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Abstract

Hyperspectral imaging simultaneously captures images

of the same scene across many numbers of spectral chan-

nels, and has different applications from agriculture, as-

tronomy to surveillance and mineralogy, to name a few.

However, due to various hardware limitations, the current

hyperspectral sensor only provides low-resolution (LR) hy-

perspectral images compared with the RGB images ob-

tained from a common color camera. Thus fusing a LR hy-

perspectral image with the corresponding high-resolution

(HR) RGB image to recover a HR hyperspectral image has

attracted much attention, and is usually solved as an op-

timization problem with prior-knowledge constraints such

as sparsity representation and spectral physical properties.

Motivated by the great success of deep convolutional neu-

ral network (DCNN) in many computer vision tasks, this

study aims to design a novel DCNN architecture for ef-

fectively fusing the LR hyperspectral and HR-RGB images.

Taking consideration of the large resolution difference in

spatial domain of the observed RGB and hyperspectral im-

ages, we propose a multi-scale DCNN via gradually reduc-

ing the feature sizes of the RGB images and increasing the

feature sizes of the hyperspectral image for fusion. Further-

more, we integrate multi-level cost functions into the pro-

posed multi-scale fusion CNN architecture for alleviating

the gradient vanish problem in training procedure. Exper-

iment results on benchmark datasets validate that the pro-

posed multi-level and multi-scale spatial and spectral fu-

sion CNNs outperforms the state-of-the-art methods in both

quantitative values and visual qualities.

1. Introduction

Hyperspectral (HS) imaging acquires images with many

narrow spectral channels of a scene via densely sampling

the electromagnetic spectrum. The rich spectra greatly

enrich the captured scene information and have been re-

cently applied in many computer vision tasks, such as object

recognition and classification [15, 42, 47], tracking [34],

segmentation [41], medical image analysis [48], and re-

mote sensing [7, 2], for pursuing performance enhance-

ment. However, the high spectral resolution means that a

small fraction of the overall radiant energy only can be col-

lected for each band of narrow spectrum. To guarantee ac-

ceptable signal-to-noise ratio, photon collection has to be

performed in a much larger spatial region on the sensor, and

thus results in low spatial resolution in the observed HS im-

age. The low spatial resolution generally leads to high spec-

tral mixing of different materials in the target scene, and

possibly affect the performance of scene analysis and under-

standing. Therefore, the reconstruction of high-resolution

hyperspectral (HR-HS) image using image processing and

machine leaning techniques has attracted a lot of attention.

There are mainly three research directions for HR-HS

image reconstruction via: 1) spatial resolution enhancement

from the observed low-resolution (LR) HS image ; 2) spec-

tral resolution enhancement from the HR-RGB image; 3)

