architectures. Since convo-
lutional neural networks were first used to deal with the
problems in the field of computer vision, human-designed
neural architectures constantly improve the classification
accuracy on specific datasets. As the crucial factor affecting
the performance of neural network, many excellent neural
architectures have been designed. Chollet et al. [6] pro-
pose to replace Inception with depthwise separable convolu-
tions to reduce the number of parameters. Grouped convo-
lutions given by Krizhevsky et al. [20] is used to distribute
the model over two GPUs and Xie et al. [36] further pro-
pose that increasing cardinality is more effective than go-
ing deeper or wider based on this. He ef al. [14] solve the
degradation problem of deep neural networks by residual
blocks. Huang et al. [17] propose dense blocks to solve
the vanishing-gradient problem and substantially reduce the
number of parameters. Hu et al. [16] propose the Squeeze-
and-Excitation block that adaptively recalibrates channel-
wise feature responses by explicitly modelling interdepen-
dencies between channels. In addition to the improvements
on convolutional layer, many other methods have been pro-
posed to further optimize the network. Lin et al. [21] utilize
global average pooling to replace the traditional fully con-
nected layers to enforce correspondences between feature
maps and categories and avoid overfitting. Some regular-
ization methods, such as dropout [30], dropblock [11] and
shake-shake [10] and so on, also improve the generalization
ability of neural networks. Human-designed neural archi-
tectures rely heavily on expert experience, and it will be
extremely difficult to design the most suitable neural archi-
tecture when faced with a new task for image. In this work,
we fully draw on the excellent experience of predecessors
and design an efficient neural architecture search method.

Automatic Neural Architecture Search. Many different
search strategies have been proposed to explore the space
of neural architectures, including random search, evolution-
ary algorithm (EA), reinforcement learning (RL), Bayesian
optimization (BO) and gradient-based methods. Early ap-
proaches [32, 31] use evolutionary algorithms to optimize
both the neural architecture and its weights. However,
faced with the scale of contemporary neural architectures
with millions of weights, recent approaches based on evo-
Iutionary algorithm have been imporved in some ways, such
as using gradient-based methods for optimizing weights
[29, 28, 23] or modifying the architecture by network mor-
phisms [34, 5, 2]. The generation of a neural architec-
ture can be regarded as the agent’s action, thus, many ap-
proaches based on reinforcement learning [38, 39] have
been proposed to deal with neural architecture search. Kan-
dasamy et al. [19] derive kernel functions for architecture
search spaces in order to use classic GP-based BO method,
but compared with others, BO method shows no obvious
advantages. In contrast to the gradient-free methods above,
as gradient-based approaches, Liu et al. [24] propose a con-
tinuous relaxation of the search space and Luo er al. [26]
use an encoder network mapping neural network architec-
tures into a continuous space. We can notice that the al-
gorithms of automatic neural architecture search pay more
and more attention to the efficiency of algorithms (such as
search time) besides focusing on the effect of neural archi-
tectures discovered. In this work, we propose a different
method based on evolutionary algorithm and network mor-
phisms for efficient architecture search and achieve remark-
able results on the classification datasets.

3. Proposed Methods

In this section, we illustrate our basic mutation and
crossover operations with an example of several connected
layers which come from a simple convolutional neural net-
work and describe the method of selection and discard of
individuals from the population in the evolution process.

3.1. Search Space and Mutation Operations

As we mentioned in the Sect. 2, the birth of a better net-
work architecture is usually achieved based on the local im-
provements. A good design of automatic neural architec-
ture search should be based on a large number of excel-
lent human-designed architctures. In addition, some of the
existing methods [5, 35] based on function-preserving are
briefly reviewed in this section and our method is built on
them. Specifically, we absorb more blocks of classical net-
works such as dense block, add some effective changes such
as noises for new parameters and discard several ineffective
operations such as kernel widening in our method.

Our method explores the search space by mutation and
crossover operations and every mutation operation refers to
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a random change for an individual. z is the input to the
network, the guidance of experience gained in parameters is
to choose a new set of parameters 0 for a student network
g(x;0") which transform from the teacher network h(z; 6)
such that:

Vo : h(x;0) = g(x;0)2. (1)

Assume that the -th convolutional layer to be changed is
represented by a (kq, ko, ¢, f) shaped matrix W, The in-
put for the convolution operation in layer 7 is represented
as X () and the processing of BatchNorm and ReLU is ex-
pressed as . In this work, we consider the following muta-
tion operations.

