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Abstract

Intrinsic image decomposition is an important and long-

standing computer vision problem. Given a single input im-

age, recovering the physical scene properties is ill-posed. In

this work, we take the advantage of deep learning, which is

proven to be highly efficient in solving the challenging com-

puter vision problems including intrinsic image decomposi-

tion. Our focus lies in the feature encoding phase to extract

discriminative features for different intrinsic layers from a

single input image. To achieve this goal, we explore the

distinctive characteristics between different intrinsic com-

ponents in the high dimensional feature embedding space.

We propose a feature divergence loss to force their high-

dimensional embedding feature vectors to be separated ef-

ficiently. The feature distributions are also constrained to

fit the real ones. In addition, we provide an approach to re-

move the data inconsistency in the MPI Sintel dataset, mak-

ing it more proper for intrinsic image decomposition. Ex-

perimental results indicate that the proposed network struc-

ture is able to outperform the state-of-the-art methods.

1. Introduction

In terms of intrinsic image decomposition, the albedo

image A indicates the surface material’s reflectivity which

is invariable under different illumination conditions, while

the shading image S accounts for the illumination effects

due to object geometry and camera viewpoint [3]. It is an

ill-posed problem to reconstruct the two intrinsic images

from a single color image I , with the formation model:

I = A · S. (1)

To solve this challenging inverse image formation prob-

lem, many researchers tried to apply physically-motivated

priors as constraints to disambiguate decompositions [18,

26, 30, 29, 37, 2, 7, 28]. These methods usually adopt the

priors in form of energy terms and solve the decomposition
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problem through graph-based inference algorithms. With

the surge of ground truth intrinsic decompositions [14, 8, 4],

data-driven deep learning methods [24, 33, 31, 3, 12, 21]

have achieved promising decomposition results and have

been drawing more and more research interest. However,

fully-supervised methods require high-quality and densely-

labelled decompositions, which are expensive to acquire.

To overcome this problem, methods training across differ-

ent datasets [21], training on synthetic datasets [31, 21],

adding additional constraints [12] and reusing physically-

motivated priors [3] have been proposed.

When developing their specific deep learning techniques,

previous methods usually extract features via a shared en-

coder, and then use different decoders to disentangle infor-

mation for specific intrinsic layers. Observing the different

distributions between albedo and shading in gradient do-

main [18], it is natural to assume that features representing

different intrinsic layers can be separated in the embedding

space. With the features separated in the encoding phase,

decoders can be released from distilling clues for specific

targets and focus on the reconstruction procedure. This idea

motivates our research in this paper.

We propose a novel two-stream encoder-decoder net-

work for intrinsic image decomposition. In particular, the

feature divergence loss is designed to encourage the two

encoders to extract distinctive features for different intrinsic

layers. The feature distribution constraint is used to encour-

age the features of a reconstructed intrinsic layer to have

similar distribution pattern with the ground truth decompo-

sition. Moreover, we provide an approach to deal with the

illumination inconsistency between the ground truth shad-

ing and input images in the MPI Sintel dataset, making it

more suitable for intrinsic image decomposition.

Our contributions can be summarized as follows:

1) A discriminative feature encoding approach consist-

ing of the feature divergence loss and the feature distribu-

tion constraint is proposed.

2) A novel two-stream encoder-decoder network for in-

trinsic image decomposition is proposed.

3) A data refinement algorithm is provided for the



MPI Sintel dataset to produce a more physically consistent

dataset that better fits the intrinsic decomposition task.

4) Experimental results on various datasets demonstrate

the effectiveness of our proposed method. An ablation study

is also conducted to validate our design for discriminative

feature encoding.

