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Abstract

Hyperspectral imaging methods typically require dedi-

cated cameras with extra optical elements (prisms, fibers,

lenslet arrays), thus making them expensive and cumber-

some to deploy. In this paper we explore a drastically dif-

ferent hyperspectral imaging approach, which requires no

special optical components and can thus be used with any

conventional camera. The idea is to place a reference ob-

ject with a known spectrum (e.g. a black mask) within the

field of view and to exploit the chromatic dependence of the

Point Spread Function (PSF), in order to solve for the spec-

tra of all other parts of the scene. We prove mathematically

that chromatic-dependent blur cues alone are insufficient

for fully recovering the spectrum of each pixel, even if the

locations of edges in the (sharp) image are precisely known.

Yet, we show that knowing the spectra at some of the pixels

fully resolves this inherent ambiguity. We present an algo-

rithm for solving the spectrum-from-reference inverse prob-

lem and illustrate its effectiveness through simulations as

well as in a simple real world experiment.

1. Introduction

Hyperspectral imaging refers to the task of capturing an

image at multiple (typically more than three) wavelength

bands. This modality has numerous applications ranging

from agriculture [4], to food processing [21] and geology

[17] (see [8] for a comprehensive review). Existing hyper-

spectral imaging techniques either capture a sequence of 2D

images, or rely on various priors to estimate the full hyper-

spectral cube from a single 2D image. However, despite

the rapid progress over the last decades, all existing tech-

niques involve dedicated cameras, which comprise special

optical elements (e.g. prisms, fibers, lenslet arrays). This

often makes them expensive and cumbersome.

In this paper, we explore a drastically different approach

for hyperspectral imaging, which allows extracting spectral

information from a single photograph captured by a con-

ventional camera, with no additional optical elements. Our

(a) Frame shaped mask (b) Grid shaped mask

Figure 1: Multispectral imaging with an ordinary cam-

era, using reference objects. We show that placing a mask

with a known spectrum (black in this case) within the field

of view, is all that is needed in order to recover the spectral

content of all objects in the scene. The mask can have, for

example, the shape of a frame (left) or can be printed on a

transparency and placed in front of the object (right).

method exploits the fact that in any practical imaging sys-

tem, the point spread function (PSF) is wavelength depen-

dent, so that different spectral bands experience different

blurs. This effect is particularly exacerbated, for exam-

ple, when imaging slightly out-of-focus. This implies that

the shape of the blur observed around edges in an image

(even a grayscale one), carries information about the spec-

tra of the objects in the scene. Unfortunately, we prove that

this cue alone is insufficient for fully determining the spec-

tra of the two scene elements residing on both sides of an

edge. However, we show that when the spectrum on one

side is known, the spectrum on the other side can be de-

termined. Our approach thus relies on placing a reference

object with a known spectrum within the field of view (e.g.

a black mask), as illustrated in Fig. 1. This creates edges



from which the spectra of all surrounding pixels can be re-

solved. The information can then be propagated to pixels

farther away from the mask, until the spectra of all image

pixels have been recovered.

We propose a simple algorithm for the spectrum-from-

reference task, which uses the multi-channel Total Varia-

tion (TV) penalty to enforce that the edges in the recovered

hyperspectral cube be aligned across different wavelength

bands. We illustrate the method in the task of recovering

multi-spectral images from grayscale measurements, both

in simulations and in a simple real-world experiment.

1.1. Related Work

Most existing multispectral imaging methods can be

broadly categorized into two families.

Scanning methods: These techniques construct a multi-

spectral image from several 2D images. A classical example

is the push broom technique, which uses a dispersive ele-

ment to capture the spectral information of a 1D slice of an

image and uses spatial scanning to stack many dispersed 1D

slices into a 2D image with spectral information [11]. An-

other example is the tunable filter approach, in which sev-

eral 2D images are captured sequentially, each with a differ-

ent color filter. While simple, these techniques are limited

in their ability to capture dynamic scenes [6][12].

Snapshot methods: In this family of solutions, only a

single image is captured, and post-processing is used to es-

timate the entire hyperspectral cube. These methods are

thus advantageous for dynamic scenes. The earliest snap-

shot imaging method is the Integral Field Spectrograph

(IFS), which splits the image into several segments and re-

constructs the spectral information of each independently

[24, 25, 20, 16, 10, 13, 20, 7]. Other approaches apply dif-

ferent filters to different parts of the image [23, 19, 22].