Widen a Layer. Fig. 1(b) is an example of this operation.
W) is extend by replicating the parameters along the last
axis at random and the parameters in W) need to be di-
vided along the third axis corresponding to the counts of the
same filters in the ¢-th layer. U is the new parameter matrix
and f  is the number of filters in the layer i+1. Specifi-
cally, A noise § is randomly added to every new parameter
in W0+ to break symmetry.
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Branch a Layer. Fig. 1(c) is an example of this operation.
This operation adds no further parameters and will always
be combined with other operations. U and V' are the new

2The =" here doesn’t mean completely equivalent, noise may be added
to make the student more robust.
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Figure 1. Visualization of the teacher network (a) and several mutation operations (b~f). The rectangles and circles represent the convolu-
tional layers and feature maps or filters, respectively. The same color means identical and white means O value. The parts in the red dashed
box are equivalent.
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The convolutional layer will be reformulated as:

Concat (SD (X(i) : U/i?,@,cd) e (X(i) ' V,ff?kml)) '
(6)

Insert a Single Layer. Fig. 1(d) is an example of this op-
eration. The new layer weight matrix U1 with a k1 x ko
kernel is initialized to an identity matrix. ReLU(x) =
max{z,0} satisfies the restriction for the activation func-
tion o

Vo :o(x) =0 (Io(x)), (7

so this operation is possible and the new matrix can be ex-
pressed as:

. e | _ koH1 —
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Uitab { 0 otherwise ®)
Insert a Layer with Shortcut Connection. Fig. 1(e) is

an example of this operation. All the parameters of the new
layer weight matrix U(*+1) are initialized to 0. The convo-
lutional layer will be reformulated as:

Add (p (X0) o (XD pDY) @)

Insert a Layer With Dense Connection. Fig. 1(f) is an
example of this operation. All the parameters of the new
layer weight matrix U “*1) are initialized to 0. The convo-
lutional layer will be reformulated as:

Concat (gp (X(H'l) . U(H'l)) , P (X(H'l))) . (10
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Figure 2. Visualization of the process that the parents produce an
offspring by crossover operation. b~f correspond to the mutation
operations in Fig. 1 and 1~7 represent the serial number of lay-
ers. The same colored rectangles represent the identical layers and
white means O value. The parts in the red dashed box are equiva-
lent.

In addition, many other important methods, such as sep-
arable convolution, grouped convolution and bottleneck etc.
can be absorbed into the mutation operations. For these, we
run several simple tests and notice that the search space is
expanded but the accuracy of classification is not improved.
Therefore, we finally abandoned these operations in our ex-
periment.

3.2. Crossover Operation

Crossover refers to the combination of the prominent
parents to produce offsprings which may perform even
more excellent. The parents refer to the architectures with
high fitness (accuracy) that have been already discovered
and every offspring can be considered as a new exploration
of the search space. Obviously, although our mutation op-
erations reduce the computational effort of the repeated re-
training, the exploration of the search space is still random
without taking advantage of the experience already gained
in prior architectures. It is crucial and difficult to find a
crossover operation that can effectively reuse the parame-
ters already trained and even produce the next generation
guided by experience of the prior excellent architectures.

NEAT [32], as a existing method in the field of evolution-
ary algorithm, identify which genes line up with which by
assigning the innovation number to each node gene. How-
ever, this method is limited to the fine-grained crossover for
nodes and connections, and will destroy the parameters that

have already been trained.

We notice that the architectures with high fitness all de-
rive from the same ancestor of some point in the past (At
worst, the ancestor is the initial architecture). Whenever
a new architecture appears (through mutation operations),
we record the type and the location of the mutation oper-
ation. Based on these, we can track the historical origins
and find the common ancestor of the two individuals with
high fitness. Then the offsprings inherit the same architec-
ture (ancestor) and randomly inherit the different parts of
architectures of the parents.

Fig. 2 is a visual example of the crossover operation in
our experiments. Based on the records about the previous
mutation operations for each individual (for Parentl, mu-
tation ¢, d, b, e occurred at layer 2, 4, 3, 3, respectively
and for Parent2, mutation c, d, f occurred at layer 2, 4, 3,
respectively), the common ancestor of the parents (Ances-
tor with mutation c, d occurred at layer 2, 4) can be easily
found. The mutation operations of the two parents different
from each other are selected and added to the ancestor ar-
chitecture according to a certain probability by the mutation
operations (mutation b, f occurred at layer 3, 3 are inherited
by Offspring and mutation e is randomly discarded).