fusion method based on the observed HR-RGB and LR-

HS images of a same scene. Motivated by the success of

deep convolutional neural network (DCNN) for the spa-

tial resolution enhancement in single natural image super-

resolution [12, 25], some work attempted to reconstruct

HR-HS image from a single LR-HS image with DCNN ar-

chitecture [31, 32], and validated feasibility for small ex-

panding factors such as 2˜4. However the spatial reso-

lution of the observed HS image is generally much lower

than the commonly available RGB image, and then large

expanding factor, such as more than 10 in horizontal and

vertical directions, respectively, is needed for reaching the

required spatial resolution of HR-HS image in real applica-

tions. Since the RGB image can be easily collected with

a low-price visual sensor, the spectral resolution enhance-

ment for RGB-to-Spectrum reconstruction [5, 16, 6, 18, 35],



has recently became an active research line. Although

the potential of HR-HS image reconstruction from a single

RGB image has been validated, there has still large space

for performance improvement in real applications. Fus-

ing a LR-HS image with the corresponding HR-RGB im-

age to obtain a HR-HS image has shown promising perfor-

mance [22, 10, 21, 1, 33, 49, 8, 24]. Existing effort mainly

focus on optimization based fusion methods. With the spec-

tral decomposition model, the reconstruction errors of the

spectral representation for both LR-HS and HR-MS (or HR-

RGB) images [46, 27, 14, 19] are jointly minimized. Since

the unknown variable number in the HR-HS image is much

larger than the number measurements, different constraints

such as sparsity representation [22, 14, 19, 45, 17, 4, 3, 44],

spectral physical properties [27], spatial context similar-

ity [14, 19] have been used for narrowing the solution space

to provide stable reconstruction. The quality of the recov-

ered HR-HS image by optimization based methods greatly

depends on the pre-defined constraints. Furthermore, the

optimization procedure usually involves high computational

cost due to the large number of constraint terms. In spite

of the impressive performance of DCNN in different com-

puter vision tasks, few work investigated the fusion prob-

lem due to large structure difference in the two modalities

of HR-RGB and LR-HS images [20, 11, 37]. Han etc. [20]

conducted a pilot study of spatial and spectral fusion CNN

with simply upsampling the LR-HS image to the spatial size

of the HR-RGB image, which only consists of 3 convolu-

tional layers based on the well known SRCNN, and mani-

fested comparable performance compared with state-of-the-

art optimization-based fusion approaches. Furthermore the

simple upsampling would greatly increase the amount of

date, and thus leads to high computational cost. Dian et

al. [11] proposed to combine the optimization- and CNN-

based methods together, which consists of three indepen-

dent procedures with the optimization method as the pre-

and post- processing and a plain CNN architecture as the

intermediate step for recovering the residual component.

In this paper, we present a novel CNN architecture to ef-

fectively fuse the observed LR-HS and HR-RGB images for

HS image super resolution. The proposed CNN architecture

consists of two pathways: 1) a spatial structure reservation

pathway for investigating the HR structure in the HR-RGB

image; 2) a spectral reservation pathway for exploring the

correlation property in spectral channels. Furthermore, the

learned feature maps from two pathways can be dynami-

cally fused in a multi-scale procedure for investigating the

the correlation structure between the spectral and spatial do-

main. The schematic of the proposed multi-scale spatial and

spectral fusion CNN (MS-SSFNet) is shown in Fig. 1. As

mentioned above, the spatial expanding factor of the LR-

HS image is generally large, and would lead to numerous

scales and deeper architecture in the MS-SSFNet. Deeper

the network, the occurrence potential of gradient vanishing

problem is increased. In order to alleviating the possible

gradient vanish problem in training procedure, we propose

to integrate multi-level cost functions for effectively train-

ing the proposed MS-SSFNet.

The main contributions of this work are two-fold:

• We propose a novel multi-scale spatial and spectral fu-

sion architecture (MS-SSFNet), which can efficiently

explore the narrow bands of spectral attribute in LR-

HS image with the spectral reservation pathway and

the rich spatial context in HR-RGB image with spa-

tial structure reservation pathway for HSI SR. The fu-

sion architecture for the learned feature maps jointly

exploits the spectral and spatial correlation structure.

• We integrate multi-level cost functions for alleviating

the gradient vanish problem in training procedure of

deep network architecture. We divide the proposed

MS-SSFNet into several levels, and construct the in-

termediate cost function in each level, which are com-

bined for formulating as the final objective function in

the network training procedure.

Experimental results on the benchmark datasets: Har-

vard [4], NUS and ICVL validate that the proposed method

outperforms the state-of-the-art methods in both quantita-

tive values and visual qualities.

The rest of the paper is organized as follows. We firstly

review the related literature of HSI SR in Section 2, and

then describe the proposed MS-SSFNet and the multi-level

weighted objective function for network training in Sec-

tion 3. Experimental evaluations are conducted in Section 4,

and finally Section 5 concludes the paper.

2. Related Work

The high-resolution cubic data in both spatial and spec-

tral domains is difficult to achieve due to technique and bud-

get constraints [22], which motivates research attentions for

generating HR-HS images via fusing HR-RGB and LR-HS

images using image processing and machine learning tech-

niques. Particularly in remote sensing field, a high reso-

lution single-channel black-and-white (‘panchromatic’) im-

age is usually available accompanying with the low reso-

lution multi-spectral or HS image and the fusion of these

two images is generally known as the pan-sharpening tech-

nique [10, 21, 1, 33, 49]. Popular approaches focused on

reliable illumination restoration based on intensity substi-

tution and projection with the sue saturation and principle

component analysis [5, 16]. Generally this improves the

spatial resolution of the hyperspectral image, however un-

avoidably causes spectral distortion [8].