2. Related work

Intrinsic image decomposition is a long standing com-

puter vision problem. However, it is seriously ill-posed to

recover an albedo layer and a shading layer from a sin-

gle color image [31]. In the recent decades, much effort

has been devoted to this challenging problem. These ap-

proaches can be coarsely classified into optimization-based

methods using physically-motivated priors, and deep learn-

ing based data-driven methods [6, 31]. There are also ap-

proaches using multiple images as inputs [36, 23, 17, 22],

treating the reflectance as a constant factor under variant il-

luminations. Depth cues are also taken into account in some

works [1, 10, 19, 16]. In this section, we focus on the works

using a single RGB image as input.

Physically-motivated Priors. To solve this ill-posed

intrinsic decomposition problem, researchers have derived

several physics-inspired priors to constrain the solution

space [31]. Land et al. [18] proposed the Retinex algo-

rithm, exploring the different properties of intrinsic compo-

nents in gradient domain (large derivatives are perceived as

changes in reflectance properties, while smoother variations

are seen as changes in illumination). Based on this assump-

tion, many priors for intrinsic image decomposition have

been explored. Derived from the piece-wise constant prop-

erty, reflectance sparsity [26, 30] and low-rank reflectances

[7] are used as constraints. There are other constrains such

as the distribution difference in gradient domain [5, 20],

non-local texture [29, 37], shape and illumination [2], and

user strokes [7, 28]. These hand-crafted priors are not likely

to hold on complex datasets [6].

Deep learning Methods. Thanks to the publicly avail-

able intrinsic image datasets including the MIT intrinsic

[14], the MPI Sintel [8] and the IIW [4], there has been a

surge of applying deep learning to intrinsic decomposition

[34, 24, 38, 39, 25]. Direct Intrinsics [33] is the first en-

tirely deep learning model that directly outputs the albedo

and shading layers given a color image. Results yielded

by this method are blurry due to down-samplings in en-

coding phase and deconvolutions in decoding phase. Fac-

ing the fact that high-quality and densely-labelled intrin-

sic images are expensive to acquire, many methods have

been developed to train models with additional constraints

[12], reusing physically-motivated priors [3], expanding the

dataset with synthetic images [31, 21] and training across

datasets [21]. Fan et al. [12] provided a network structure

using domain filter between the edges in guidance map to

encourage the reflectance piece-wise constancy. Baslamisli

et al. [3] presented a two-stage framework to firstly split

the image gradients into albedo and shading components,

which are then fed into decoders to predict pixel-wise intrin-

sic values. Shi et al. [31] trained a model to learn albedo,

shading and specular images on a large-scale object-level

synthetic dataset by rendering ShapeNet [9]. Li et al. [21]

presented an end-to-end learning approach that learns better

intrinsic image decompositions by leveraging datasets with

different types of labels. In contrast to these works, we try

to exploit the difference between intrinsic components in

feature space.

3. Method

3.1. Network structure

Our full network architecture is visualized in Figure 1.

The framework consists of two streams of encoder-decoder

sub-networks. One is for albedo image prediction, and the

other is for shading image. Taking the albedo stream for

example, the input image is passed through the convolu-

tional encoder to extract multi-level features, which are then

aggregated by (upsample, concatenate, convolution) se-

quences. In the decoding phase, the fused multi-scale fea-

tures are fed into the sequence of three residual dilated

blocks to reconstruct the albedo intrinsic image. The struc-

ture of the shading stream is the same as the albedo one.

In practice, we adopt VGG-19 [32] pretrained on ImageNet

[11] as the initialized encoder.

Previous works usually use a shared encoder to extract

features containing both albedo and shading information.

Then different decoders are applied to distill clues from the

comprehensive features for specific intrinsic image predic-

tion. The ‘Y’ shaped framework can be formulated as:

A = g(f(I; Θ); Ωa) = ga ◦ f(I),

S = g(f(I; Θ); Ωs) = gs ◦ f(I),
(2)

where f(·; Θ) and g(·; Ω) denote the feature encoder and

decoder respectively. Θ and Ω represent the corresponding

trainable parameters.