3.3. The Selection and Discard of Individuals in
Evolutionary Algorithm

The Selection of Individuals. Our evolutionary algo-
rithm uses tournament selection [12] to select an individual
for mutation: a fraction k of individuals is selected from the
population randomly and the individual with highest fitness
is final selected from this set. For crossover, the two indi-
viduals with the highest fitness but different architectures
will be selected.

The Discard of Individuals. In order to constrain the size
of the population, the discard of individuals will be accom-
panied by the generation of each new individual when the
population size reaches N. We regulate aging and non-
aging evolutions [28] via a variable A to affect the con-
vergence rate and overfit: Discarding the worst model with
probability A and the oldest model with 1 — A within each
round.

4. Experiments

In this section, we report the performances of EENA in
neural architecture search on CIFAR-10 and the feasibility
of transferring the best architecture discovered on CIFAR-
10 to CIFAR-100. In addition, we statistically analyze the
effect of mutation and crossover operations. In our experi-
ments, we start the evolution from initializing a simple con-
volutional neural network to show the efficiency of EENA
and we use the methods of selection and discard mentioned
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Figure 3. The initial model designed in our experiments.
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Figure 4. The phylogenetic tree visualized one search process on CIFAR-10. In the circle phylogenetic tree, the color of the outermost
circle represents fitness, and the color of the penultimate circle represents ancestor. In the rectangular phylogenetic tree, the color on the
right side represents fitness. From the inside to the outside in the left figure and from left to right in the right figure, along the direction of
time axis, the connections represent the relationship from ancestors to offsprings.

in Sect. 3.3 to select individuals from the population and the
mutation Sect. 3.1 and crossover in Sect. 3.2 operations to
improve the neural architectures.

Initial Model. The initial model (the number of param-
eters is 0.67M) is sketched in Fig. 3. It starts with one
convolutional layer, followed by three evolutionary blocks
and two MaxPooling layers for down-sampling which are
connected alternately. Then another convolutional layer is
added, followed by a GlobalAveragePooling layer and a
Softmax layer for transformation from feature map to clas-
sification. Each MaxPooling layer has a stride of two and is
followed by a DropBlock [11] layer with keep_prob = 0.8
(block_size = 7 for the first one and block_size = 5 for
the second one). Specifically, the first convolutional layer
contains 64 filters and the last convolutional layer contains
256 filters. An evolutionary block is initialized with a con-
volutional layer with 128 filters. Every convolutional layer
mentioned actually means a Conv-BatchNorm-ReL.U block
with a kernel size of 3 x 3. The weights are initialized as He
normal distribution [14] and the L2 regularization of 0.0001
is applied to the weights.

Dataset. We randomly sample 10,000 images by stratified
sampling from the original training set to form a validation
set for evaluate the fitness of the individuals while using the

remaining 40,000 images for training the individuals dur-
ing the evolution. We normalize the images using channel
means and standard deviations for preprocessing and apply
a standard data augmentation scheme (zero-padding with 4
pixels on each side to obtain a 40 x 40 pixels image, then
randomly cropping it to size 32 x 32 and randomly flipping
the image horizontally).

Search on CIFAR-10. The initial population consists of
12 individuals, each formed by a single mutation operation
from the common initial model. During the process of evo-
lution, Individual selection is determined by the fitness (ac-
curacy) of the neural architecture evaluated on the valida-
tion set. In our experiments, the size of k in selection of
individuals is fixed to 3 and the variable X in discard of in-
dividuals is fixed to 0.5. We don’t discard any individual
at the beginning to make the population grow to the size
of 20. Then we use selection and discard together, that is
to say, the individual after mutation or crossover operations
will be put back into the population after training and at the
same time the discard of individuals will be executed. The
mutation and crossover operations to improve the neural ar-
chitectures are applied in the evolutionary block and any
mutation operation is selected by the same probability. The
crossover operation is executed every 5 rounds, for which
we select the two individuals as parents with the highest fit-



Table 1. Comparison against state-of-the-art recognition results on
CIFAR-10. Results marked with T are NOT trained with Cutout
[8]. The first block represents the performance of human-designed
architectures. The second block represents results of various auto-
matically designed architectures. Our method use minimal com-
putational resources to achieve a low test error.