Many HSI SR methods based on matrix factorization,

spectral unmixing, and sparse representation, which are
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Figure 1. The proposed multi-scale spatial and spectral fusion CNN architecture.

mainly motivated by the fact that the HS observations

can be represented by the basis of reflectance functions

(the spectral response of the pure material) and their cor-

responding sparse coefficients denoting the fractions of

each material on each location, has been actively investi-

gated [24, 46, 14, 19]. Yokoya et al. [46] proposed a coupled

non-negative matrix factorization (CNMF) method moti-

vated by the prior knowledge of the non-negativity of spec-

tral response and the spectral decomposability, which may

lead to non-unique solution [29]. Lanaras et al. [27] inte-

grated coupled spectral unmixing strategy into HSI SR, and

applied the proximal alternation linearized minimization to

optimize, which requires the initial points of the two de-

composed reflectance functions and the endmember vectors

with similar constraints. These methods require the number

of pure materials in the observed scene to be smaller than

the spectral band number, which does not always meet the

real application.

Motivated by the success of the sparse representation in

natural image analysis, the sparsity promoting approaches

without explicit physical meaning constraints on the basis,

which thus permits over-complete basis, have been applied

for HSI SR [45, 17, 14, 19]. There are many methods us-

ing a joint sparse representation for approximating the lo-

cal structure in each individual band [17], and sparse spec-

tral representation that encodes the pixel spectrum indepen-

dently instead of the local structure [4, 3]. More recently,

Dong et al. [14] investigated a non-negative structured

sparse representation with context similarity constraint and

showed state-of-the-art performance. These methods man-

ifested large improvement, but the performance largely re-

lies on pre-defined constraints, which limit their wide appli-

cability.