In recent years, more involved snapshot imaging methods

emerged, which are based on complex priors for estimating

the hyperspectral information [9, 15, 14, 3, 1, 18]. While

allowing shorter capture times than scanning methods, all

existing snapshot methods also require dedicated optics.

2. The inherent ambiguity in blur cues

Our goal is to reconstruct k spectral bands {x̄i}
k
i=1 from

a single grayscale image ȳ. Our key observation is that in

any practical imaging system, different spectral bands ex-

perience different blurs. This can be due to diffraction lim-

ited blur (which is inherently wavelength dependent) or due

to chromatic aberrations. This implies that the relation be-

tween {x̄i} and ȳ can be expressed as

ȳ =

k
∑

i=1

h̄i ∗ x̄i, (1)

(a) Color edge (b) Grayscale measurement

(c) Horizontal cut

Figure 2: (a) A color edge scene comprising three color

channels, x̄1, x̄2, x̄3. (b) The corresponding grayscale ob-

servation ȳ, is a result of convolving the channels with the

PSFs h̄1, h̄3, h̄3, as described in (1). (c) A horizontal cut

from (a) and (b).

where h̄i is the PSF of the ith band and ‘∗’ denotes convo-

lution. The implication of this observation is that the shape

of the blur seen around edges in the grayscale image ȳ, en-

codes color information.

Unfortunately, these blur cues do not suffice for fully re-

covering the spectral bands. In fact, as we show next, it is

impossible to reconstruct even a single edge (Fig. 2a) from

its blurry graysclae version (Fig. 2b), without using some

additional information.

Lemma 2.1. Assume that the PSFs {h̄i}
k
i=1 are non-

negative, integrate to 1, and have different supports, namely

1. h̄i(ξ) ≥ 0, ∀i,

2.
∫

h̄i(ξ)dξ = 1, ∀i,

3. supp{h̄i} 6= supp{h̄j}, ∀i 6= j.

Consider a k-channel image of an edge taking the values

(q1, . . . , qk) on one side and (r1, . . . rk) on the other side.

Then it is possible to extract from the grayscale image ȳ

precisely k + 1 independent equations in the 2k unknowns

{(qi, ri)}
k
i=1. But any additional equation extracted from ȳ

will necessarily be dependent on the rest.

Proof. To simplify the exposition, let us start with the three-

channel case, as illustrated in figures 2a and 2b. On the

left side of the edge the color is (R1, G1, B1), and on the

right side the color is (R2, G2, B2). Since the PSFs are non-

negative and integrate to 1, the transition for each channel



is monotonic (Fig. 2c), and each point along the grayscale

edge has the form

ȳ(ξ) = αR1 + βG1 + γB1+

(1− α)R2 + (1− β)G2 + (1− γ)B2, (2)

where 0 ≤ α, β, γ ≤ 1 depend on the location ξ along the

edge. Since the PSFs have different supports, we can easily

extract 4 independent equations (marked on Fig. 2c):

ȳ(ξ1)=R1+G1+B1, (3)

ȳ(ξ2)=R2+G2+B2, (4)

ȳ(ξ3)=α1R1+G1+B1+(1−α1)R2, (5)

ȳ(ξ4)=α2R1+β2G1+B1+(1−α2)R2+(1−β2)G2. (6)

Equations (3) and (4) correspond to locations not affected

by the PSF. Equations (5) and (6) correspond to locations

where only one band is affected by the PSF and where only

one band is not affected by the PSF, respectively (red and

blue here, without loss of generality). We claim that any

other observation (having the general form (2)) can be writ-

ten as a linear combination of (3)-(6). To prove this, we

write the coefficients of Eqs. (3)-(6) and (2) in a matrix

A =













1 1 1 0 0 0
0 0 0 1 1 1
α1 1 1 1− α1 0 0
α2 β2 1 1− α2 1− β2 0
α β γ 1− α 1− β 1− γ













. (7)

Now, clearly, the vectors

v1 =
(

−2 1 1 −2 1 1
)T

,

v2 =
(

1 −2 1 1 −2 1
)T

,

v3 =
(

1 1 −2 1 1 −2
)T

,

are all in the null space of A. These vectors span a subspace

of dimension 2 (v1 and v2 are linearly independent, but v3
is a linear combination of v1 and v2). This implies that

the null-space of A is at least of dimension 2. Therefore,

Rank(A) = 6− Nullity(A) ≤ 4. However, since the first 4

rows of A are independent, we also have that Rank(A) ≥ 4.