Different from the above methods, our designed network

is composed of two encoders for albedo and shading images

respectively. In this paper, we denote this structure as ‘X’

shaped framework:

A = g(f(I; Θa); Ωa) = ga ◦ fa(I),

S = g(f(I; Θs); Ωs) = gs ◦ fs(I).
(3)

Through this framework, the encoders (fa(·), fs(·)) are able

to extract features more pertinent to their reconstruction tar-

gets (albedo, shading). In Figure 2, we visualize the feature

distributions of different network structures, which explains

our idea in a more vivid way.



Figure 1. Framework of our two-stream intrinsic image decomposition network. The input image is passed through two streams of sub-

network for albedo and shading image reconstructions respectively. We use the extractor in VGG-19 as the encoder structure, which is used

to extract multi-scale feature maps. These feature maps are then aggregated by (upsampling, concatenation, convolution) sequences.

Finally, three residual dilated blocks are used as decoder to reconstruct intrinsic images from the fused feature maps. ⊕ represents the

feature aggregation operation described above. ⊙ denotes element-wise multiplication. The rounded boxes represent loss computations, in

which ‘cycle’ means the cycle loss, ‘FDC’ means the feature distribution constraint and ‘FDV’ means the feature divergence loss.

Figure 2. Feature distributions of different network structures. In

each column, the top is the features visualized by t-SNE, and the

bottom is the simplified network structure.

In the rest of this section, the core idea and design de-

tails of the discriminative feature encoding are introduced.

Then, important constraints for our intrinsic decomposition

network are explained.

3.2. Discriminative feature encoding

Our work is inspired by Land et al. [18]. Based on the

Retinex assumption, albedo and shading layers possess dif-

ferent properties in gradient domain. By utilizing such dis-

criminative properties, the intrinsic decomposition perfor-

mance can be improved.

In this work, we try to study and exploit the discrimi-

native properties in the more general convolutional feature

space. In the following, we describe our proposed discrim-

inative feature encoding detailedly.

Feature divergence loss. As shown in Fig-

ure 1, the encoding phase consists of multiple

(convolutions, relu,maxpooling) blocks, through

which the input signal is encoded into several different

abstraction levels. The multi-scale features are denoted as

{fE1 ,fE2 , . . . ,fEi , . . . ,fEn}, in which fEi represents

the output feature of the ith block. We define the feature

distance function as d : Rm×n×c × R
m×n×c �→ R, where

c denotes the feature channel number and m × n is the

spatial size of the input signal:

dcos(f
Ei

a ,fEi

s ) =
1

Ni

∑

∀(x,y)

(
< fEi

a (x, y),fEi

s (x, y) >

||fEi

a (x, y)||2 · ||f
Ei

s (x, y)||2
)2,

dL1
(fEi

a ,fEi

s ) = h(||fEi

a − fEi

s ||1),

d(fEi

a ,fEi

s ) = α · dcos(f
Ei

a ,fEi

s ) + β · dL1
(fEi

a ,fEi

s ).

(4)

We design the feature distance measurement based on

the cosine and L1 norm between two vectors. In Eqn.4, fa



and fs represent features from the albedo encoder and the

shading encoder respectively. < ·, · > is the inner product

in Euclidean space; Ni = mi × ni; and (x, y) represents a

spatial location in feature maps. h(·) is a distance rescale

function modified from Sigmoid function to make dL1
∈

(0, 1). We use h(d) = 1− 1
1+exp(−(d−1.2·exp(1.2))/1.22) .

Then, the feature divergence loss Lfdv is formulated as:

Lfdv =

n∑

i

ωi · d(f
Ei

a ,fEi

s ), (5)

where ωi ≥ 0 is the weight for the feature distance from ab-

straction level i. Empirically, we extract five different levels

of abstraction in experiments (n = 5). We set ω[1,2,3,4,5] =
[0.01, 0.1, 0.5, 0.7, 1.0] and α = 0.3, β = 0.1.