Deep convolutional neural networks (CNNs) have re-

cently shown great success in various image processing and

computer vision applications, such as image classification,

object detection and segmentation [40, 36], face recogni-

tion [39], image denoising [30]. CNN has also been applied

to RGB image super-resolution and achieved promising per-

formance. Dong et al. [12] proposed a three-layer CNN

architecture (SRCNN), which demonstrates about 0.5db-

1.5db improvement and much lower computational cost

compared with the popularly used sparse-based methods,

and they further extended SRCNN to be capable of dealing

with the available LR images without upsampling as input

(Fast SRCNN) [13]. Kim et al. [25] exploited a very deep

CNN architecture based on VGG-network [38], and fo-

cused on learning the missing high-frequency image (resid-

ual image) for speeding up the training procedure. Ledig

et al. [28] combined GAN for estimating much sharper HR

image. For applying CNN to HSI SR, Li et al. [31] ap-

plied similar structures of SRCNN to super-resolve HSI

only from the LR-HS image. The CNN architectures take

only the LR image as input, and the expanding factor of

resolution enhancement is theoretically limited to be lower

than 8 in both height and width. Recently,it attracts hot

attention exploring CNN-based method with variant back-

bone architectures to expand the spectral resolution with

only HR-RGB image as input [5, 18, 35], which is called

RGB-to-hyperspectral reconstruction. Although the CNN-



based RGB-to-hyperspectral reconstruction manifested the

potential of HR-HS image recovery, it easily results in spec-

tral distortion and thus there are still large space for perfor-

mance improvement. In order to exploit both information

in the available HR-RGB image and LR-HS image, Han et

al. [20] conducted a pilot study of spatial and spectral fu-

sion CNN (SSF-CNN) with a baseline CNN architecture of

3-convolutional layers, which simply upsamples the LR-HS

image to the same spatial size of the HR-RGB image for

concatenation. Even though SSF-CNN provided compara-

ble performance of the reconstructed HR-HSI with state-of-

the-art optimization-based fusion methods, the simple up-

sampling of the LR-HS image would greatly increase the

input data amount, which will lead to heavy computational

burden. Dian et al. [11] exploited a deep hyperspectral

image sharpening method (DHSIS), which is a combined

strategy of the optimization- and CNN- based methods for

HR-HS reconstruction. Therein, the HR-HS image is firstly

optimized by minimizing the reconstruction errors with the

observed HR-RGB and LR-HS images using an up-sampled

LR-HS image as the initial state, which can be called as

optimization-based pre-processing, and then the obtained

HR-HS image in the first step is inputed to a plain net-

work with 16 convolutional layers for estimating the resid-

ual components (the residual image between the network

input and the ground-truth image). Finally, an optimization

method is explored again for refining the reconstructed HR-

HS image from the CNN network. This study proposes a

novel CNN architecture to effectively fuse the observed LR-

HS and HR-RGB images for HS image super resolution in

a more robust manner.

3. Proposed Method

3.1. Problem Formulation

Let Y ∈ RW×H×3 and X ∈ R
w×h×C (w ≪ W ,

h ≪ H) denote the input HR-RGB image and LR-HS im-

age, respectively, where W (w), H (h) are the width and

height of the input image Y (X), C is the spectral channel

number of the LR-HS image. The goal of HSI SR is to es-

timate a HR-HS image Z ∈ R
W×H×C from the observed

LR-HS image X and the HR-RGB image Y. For simpli-

fication, we consider the spatial upscale factor as 2S , that

is W = 2Sw, H = 2Sh. The image formation model for

depicting the relationship between the desired HR-HS and

the input LR-HS images can be formulated as

X = Z ∗Spat
D ↓2

S

+n (1)

where D represents a 2-dimensional (spatial) filter, ∗Spat

denotes the convolutional operation in spatial domain, ↓2
S

is the down-sampling operation with 2S factor for horizon-

tal and vertical directions, respectively. n denotes the noise

that follows the Gaussian distribution with zero mean value.

Similarly, the image formation model for depicting the rela-

tionship between the desired HR-HS and the input HR-RGB

image can be formulated as

Y = ZR+ n (2)

where R ∈ RC×3 represents the RGB camera spectral sen-

sitivity decided by camera design, which maps the HR-HS

image Z to the HR-RGB image Y. This study explores a

multi-scale spatial and spectral fusion CNN architecture to

integrate the observed LR-HS image X and the HR-RGB

image Y, which have large structure difference, in a more

robust manner.

3.2. Multi-Scale Spatial and Spectral Fusion CNN:
MS-SSFNet

As described in 3.1 that the spatial structure in the ob-

served LR-HS and HR-RGB images differs largely, and

thus it is difficult to fuse the two available modalities of

data to generate a robust HR-HS image. We design a multi-

scale SSFnet consisting of two pathways as shown in Fig. 1:

spectral reservation pathway which progressively learns the

upsampled spectral-correlation feature maps in multiple

scales from the observed LR-HS image and simultaneously

maintains spectral correlation property, and spatial structure

reservation pathway which progressively learns the down-

sampled spatial-correlation features from the observed HR-

RGB image. And then the upsampled spectral-correlation

feature maps and the down-sampled spatial-correlation fea-

tures are dynamically fused also in a multi-scale manner.

With the spatial upscaling factor 2S , there are S blocks

in the spectral and spatial structure reservation pathways,

respectively. A de-convolutional layer is used between the

blocks of the spatial structure reservation pathway for up-

sampling the outputted feature with factor 2. Let Xs−1 ∈

R
2
s−1w×2

s−1h×C1
s−1 and X̂s ∈ R

2
s−1w×2

s−1h×C1
s denote

the input and output feature maps of the s − th block, and

the relation between X̂s and Xs−1 is formulated as:

X̂s = F
Spec
1 (Xs−1, θ

1
s) (3)

where the input of the first block is the observed LR-HS

image, etc. X0 = X.