These two facts imply that Rank(A) = 4, completing the

proof for the three-channel setting.

In the general case of k channels, A has 2k columns and

it is trivial to obtain k + 1 independent equations as before.

These constitute the first k + 1 rows of A. Similarly, row

k + 2 corresponds to an arbitrary point along the edge. As

before, we can find k − 1 independent vectors in the null-

space of A, among the k vectors

v1 =
(

−(k − 1) 1 . . . 1 −(k − 1) 1 . . . 1
)T

v2 =
(

1 −(k − 1) . . . 1 1 −(k − 1) . . . 1
)T

...

vk =
(

1 1 . . . −(k − 1) 1 1 . . . −(k − 1)
)T

so that Nullity(A) ≥ k − 1. Therefore in this case,

Rank(A) = 2k −Nullity(A) ≤ k + 1. Combining with the

fact that Rank(A) ≥ k + 1, we get that Rank(A) = k + 1,

completing the proof for the general case.

It is interesting to note that several hyperspectral imaging

works did use chromatically dependent PSFs (usually via

the introduction of a prism). Our lemma explains why these

methods required additional modifications to the imaging

process in order to resolve the inherent ambiguity. For ex-

ample, [14] and [3] used a coded aperture. This resolves the

ambiguity by creating artificial edges with a known color

on one side (black). As we showed, the number of inde-

pendent equations that can be extracted from the grayscale

measurement of each such edge is k + 1, which suffices for

recovering the k unknown spectral bands on the other side.

Here we propose to use our insight in a different way,

where instead of modifying the camera, we modify the

scene. Specifically, we place a reference object within the

field of view and use our knowledge of its spectrum to esti-

mate the spectra of all other pixels in the image.

3. Algorithm

Let us start, for simplicity, with the case where the ref-

erence object is a black mask. We propose to estimate the

spectral bands {x̄i}
k
i=1 of the scene from the grayscale im-

age ȳ, by solving

argmin
x

1

2
‖Hx− y‖22 + βTV(x) +

α

2
‖Dx‖22. (8)

Here, y is a column vector representation of ȳ, x is a col-

umn vector representation of the channels {x̄i} (concate-

nated one after the other), H is a matrix representing con-

volution with the PSFs {h̄i} and summation, and D is a

diagonal matrix containing 1’s in the diagonal entries cor-

responding to mask pixels and 0’s otherwise. Note that the

dimension of x is k times larger than the dimension of y.

The first term in (8) promotes solutions that are consistent

with the measurements. The second term is the multichan-

nel total variation (TV) regularizer, defined as

TV(x) =

∫

√

√

√

√

K
∑

k=1

‖∇x̄k(ξ)‖2 dξ (9)



Algorithm 1 The spectrum-from-reference algorithm

1: set k = 0, choose µ ≥ 0 and v0, d0
2: repeat

3: xk+1 ← argminx ‖Hx− y‖22 + µ‖x− vk − dk‖
2
2 (Eq. (12))

4: vk+1 ← argminv βTV(v) + α
2
‖Dv‖22 +

µ
2
‖xk+1 − v − dk‖

2
2 (Eqs. (15),(16))

5: dk+1 = dk + xk+1 − vk+1

6: k ← k + 1
7: until stopping criterion is satisfied

(we use a sum in place of the integral and approximate the

gradient using discrete-space derivatives). This term pro-

motes piece-wise smooth solutions, where edges in the dif-

ferent channels appear at the same locations. The third term

encodes our prior about the color of the reference object,

by promoting solutions where the pixels at the mask loca-

tions have values close to 0 (black). The constants β and α

control the balance between the three terms.