Table 2. The effect of mutation for a random selected individual.
The first column represents the percentage that the fitness becomes
better after mutation. The second column represents the percent-
age that the fitness becomes worse. The last column represents
that the fitness is unchanged.

The Fitness after Mutation for a Random Individual

Params Search Time Test Error
Method (Mil.) (GPU-days) (%) Better Worse No Change
DenseNet-BC [17] 25.6 - 3.46 118/310 (38.06%) 182/310 (58.71%) 10/310 (3.23%)
PyramidNet-Bottleneck [13] t 26.0 — 3.31
ResNeXt + Shake-Shake [10] 26.2 — 2.86 . .
AmocbaNet-A [28] s 3150 334 Table 3. The comparison of the effect of mutation and CIOSSOVer.
Large-scale Evolution [29] 54 2600 5.4 The second column represents the percentage of generating the
NAS-v3 [38] 374 1800 3.65 Topl fitness of the population from the individuals of Top2 fitness
NASNet-A [39] 3.3 1800 2.65 after mutation or crossover. The last column represents the per-
Hierarchical Evolution [23] 15.7 300 3.75 £ . he Tops fit f th lati f th
PNAS [22]1 19 25 341 .cen.ta_ge of generating the Top ness of the population from the
Path-Level-EAS [3] 14.3 200 230 individuals of Top2 fitness after mutation or crossover.
NAONet.[26] 128 200 2.11
EAS [2]7 23.4 10 4.23 Operations Top1l TopS
DARTS [24] 34 4 2.83
Neuro-Cell-based Evolution [35] 7.2 1 3.58 Mutation (TOpZ) 28/120 (23.33%) 79/120 (65.83%)
ENAS [27] 4.6 0.45 2.89 Crossover (Top2)  18/55 (32.73%)  42/55 (76.36%)
NAC [18] 10 0.25 3.33
GDAS(FRC) [9] 2.5 0.17 2.82
Ours 8.47 0.65 2.56 o ]
Ours (adjust the number of channels) ~ 54.14 - 2.21 the same as the original paper (a cutout size of 16 x 16

ness but different architectures among the population. All
the neural architectures are trained with a batch size of 128
using SGDR [25] with initial learning rate [,,,, = 0.05,
To = 1 and T}, = 2. The initial model is trained for
63 epochs. Then, 15 epochs are trained after each muta-
tion operation, one round of 7 epochs and another round of
15 epochs are trained after each crossover operation. One
search process on CIFAR-10 is visualized in fig. 4. In the
circle phylogenetic tree of EENA, the color of the outermost
circle represents fitness, and the same color of the penulti-
mate circle represents the same ancestor. In the rectangular
phylogenetic tree, the color on the right side represents fit-
ness. From the inside to the outside in the left figure and
from left to right in the right figure, along the direction of
time axis, the connections represent the relationship from
ancestors to offsprings. We can notice that the fitness of the
population increases steadily and rapidly via mutation and
crossover operations. In addition, the population is quickly
taken over by a highly prominent homologous group. After
the search budget is exhausted or the highest fitness of the
population no longer increase over 25 rounds, the individ-
ual with highest fitness will be extracted as the best neural
architecture for post-training.

Post-Training of the Best Neural Architecture Obtained.
We conduct post-processing and post-training towards the
best neural architecture designed by the EENA. The model
is trained on the full training dataset until convergence us-
ing Cutout [8] and Mixup [37] whose configurations are

and o = 1 for mixup). Specifically, in order to reflect the
fairness of the result for comparison, we don’t use the lat-
est method AutoAugment [7] which has significant effects
but hasn’t been widely used yet. The neural architectures
are trained with a batch size of 128 using SGD with learn-
ing rate [ = 0.1 for 50 epochs to accelerate the conver-
gence process. Then we used SGDR with initial learning
rate l,,q, = 0.1, To = 1 and T},,,;; = 2 for 511 or 1023
epochs®. Finally, the error on the test dataset is reported.
The comparison against state-of-the-art recognition results
on CIFAR-10 is presented in Table 1. On CIFAR-10, Our
method using minimal computational resources (0.65 GPU-
days) can design highly effective neural cell that achieves
2.56% test error with small number of parameters (8.47M).