Via the deconvolution layer between the s and s + 1
blocks, the spatial size of feature map X̂s is enlarged from

2s−1w×2s−1h to 2sw×2sh. The output XUp
s of the s−th

deconvolution layer is expressed as:

X
Up
s = Deconvs(X̂s, θ

1,d
s ) (4)

Therefore, S blocks have S − 1-scale up-sampled fea-

ture maps: [XUp
1 ,X

Up
2 , · · · ,XUp

S−1
], which are combined

with the learned inherent features from the spatial reserva-

tion pathway as the input of the next block.



Similarity, the spatial structure reservation pathway in-

cludes L − 1 blocks via removing the corresponding part

with the smallest spatial size block in the spectral reser-

vation pathway since no HR spatial structure is capable

of being extracted from the HR-RGB image compared

to the LR-HS image. A max-pooling layer is used be-

tween the blocks of the spatial structure reservation path-

way for downsampling the outputted feature with factor

2. Let Ys−1 ∈ R
2
S−s+1w×2

S−s+1h×C2
s−1 and Ŷs−1 ∈

R
2
S−s+1w×2

S−s+1h×C2
s denote the input and output feature

maps of the s− th block, and the relation between Ŷs and

Ys−1 is formulated as:

Ŷs−1 = FSpa
s (Ys−1, θ

2
s) (5)

where the input of the first block is the observed HR-RGB

image, etc. Y0 = Y.

The max-pooling (MP) layer between the s and s + 1
blocks reduces the spatial size of feature map Ŷs from

2S−s+1w × 2L−s+1h to 2S−sw × 2S−sh. The output Ys

of the s− th MP layer is expressed as:

Ys = MPs(Ŷs−1) (6)

The multi-scale fusion of the proposed SSFNet is imple-

mented via stacking the up-sampled feature map X
Up
s of

the s− th block in the spectral reservation pathway and the

output feature map ŶS−l of the (S − s + 1) − th block in

the spatial structure reservation pathway to form the input

Xs of the (s+ 1)− th block, which is expressed as:

Xs = stack(XUp
s , ŶS−s) (7)

There are altogether S − 1 stack fusion operations for a

2S upscale factor in our MS-SSFNet architecture. The out-

put XS−1 of the (S − 1) − th stack operation is the input

of final block (the S − th) of the spectral reservation path-

way, which reconstructs the required HR-HS image from

the final fused feature map. Each block in both pathways

contains two convolutional layers following a PReLU layer

after each convolutional layer.

3.3. Multi-level cost functions for training MS-
SSFNet

For a 2S upscale factor, our constructed MS-SSFNet

consists of S + (S − 1) blocks: S blocks in the spectral

reservation pathway and S − 1 blocks in the spatial struc-

ture reservation pathway. With large factor, the constructed

MS-SSFNet would have deep architecture, which increases

the occurrence potential of the gradient vanishing problem.

As we know it is easy to simulate the low resolution image

from a HR image with some simple interpolation operators

such as bicubic. This study simulates several intermediate

resolution HS images from the training HR-HS image.

Let divide S−scales of our MS-SSFNet into L levels,

where each level includes SL scales and
∑L

l=1
SL = S.

Any training HR-HS image Z can be down-sampled to gen-

erate L− 1 intermediate HS images as:

Z
1 =Z ∗Spat

D
t ↓2

SL

,Z2 = Z
1 ∗Spat

D
t ↓2

SL

,

· · · ,ZL−1 = Z
L−2 ∗Spat

D
t ↓2

SL

(8)

Via adding a reconstruction layer in each SL block

group, the proposed MS-SSFNet can provide estimation

Ẑ of the required HR-HS image and the estimations:

Ẑ
1, Ẑ2, · · · , ẐL−1 of the intermediate HS images. The L

Mean Squared Errors (MSEs) in all block groups can be

calculated as:

MSE0 =
N∑

n=1

‖Zn − Ẑn‖
2
2,MSE1 =

N∑

n=1

‖Z1
n − Ẑ

1
n‖

2
2,

· · · ,MSEL−1 =
N∑

n=1

‖ZL−1
n − Ẑ

L−1
n ‖22

(9)

The combined objective function for training our con-

structed MS-SSFNet is formulated as:

arg min
θ1,θ1dθ2

L−1∑

l=0

MSEl (10)

The schematic concept of the multi-level cost function

formulation in MS-SSFNet training procedure is shown in

Fig. 2. In test procedure, the reconstruction layers for the

intermediate HS images will be removed, and only the HR-

HS image is recovered.