Feature distribution constraint. Feature divergence

loss is to increase the distance between the feature vectors

embedded by different encoders. However, this is not suf-

ficient for discriminative feature encoding. Note that the

core idea of Fisher’s linear discriminant is to maximize the

distance between classes and minimize the distance within

classes simultaneously. As an analogue of that, along with

the feature divergence loss described above, we use the fea-

ture perceptual loss [15] between the predicted and ground

truth intrinsic images to constrain the encoding process, en-

couraging the embedded features to fit the real distribution.

We use the same distance measurement as in the feature

divergence loss. d(fEi

pred,f
Ei

real) denotes the feature dis-

tance in the ith abstraction level.
The feature distribution constraint Lfdc is formulated

as:

Lfdc =
n∑

i

γi((1− d(fEi

pred,a,f
Ei

real,a))+

(1− d(fEi

pred,s,f
Ei

real,s))),

(6)

where γi ≥ 0 is the weight factor. Note that (1 −
d(fpred,freal)) ∈ (0, 1) represents the feature similar-

ity between fpred and freal. Minimizing Eqn.6 encour-

ages the predicted and ground truth intrinsic images to have

similar perceptual features. In practice, the encoders are

reused to extract features from the predicted and target re-

sults in our framework, by which the embedded feature dis-

tribution can be optimized directly during training. Empir-

ically, we set γ[1,2,3,4,5] = [1.0, 1.0, 1.0, 1.0, 1.0] and

α = 0.1, β = 0.9.

3.3. Basic supervised constraints

Besides the above constraints for discriminative feature

encoding, several basic supervised losses are adopted to

train the intrinsic image decomposition network.

As described in Eqn.3, given an image I , the albedo

image A and the shading image S are predicted through

trained ga ◦fa and gs ◦fs. With the densely-labelled intrin-

sic images Â and Ŝ as the ground truth data, we constrain

the pixel-wise predictions using the reconstruction loss Lrec

and the gradient loss Lgrad.
Reconstruction loss. We use the L1 loss LL1

combined
with the SSIM (the structural similarity index [35]) loss
LSSIM as the reconstruction loss:

Lrec = λL1
LL1

+ λSSIMLSSIM ,

LL1
= ||A− Â||1 + ||S − Ŝ||1 + ||A · S − I||1,

LSSIM = (1− SSIM(A, Â)) + (1− SSIM(S, Ŝ))

+ (1− SSIM(A · S, I)),

(7)

in which SSIM(x,y) measures the structural similarity

between image x and y. Thus we define the SSIM loss as

(1 − SSIM(x,y)), indicating the structural dissimilarity.

Empirically, we set λL1
= 30.0 and λSSIM = 0.5. Note

that the cycle loss is used to encourage the product of pre-

dicted A and S to be similar with the input image I .

Gradient loss. We also use the image gradients as an

supervision to help preserve the details of intrinsic images:

Lgrad = ||∇xA−∇xÂ||22 + ||∇yA−∇yÂ||
2
2+

||∇xS −∇xŜ||
2
2 + ||∇yS −∇yŜ||

2
2,

(8)

in which ∇x or y is the image gradient along x or y axis.

In datasets with ground truth decomposition results like

the MIT intrinsic and the MPI Sintel, the total loss is con-

structed as:

Ltotal = λ1Lrec + λ2Lgrad + λ3Lfdv + λ4Lfdc. (9)

Empirically, we set λ[1,2,3,4] = [1.0, 1.5, 0.1, 1.0].
Different from the densely-labelled datasets, the IIW

dataset [4] only provides sparse annotations. Therefore, we

use the ordinal loss to measure the difference between the

predicted and target intrinsic images.
Ordinal loss. Since dense ground truth labels are not

available, [4] introduced the weighted human disagreement
rate (WHDR) as the error metric. Similar to [21], we use the
ordinal loss based on WHDR as sparse supervision term.
For each pair of annotated pixels (i, j) in the predicted
albedo image A, we have the error function:

ei,j(A) =

⎧
⎪⎪⎨

⎪⎪

ωi,j(log Ai − log Aj)
2, ri,j = 0

ωi,j(max(0,m− log Ai + log Aj))
2, ri,j = +1

ωi,j(max(0,m− log Aj + log Ai))
2, ri,j = −1

(10)

in which ri,j is the relative reflectance (albedo) judgements

from the IIW. The label ri,j = [0,+1,−1] means that pixel

i has [the same, higher, lower] brightness level as/than

pixel j.