We solve (8) using the ADMM algorithm. Specifically,

we can rephrase (8) as

argmin
x,v

1

2
‖Hx− y‖22 + βTV(v) +

α

2
‖Dv‖22 (10)

s.t. x = v.

The corresponding augmented Lagrangian optimization

problem is given by

argmin
x,v

1

2
‖Hx− y‖22 + βTV(v) +

α

2
‖Dv‖22

+
µ

2
‖x− v − d‖2. (11)

Thus, applying the ADMM method, we obtain the

spectrum-from-reference algorithm outlined in Alg. 1.

x-update The optimization problem in line 3 is a

quadratic program, which possesses a closed form solution,

xk+1 =
(

HTH + µI
)−1 (

HT y + µ(vk + dk)
)

. (12)

This solution can be implemented efficiently in the Fourier

domain by noting that the matrix HTH involves k2 convo-

lution operations, which correspond to point-wise products

in the frequency domain.

v-update In order to solve the optimization problem in

line 4, we rearrange the equation to obtain a standard de-

noising problem. Specifically, denoting f = xk+1−dk and

dividing by µ
2

, line 4 can be written as

argmin
v

2β

µ
TV(v) +

α

µ
‖Dv‖2 + ‖v − f‖2 =

argmin
v

2β

µ
TV(v) + vT

(

α

µ
DTD + I

)

v − 2vT f, (13)

where we subtracted the term fT f , which does not depend

on v. Now, defining

A =

(

α

µ
DTD + I

)
1

2

, b = A−2f, γ =
2β

µ
, (14)

we can further simplify the objective as

argmin
v

γTV(v) + vTATAv − 2vTATAb =

argmin
v

γTV(v) + ‖A(v − b)‖2, (15)

where we used the fact that A is diagonal and added the term

‖Ab‖2, which does not depend on v. Note that the values on

the main diagonal of A2 are 1 + α
µ

at locations associated

with the black mask pixels, and 1 at the other locations.

Therefore, this optimization problem can be interpreted as a

conventional TV-denoising of b, but with a spatially varying

regularization coefficient

β(ξ) = γ − γ
α

µ+ α
d̄(ξ), (16)

where d̄(ξ) is the binary mask. We solve this problem using

Chambolle’s algorithm [5].

Extending the algorithm to the case where the mask pix-

els are not necessarily black, is trivial. This can be done by

modifying the objective to

1

2
‖Hx− y‖2 + λTV(x) +

α

2
‖Dx− l‖2 (17)

where l is a vector containing the color values at the mask

pixels. In this case the the algorithm remains the same, ex-

cept that b of (14) is replaced by

b = A−2

(

α

µ
DT l + f

)

. (18)

4. Simulations

We now illustrate the spectrum-from-reference algo-

rithm in simulations. Algorithm 1 can accept any mask pat-

tern and any PSF shape. We experiment with two types of

mask patterns, as illustrated in Fig. 1: (i) a grid of black



(a) Out-of-focus PSF (b) Prism PSF

Figure 3: Simulated PSFs.

squares, and (ii) a black frame. We also experiment with

two types of PSFs, as illustrated in Fig. 3: (i) an out-of-

focus PSF, and (ii) a prism PSF. The out-of-focus PSF mod-

els a camera with a circular aperture, for which the PSF for

wavelength λ is given by the Airy disk function

h̄λ(ξ) ∝





J1

(

c‖ξ‖
λ

)

c‖ξ‖
λ





2

. (19)

Here J1(·) is the Bessel function of the first kind and c is a

constant that depends on the numerical aperture. As can be

seen, in this case different wavelengths experience differ-

ent blurs. This model is particularly relevant for situations

where it is desired to use no additional optical elements be-

sides a conventional camera (imaging out of focus). The

prism PSF corresponds to placing a dispersive prism in be-

tween the object and the camera, right next to the object.