4. Experimental Results

In the following, we will first introduce the datasets used

for HR-HS image reconstruction, and the metrics for quan-

titative evaluation. Then, we compare our method with sev-

eral state-of-the-art HS image reconstruction methods.

4.1. Datasets and Metrics

We evaluate the proposed multi-level and multi-scale

SSFNet on three publicly hyperspectral imaging datasets in-

cluding the Harvard dataset [9], the ICVL dataset [6], and

the NUS dataset [35]. The Harvard dataset consists of 50

outdoor images captured under daylight illumination. We

randomly select 40 images in this dataset for training and

use the rest for testing. The ICVL dataset consists of 201

images, which is by far the most comprehensive natural hy-

perspectral dataset. This time, we conducted experiments

with the used 101 images in [6], and randomly select 71 im-

ages for training and the rest for testing. The NUS dataset
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Figure 2. The schematic concept of the multi-level cost function formulation in MS-SSFNet training procedure.

Table 1. The average and standard deviation of RMSE, PSNR, SAM and SSIM using our proposed method, a comparable ResNet method,

the combined optimization- and CNN- based method: DHSIS [11] and the state-of-the-art optimization-based fusion approaches: CSU [27]

and NNSR [14] on all three datasets.

(a) Harvard Dataset

Methods CSU [27] NNSR [14] SSF-CNN [20] DHSIS [11] Spectral-ResNet SSF-ResNet Our

RMSE 2.15±1.05 1.84±0.70 1.94±1.23 1.83±0.83 3.00±2.26 1.83±1.01 1.54±0.61

PSNR 42.44±4.28 43.48±3.53 43.56±4.88 43.76±4.16 40.40±5.77 44.05±4.85 45.01±3.54

SAM 2.79±0.66 2.83±0.70 3.14±0.97 2.64±0.71 3.83±1.54 2.47±0.65 2.40±0.59

SSIM 0.981±0.013 0.984±0.007 0.984±0.01 0.984±0.008 0.980±0.01 0.984±0.01 0.986±0.006

(b) ICVL Dataset

Methods CSU [27] NNSR [14] DHSIS [11] SSF-ResNet Our

RMSE 0.95±0.17 0.91±0.18 0.71±0.29 0.81±0.24 0.65±0.15

PSNR 48.71±1.59 49.11±1.78 51.20±3.61 50.72±3.12 51.99±2.03

SAM 0.70±0.13 0.99±0.67 0.71±0.11 0.61±0.14 0.53±0.11

SSIM 0.9972±0.0012 0.9961±0.0013 0.9971±0.0013 0.9965±0.0011 0.9979±0.0010

(c) NUS Dataset

Methods CSU [27] NNSR [14] DHSIS [11] SSF-ResNet Our

RMSE 1.65±0.83 1.21±0.62 1.27±0.59 1.19±0.55 1.08±0.62

PSNR 44.80±4.43 47.56±4.43 46.95±3.83 47.56±4.35 48.79±4.89

SAM 3.23±1.30 2.78±1.41 2.87±1.70 2.83±1.42 2.71±1.55

SSIM 0.9864±0.0136 0.9872±0.0138 0.9868±0.0068 0.9881±0.0133 0.9883±0.0148

contains 41 HSIs in the training set and 25 HSIs in the test-

ing set. The HS images in all datasets have 31 spectral

bands of 10 nm wide, covering the visible spectrum from

400 to 700 nm or 420 to 720 nm. We treat the original im-

ages in the datasets as ground truth Z, and simulate to pro-

duce the observed HR-RGB images Y by integrating the

ground truth over the spectral channels using the spectral

response R of a Nikon D700 camera and the LR-HS im-

ages X by down-sampling operation with scale factor: 16

for both horizontal and vertical directions.