Then, the ordinal loss Lord is obtained by accumulating

all the annotated pairs in the albedo image:

Lord =
∑

(i,j)

ei,j(A) (11)

Besides the sparse supervision using the ordinal loss, we

also adopt the same smoothness constraints as [21].



4. Intrinsic data refinement

The MPI Sintel [8] is a publicly-available densely-

labelled dataset containing complex indoor and outdoor

scenes. It is firstly designed for optical flow evaluation. For

the research purpose of intrinsic image decomposition, the

ground truth shading images have been rendered with a con-

stant gray albedo considering illumination effects. How-

ever, due to the creation process, the original input frames

can not be reconstructed from the ground truth albedo and

shading layers through Eqn.1.

As shown in the first row of Figure 3, the specular com-

ponent in the shading image can not be observed in the orig-

inal image, which means they do not share the same illumi-

nation condition. Although the simplified image formation

model Eqn.1 need not to be strictly respected, it is not phys-

ically correct to extract a shading layer depicting different

illumination effects from the original image. To overcome

this inconsistency, previous works [33] directly resynthe-

size original images I from the ground truth albedo A and

shading S via Eqn.1. However, this approach does not deal

with the specular component in the shading layer, which is

considered not modeled well by Eqn.1 [31].

In this paper, we propose an approach to refine the

dataset in order to shift it into a domain more representative

of real images. The refined MPI Sintel dataset (MPI RD) is

subject to the image formation model Eqn.1, and the shad-

ing layers contain no color information (gray shading). In

addition, the shading layers in the MPI RD maintain the

consistency with the original images. This can be shown

in two aspects. On one hand, the specular component is

removed from the shading layers. On the other hand, the

shape details observed in the original images are preserved

in the shading layers. We describe our data refinement algo-

rithm in Alg.1. In summary, we shift the distribution of the

albedo layer to a higher mean value, and then reconstruct

the shading layer from the original image and the shifted

albedo (step 2 to 6). After that, invalid pixels in the re-

constructed shading layer are computed using Local Linear

Embedding (LLE) [27] with the input I as the guided im-

age, which is adopted to construct the embedding weights

(step 7 to 8). Finally, the input image is resynthesized from

the processed albedo and shading images (step 9).

5. Experimental results

5.1. Datasets

5.1.1 MPI Sintel Dataset and our refined version

Sintel is an open source 3D animated short film, which has

been published in many formats for various research pur-

poses. For intrinsic image decomposition, the “clean pass”

images and the corresponding albedo and shading layers

have been published as the “MPI Sintel dataset”, contain-

Algorithm 1 Framework of data refinement for MPI Sintel.

Input: The original MPI Sintel dataset consisting of input im-

ages I , albedo images A and shading images S; MPI =
{I, A, S}

Output: The refined MPI Sintel dataset MPIrefined =
{I∗, A∗, S∗|I∗ = A∗ · S∗} under the constraint of intrinsic

decomposition model Eqn.1;

1: for each i ∈ [1, N ] do

2: convert the RGB images into L∗a∗b∗ space, and extract

the L channel as {Ii, Ai, Si} ;

3: reconstruct the albedo and shading: Âi = Ii/Si, Ŝi =
Ii/Ai;

4: compute the valid mask for Âi: Mi = (0 < Ŝi <
1) & (0 < Âi < 1);