For small incident angles and a small apex angle, the PSF

is approximately a shifted delta function, where the shift for

wavelength λ is proportional to the corresponding refractive

index, nλ. For simplicity, we assume that nλ is a linear (de-

creasing) function over the range of wavelengths of interest,

an approximation which is often quite reasonable. For both

the out-of-focus PSF and the prism PSF, to obtain the PSF

for channel i, we integrate over the range of wavelengths,

Si, corresponding to that channel, so that

h̄i(ξ) =

∫

Si

h̄λ(ξ) dλ. (20)

Figure 4 illustrates three-channel color image recon-

struction with a grid mask and an out-of-focus PSF. In this

simulation, we took a color image (Fig. 4a), multiplied it

by a black mask (Fig. 4b), convolved each channel with

its corresponding PSF, and summed the channels to obtain

a simulated grayscale image (Fig. 4c). The algorithm re-

ceives the PSFs, the mask, and the blurred image as inputs,

and outputs a reconstructed color image (Fig. 4d). Option-

ally, we can also perform inpainting with the multi-channel

TV prior in order to fill-in the pixels obscured by the mask

(Fig. 4e). Figure 5 shows an example color image recon-

struction using the prism PSF. An example reconstruction

(a) Original image (b) Black mask

(c) Grayscale input (d) Reconstructed output

(e) Inpainted (optional output)

Figure 4: Three channel color reconstruction from a

grayscale image captured out of focus (Airy disk PSF).

obtained with a colored mask can be seen in Fig. 6. Here

we took the mask’s colors to be precisely the colors of the

scene at the corresponding pixels.

The effect of the number of spectral bands One of the

strengths of the spectrum-from-reference method, is the

flexibility in the number of wavelengths one can recon-

struct. It must be noted, however, that increasing the num-

ber of reconstructed bands can adversely affect the quality

of the reconstruction. This is because at a constant level of

maximal out-of-focus blur (for the longest wavelength), the

more channels we recover, the smaller the differences be-

tween their PSFs. Table 1 reports the root mean squared

error (RMSE) obtained in reconstructing the same scene

(Fig. 7a), each time with a different number of color chan-

nels. Here, we used the dataset of [2], which contains im-

ages with 31 color channels, and averaged over the spectral

dimension when simulating less than 31 channels.

The effect of the mask’s density The algorithm’s perfor-

mance is affected by the density of the mask’s black regions.

If too many black pixels are used, a lot of information is



(a) Black mask (b) Grayscale input

(c) Reconstructed output (d) Inpainted output

Figure 5: Three channel color reconstruction from a

grayscale image captured through a prism.

(a) Original image (b) Grayscale input

(c) Reconstruction (d) Mask with known colors

Figure 6: Color reconstruction with color constraints at the

mask locations.

Number of channels RMSE

3 7.652

8 11.51

16 12.47

31 12.69

Table 1: RMSE as a function of the number of reconstructed

color channels using the out of focus PSF

lost. Yet, if too little black pixels are used, the colors re-

constructed nearby the artificial edges need to propagate to

larger distances, and thus the performance of the algorithm

deteriorates. We found that the optimal gap (in terms of

(a) Original hyperspectral im-

age (reduced to 3 color channels

for visualization)

(b) Reconstructed hyperspectral

image (reduced to 3 color chan-

nels for visualization)

(c) Recovery of 5 bands (d) Recovery of 10 bands

(e) Recovery of 31 bands

Figure 7: Hyperspectral image reconstruction. (c)-(e) The

values of the original (circles) and the reconstructed

(crosses) images at the three locations marked in (a),(b).

(a) Grayscale input (b) Reconstructed output

Figure 8: Three channel color image reconstruction with a

prism PSF whose support is greater than the gap between

adjacent black mask rectangles.

MSE for the non-black pixels) between two adjacent mask

rectangles is precisely the total support length of the PSFs.

Taking a smaller gap has a dramatic effect on the results, as

illustrated in Fig. 8. Taking a larger gap, on the other hand,

results in only a mild degradation and has the advantage of

blocking less light.



(a) Input PSNR = ∞ (b) Input PSNR = 49.49

(c) Input PSNR = 39.56

Figure 9: Color reconstruction from a noisy grayscale im-

age using a large regularization parameter β.