Four image quality metrics are utilized to evaluate the

performance of our proposed method, including root-mean-

square error (RMSE), peak-signal-poise-ratio (PSNR),

structural similarity (SSIM) [43], and spectral angle map-

ping (SAM) [26]. RMSE, PSNR and SSIM are calculated

on each 2D spatial image, which measure the spatial fidelity

between the recovered HSI and the ground truth. SAM is

calculated on the 1 − D spectral vector, which shows the

spectral fidelity. Smaller values of RMSE and SAM sug-

gest better performance, while a larger value of PSNR and

SSIM implies better performance.

4.2. Implementation Detail

For training sample preparation, we uniformly extract

the patches with the size of 8×8×31 and the stride of 2 from

the generated LR-HS images, the corresponding patches



with the size of 127× 127× 3 from the generated HR-RGB

images, and the corresponding ground truth with the size of

127 × 127 × 31 from the HR-HS images. In addition, we

divide the proposed MS-SSFNet of the upscale factor 16

into 2 levels, and generate the intermediate downsampled

HS image Ẑ
1 with factor 4. Therefore, the corresponding

patches with the size of 31 × 31 × 31 are also extracted as

the intermediate ground-truth samples. Our network, im-

plemented with Caffe [23], is trained from scratch, using

the Adam optimizer. We use a minibatch size of 16 in train-

ing procedure, and train the network for 2000 epochs for all

three datasets. The model parameters are initialized accord-

ing to Gaussian distribution with standard deviation 0.001.

4.3. Comparison with state-of-the-art fusion meth-
ods

As we introduced above, our proposed method aims at

fusing the observed LR-HS and HR-RGB images to gener-

ate a HR-HS image, and then we compare the performance

of our proposed multi-level and multi-scale SSFNet with

the state-of-the-art fusion methods. The state-of-the-art fu-

sion methods for HS image super resolution mainly con-

tains two categories: optimization-based and CNN-based

strategies. There have been many recently-proposed op-

timization based fusion methods, including Coupled Non-

negative Matrix Factorization (CNMF) method [46], Sparse

Non-negative Matrix Factorization (SNNMF) method [44],

Generalization of Simultaneous Orthogonal Matching Pur-

suit (GSOMP) method [49], Bayesian sparse representa-

tion (BSR) method [4], Couple Spectral Unmixing (CSU)

method [27], and Non-Negative Structured Sparse Repre-

sentation (NNSR) method [14]. Since CSU and NNSR

manifest relatively larger advantage over other existing

optimization-based methods [46, 44, 46, 4], we only pro-

vide the compared results of our proposed method with the

CSU and NNSR optimization-based fusion methods in Ta-

ble 1. From Tabel 1, we observe that for all quantitative

metrics our approach can greatly improve the performances

for all three datasets.

In recent year, CNN-based HR image reconstruction has

been actively investigated, which mainly focused on the

spectral resolution enhancement from a single RGB image,

and has proven the potential of this RGB-to-hyperspectral

reconstruction. Because the difference of spatial resolution

in the observed LR-HS and HR-RGB images are consider-

able large, few CNN-based fusion work is explored. A pilot

study proposed a simple spatial and spectral fusion CNN

(SSF-CNN) [20], which adopted three convolutional lay-

ers based on the the SRCNN model for natural image super

resolution. DHSIS method [11] also explored the hyper-

spectral reconstruction via integrating the optimization- and

CNN- based methods. We re-conducted experiments with

the SSF-CNN architecture and the DHSIS method [11] in
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Figure 3. An image example from each of three datasets. Te re-

covered images by a state-of-the-art optimization fusion method:

NNSR [14], the comparable ResNet-based fusion network, the

combined optimization- and CNN-based method: DHSIS [11] and

our proposed MS-SSFNet are give in the first row. The error im-

ages between the recovered images and the ground-truth are pro-

vided in the second row.