5: compute the statistics of valid pixels indexed by Mi from

Âi: (µ̂, σ̂);
6: shift the distribution of Ai µ, σ to the reconstructed valid

statistics: Ãi =
Ai−µ

σ
· σ̂ + µ̂;

7: reconstruct shading from Ãi: S̃i = Ii/Ãi;
8: reconstruct the invalid pixels in S̃i with the help of Ii: S

∗

i ;

9: convert Ãi into RGB color space: A∗

i , and reconstruct

I∗i = A∗

i · S∗

i ;

10: end for

Figure 3. Comparison between the refined MPI Sintel dataset

(MPI RD) and the original MPI Sintel dataset (MPI). Top is a

sample for illumination inconsistency in the MPI. Bottom is the

illustration for the MPI RD. In the bottom, each image is split into

two parts. The left shows the refined data, and the right is the

original data. The shading images in the MPI RD preserve more

geometric details and exclude specular components.

ing 18 sequences for a total of 890 frames. As discussed

in Section 4, there is severe illumination inconsistency be-

tween the input frames and the shading layers in this dataset.

Therefore, we provide the refined MPI Sintel dataset as a

more proper dataset for intrinsic image decomposition.

In the bottom of Figure 3, we demonstrate the compar-

ison between our refined MPI dataset (MPI RD) and the

original MPI dataset (MPI). In the shading layer of the first

column, we can see that in our refined shading image, the

specular on the shoulder of the girl is removed, making the

shading illumination consistent with the original input im-



age. In the second and third columns, the shading layers

from the MPI RD dataset contain more geometric details

than those from the MPI dataset. For instance, the wooden

cart’s coarse surface is depicted in the refined shading in

the third column, while the original shading from the MPI

dataset only has smooth surface. These examples demon-

strate that our refined MPI RD ensures the consistency be-

tween the intrinsic decompositions and the input image. In

the rightmost column in the bottom part of Figure 3, the

mean squared error (MSE) between the input image I and

the resynthesized image A×S is computed. The MSE value

in the MPI RD dataset is significantly smaller than that in

the MPI dataset, showing that the intrinsic decomposition

model Eqn.1 is well respected in the refined dataset.

Training details. For data augmentation, we randomly

resize the input image by a scale factor in [0.8, 1.3], and

randomly crop a 288 × 288 patch from the resized image

per iteration. We also use horizontal flipping in the train-

ing phase. To compare with the state-of-the-art methods,

similar to [12], we evaluate our results on both a scene split

and an image split. For a scene split, half of the scenes are

used for training and the other half for testing. For an image

split, all 890 images are randomly separated into two sets.

Evaluation on a scene split is considered more challenging

as it requires more generalization capacity.

5.1.2 IIW Dataset

Intrinsic Images in the Wild (IIW) [IIW-TOG 2014] is a

large scale, public dataset for intrinsic image decomposi-

tion of real-world scenes. This dataset contains 5,230 real

images of mostly indoor scenes, combined with a total of

872,161 crowd-sourced annotations of reflectance compar-

isons between pairs of points sparsely selected throughout

the images (on average 100 judgements per image). Fol-

lowing many prior works [24, 25, 38, 12], we split the IIW

dataset by placing the first of every five consecutive images

sorted by the image ID into the test set, and the others into

the training set. The WHDR from [4] is employed to mea-

sure the quality of the reconstructed albedo images.

Training details. As for the IIW dataset, our proposed

network structure cannot be directly used due to the lack of

dense labelling of albedo and shading layers. Actually, only

sparse and relative reflectance annotations are provided. In

order to take advantage of the proposed feature divergence

loss and feature distribution constraint, we have to slightly

modify the network. In detail, the predicted dense albedo is

collected into an image pool to describe the distribution of

albedo. The reconstructed shading using the original image

and predicted albedo is used as the dense supervision for the

shading prediction, and is also collected in an image pool

to describe the shading distribution. We set the weights in

Eqn.6 to be γ[1,2,3,4,5] = [0, 0, 0, 1.0, 1.0].