Fine-Tuning of the Best Neural Network. In order to
prove the good scalability of the network designed by
EENA, we further fine-tune the best neural network by ad-
justing the number of the channels. We change the number
of the filters in the three evolutionary blocks of the convolu-
tional neural network to 1, 2, 4 times and use the same post-
processing and post-training method which is mentioned
above. The result after fine-tuning on CIFAR-10 is also pre-
sented in Table 1. We can notice that a better performance
(2.21% test error) can be achieved by simply widening the
discovered convolutional neural network.

The Effect of Mutation and Crossover Operations. We
conduct several experiments and do a statistical analysis

3We did not conduct extensive hyperparameter tuning due to limited
computation resources.



Table 4. Comparison against state-of-the-art recognition results on
CIFAR-100. The first block represents the performance of human-
designed architectures. The second block represents the results of
several automatically designed architectures.The last block repre-
sents the performance of transferring the best architecture discov-
ered on CIFAR-10 to CIFAR-100.

Params Search Time Test Error

Method (Mil)  (GPU-days) (%)

DenseNet-BC [17] 25.6 — 17.18
ResNeXt + Shake-Shake [10] 26.2 — 15.20
AmoebaNet-B [28] 34.9 3150 15.80
Large-scale Evolution [29] 40.4 2600 23.70
NASNet-A [39] 50.9 1800 16.03
PNAS [22] 32 225 17.63
NAONet [26] 128 200 14.75
Neuro-Cell-based Evolution [35] 5.3 1 21.74
GDAS(FRC) [9] 2.5 0.17 18.13
Ours (transferred from CIFAR-10) 8.49 - 17.71

about the changes of the fitness for an individual after mu-
tation and crossover operations. We collect the results of
310 random individuals for mutation and count the number
of the offsprings with better fitness or worse fitness sepa-
rately. Then we roughly estimate the effect of this opera-
tion according to the statistical results. The effect of mu-
tation for a random selected individual is presented in Ta-
ble 2. We also collect the results of 120 individuals with
Top?2 fitness for mutation and 55 pairs of individuals with
Top?2 fitness for crossover. Then we count the number of
the offsprings with Topl and Top5 fitness in the popula-
tion separately. The comparison of the effect of mutation
and crossover is presented in Table 3. We can notice that
the mutation and crossover are both effective but crossover
operation is more likely to produce individuals with high
fitness (Top1 or TopS5 fitness).

Comparison to Search Without Crossover. Unlike ran-
dom search by mutation operations, crossover as a heuristic
search makes the exploration directional. In order to fur-
ther verify the effect of the crossover operation, we con-
duct another experiment removing the crossover operation
from the search process and all the other configurations re-
main unchanged. We run the experiment 5 times for 0.65
hours, then report a mean classification error of 3.44% and
a best classification error of 2.96%. The result is worse than
that of the original experiment with crossover. Thus, asso-
ciating this result with the effect of mutation and crossover
operations which is mentioned above, we confirm that the
crossover operation is indeed effective.

Transfer the Best Architecture Searched on CIFAR-10
to CIFAR-100. We further try to transfer the best archi-
tecture of highest fitness searched on CIFAR-10 to CIFAR-
100 and the results perform remarkable as well. For CIFAR-

Concatenate

v 12

Figure 5. The best architecture discovered by EENA. 64, 128 and
256 is the number of filters.

100, several hyper-parameters are modified: block_size =
3 for the first DropBlock layer, block_size = 2 for the sec-
ond and the cutout size is 8 x 8. The comparison against
state-of-the-art recognition results on CIFAR-100 is pre-
sented in Table 4.

5. Conclusions and Ongoing Work

We design an efficient method of neural architecture
search based on evolution with the guidance of experience
gained in the prior learning. This method takes repeatable
CNN blocks (cells) as the basic units for evolution, and
achieves a state-of-the-art accuracy on CIFAR-10 and oth-
ers with few parameters and little search time. We notice
that the initial model and the basic operations are extremely
impactful to search speed and final accuracy. Therefore, we
are trying to add several effective blocks such as SE block
[16] as mutation operations combined with other methods
that might perform effective such as macro-search [15] into
our experiments.

Appendix
Here we plot the best architecture of CNN cells discov-
ered by EENA in Fig. 5.
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