The effect of noise Real world measurements are con-

taminated by noise, whose effect can be partly mitigated

by increasing the regularization parameter β in (8). Yet this

comes at the cost of less accurate reconstructed colors. Fig-

ure 9 illustrates this by depicting reconstructions from three

different noisy grayscale versions of the same scene. In all

cases, we used Poisson noise and optimally tuned the regu-

larization parameter β for an input PSNR of 50dB. As can

be seen, for PSNR ≥ 50, the noise is suppressed but the re-

constructed colors are inaccurate, whereas for PSNR < 50
the noise is not sufficiently suppressed. This experiment

shows that reconstruction with the out-of-focus PSF is rela-

tively sensitive to noise, suggesting that the spectrum-from-

reference method may be inappropriate for use in dim light

or short exposure time conditions.

Effect of mask location inaccuracies In practice, deter-

mining the mask locations from the blurry grayscale image,

cannot be done with infinite precision. It is therefore impor-

tant to analyze how the algorithm performs when the mask

it receives does not match the true one. The more conserva-

tive case, is where the algorithm receives a mask that is fully

contained in the real one, as illustrated in Fig. 10b. In this

case, the reconstruction almost does not change with respect

to the case where the mask is known precisely (Fig. 10c).

This is because the black mask pixels of which the algo-

rithm was not informed, are simply treated as unknown

colors, and are faithfully reconstructed just like the rest of

the image. However, when the algorithm receives a wrong

mask that contain non-mask regions (Fig. 10d), the results

severely deteriorate as the algorithm attempts to enforce

(a) Original image

(b) Conservative mask (c) Recovery with conservative

mask

(d) Wrong mask (e) Recovery with wrong mask

Figure 10: Effect of inaccurate knowledge of the mask.

black regions where there ought to be color (Fig. 10e).

5. A Proof-of-concept experiment

Figure 11 shows an experimental setup for exploring the

use of spectrum-from-reference in a real imaging setting.

Here, we used a conventional camera, from which we ex-

tracted the raw images. We took weighted averages of 2×2
blocks corresponding to the (R,G,G,B) Bayer pattern, in

order to obtain a grayscale measurement. We displayed a

color image on a screen and focused the camera on an ob-

ject placed between the screen and the camera. This ensured

the screen was out of focus. To measure the camera’s PSFs

in this setting, we first captured three images, with a single

red/green/blue dot (Fig. 12). We used β = 10−3 and ap-

plied white balance to the reconstructed colors, so that they

can be compared with the true colors of the image displayed

on the screen. The final reconstructed image is shown in

Fig. 13.

Recall that theoretically, it is possible to recover colors

from blur cues even if colors on both sides of an edge are

mapped to the same gray values. In this case, had we cap-

tured the object in focus (i.e. without blur), the resulting

grayscale image would contain no edge. But in the pres-

ence of (wavelength dependent) blur, the transition between

the two colors becomes visible, and allows extracting the

colors from the gray values. This phenomenon is illustrated



Figure 11: Experimental setup.

(a) Red channel (b) Green channel (c) Blue channel

Figure 12: Measured PSFs.

(a) Captured image (b) Reconstruction (c) Original colors

Figure 13: Experimental results.

in Fig. 14.

To test our ability to recover colors in such challenging

conditions, we performed another experiment, as shown in

Fig. 15. As can be seen, here the results are not as good,

since the blur cues nearby the edges are very small and thus

masked by the noise.

6. Conclusion and future directions

We explored a new approach for multispectral imaging,

which uses a spectral reference object placed in the field of

view, and exploits the chromatic dependence of the cam-

era’s PSF. We illustrated the method through simulations,

(a) Edge image (b) Grayscale mea-

surement

(c) Horizontal cut

from (b)

Figure 14: (a) Color edge image. (b) Simulated blurry

grayscale image. (c) Horizontal cut from (b). The transi-

tion between the two colors is apparent in (b), even though

they have the same gray value.

(a) Captured Image (b) Reconstruction (c) Original colors

Figure 15: Experimental reconstruction of colors having the

same gray level.

as well as in a simple real-world experiment. One of the

shortcomings of relying on conventional cameras, is that

the dependence of their PSFs on the wavelength is relatively

mild, thus making the reconstruction sensitive to noise. This

fact can be partly overcome by using better priors in the re-

construction process. One particularly promising direction,

seems to be the use of deep learning techniques for the re-

construction. Given that enough multispectral training data

can be collected, this will allow obtaining better reconstruc-

tions than those obtained with the naive TV-prior.
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