the same conditions (optimization method of network train-

ing, epoch number, training and testing samples etc.) as in

our proposed MS-SSFNet. The compared results on Har-

vard dataset is shown in Table 1(a). Our proposed MS-

SSFNet contains several blocks while the SSF-CNN is con-

stitute of three convolutional layers only. In order to provide

fair comparison, we also design a much deeper CNN archi-

tecture, which consists of five blocks of residual connection
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Figure 4. The visualized images with the calculated Sam values

(Anger degree in the range [0, 180]) as the intensity from our pro-

posed method, the comparable ResNet-based fusion method, the

optimization-based fusion approach: NNSR [14], and the com-

bined optimization- and CNN-based method: DHSIS [11]. The

Sam values are computed between the pixel spectral vectors of the

recovered image and the ground-truth image.

structure with two convoutional layers in each block, called

as ResNet. The designed ResNet has similar depth with our

proposed MS-SSFNet but with only one pathway for taking

the concatenated up-sampled LR-HS image and HR-RGB

image (named as SSF-ResNet) or the HR-RGB image only

(named Spectral-ResNet) as input. The compared results on

Harvard dataset are provided in Table 1(a). From Table 1(a),

we observe that DHSIS method [11] and the SSF-ResNet

manifest better performance than the Spectral-ResNet and

the SSF-CNN [20]. Thus, next for ICVL and NUS datasets,

we only implemented the CNN-based fusion methods of

the DHSIS method, our designed SSF-ResNet and our pro-

posed MS-SSFNet. The compared performances are given

in Table 1(b) and (c) for ICVL and NUS datasets, respec-

tively. Table 1 manifests that our proposed method provides

the best performance on all quantitative metrics for three

datasets.

To visualize the experimental results for different fusion

methods including the optimization-based fusion method:

NNSR [14], DHSIS [11], the SSF-ResNet and our pro-

posed MS-SSFNet, a representative recovered HS image

from each of three datasets are shown in Fig. 3. The recov-

ered results by NNSR, DHSIS, ResNet-based Fusion and

our proposed MS-SSFNet are shown in the first row, and

their error images are provided in the second row. All re-

sults are the 25− th band of the hyperspectral images. The

error images are the absolution errors between the ground

truth and the recovered results. We can observe that the er-

ror images from our method have much smaller magnitudes

than those from the NNSR method [14], DHSIS [11] and

ResNet-based fusion approach for all images from differ-

ent datasets, which validates that our method can provide

higher spatial accuracy. In addition, we also calculated the

Sam values of all pixels to measure spectral distortion for

the representative images in three datasets, and normalized

the Sam values to the anger degree range [0, 180]. The vi-

sualized images with the calculated Sam values as intensity

are shown in Fig. 4. Small magnitudes in the visualized

Sam images mean the small anger degrees between the re-

covered spectra and the ground-truth spectra. From Fig. 4,

we can see that the Sam images with our proposed MS-

SSFNet manifest much smaller values for most pixels in all

images than the NNSR [14], DHSIS [11] and ResNet-based

fusion approaches, which verifies that our method can ob-

tains higher spectral fidelity.

5. Conclusions

In this paper, we have presented an effective CNN-based

method for fusing the observed LR-HS and HR-RGB im-

ages to reconstruct a HR-HS image. Since the structure in

the two observed modalities of data: LR-HS and HR-RGB

images have very large difference, it is difficult to effec-

tively combine them in one CNN stream. This study pro-

posed a multi-scale spatial and spectral fusion CNN, which

consists of two pathways: 1) a spatial structure reservation

pathway for investigating the HR spatial structure in the

HR-RGB image; 2) a spectral reservation pathway for ex-

ploring the correlation property in spectral channels. The

proposed MS-SSFNet gradually learn the high-resolution

features from the LR-HS image and spatial-reduced features

from the HR-RGB image to conduct multiple fusions for

exploring the spatial and spectral correlation. Furthermore,

we integrated multi-level cost functions in training proce-

dure to alleviate the gradient vanishing problem, which is

possibly appeared due to the long forward and backward

propagation chains in the MS-SSFNet for large spatial up-

scale factor. Experimental results showed that our method

can provide substantial improvements over the current state-

of-the-art methods in terms of both objective metric and

subjective visual quality.
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