5.2. In comparison to state-of-the-art methods

5.2.1 On the MPI Sintel and the refined dataset

Table 1. Numerical results on the MPI Sintel dataset.

MSE LMSE DSSIM

Methods albedo shading avg albedo shading avg albedo shading avg

im
a
g
e

sp
li

t

Retinex [14] 0.0606 0.0727 0.0667 0.0366 0.0419 0.0393 0.2270 0.2400 0.2335

Barron et al. [2] 0.0420 0.0436 0.0428 0.0298 0.0264 0.0281 0.2100 0.2060 0.2080

Chen et al. [10] 0.0307 0.0277 0.0292 0.0185 0.0190 0.0188 0.1960 0.1650 0.1805

MSCR [33] 0.0100 0.0092 0.0096 0.0083 0.0085 0.0084 0.2014 0.1505 0.1760

Revisiting [12] 0.0069 0.0059 0.0064 0.0044 0.0042 0.0043 0.1194 0.0822 0.1008

Ours 0.0047 0.0046 0.0047 0.0037 0.0038 0.0038 0.0950 0.0774 0.0862

sc
en

e
sp

li
t

MSCR [33] 0.0190 0.0213 0.0201 0.0129 0.0141 0.0135 0.2056 0.1596 0.1826

Revisiting [12] 0.0189 0.0171 0.0180 0.0122 0.0117 0.0119 0.1645 0.1450 0.1547

Ours 0.0173 0.0195 0.0184 0.0118 0.0147 0.0133 0.1587 0.1405 0.1496
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Figure 4. Qualitative comparison on the MPI Sintel dataset. The

visual results are evaluated on the more challenging scene split.

As shown in Table 1, our method achieves the best result

on the MPI Sintel dataset using the image split. On the more

challenging scene split, our method is competitive with the

state of the art, and achieves the best results for 5 out of 9

columns in the table. We show a group of qualitative results

evaluated on the scene split in Figure 4. While the MSCR

[33] results are relatively blurry due to the large kernel con-

volutions and down-sampling, our method provides sharper

results comparable to Revisiting [12]. Moreover, our shad-

ing layer depicts better shadow area than [12].

As described in Section 4, the MPI Sintel dataset has is-

sues of data consistency between the original input images

and the corresponding shading images. Because of the pro-

posed feature divergence loss, feature distribution constraint



and the use of the cycle loss, our method is sensitive to such

data inconsistency. Therefore, we compare our method with

the state-of-the-art methods on the more challenging scene

split of the refined MPI Sintel dataset. As shown in Table

2, our method achieves the best result, which demonstrates

the effectiveness of our method and data refinement pro-

cess. To further validate the effectiveness of our proposed

architecture, we also conduct an ablation study illustrated in

the bottom of Table 2. We can observe that using only the

feature divergence loss or the feature distribution constraint

does not improve the performance much, while using both

of them results in considerable performance gain.

Table 2. Numerical results on the Refined MPI Sintel dataset.

MSE LMSE DSSIM

Methods albedo shading avg albedo shading avg albedo shading avg

MSCR [33] 0.0222 0.0175 0.0199 0.0151 0.0122 0.0136 0.1803 0.1619 0.1711

Revisiting [12] 0.0196 0.0137 0.0167 0.0146 0.0094 0.0120 0.1651 0.1082 0.1366

Ours plain 0.0172 0.0147 0.0159 0.0116 0.0097 0.0106 0.1528 0.1085 0.1307

Ours w/o FDV 0.0166 0.0134 0.0150 0.0112 0.0090 0.0101 0.1474 0.1048 0.1261

Ours w/o FDC 0.0170 0.0130 0.0150 0.0113 0.0089 0.0101 0.1530 0.1070 0.1300

Ours 0.0157 0.0126 0.0142 0.0105 0.0087 0.0096 0.1419 0.1015 0.1217

(‘Ours plain’ is the basic two-stream network without FDV or FDC.)

In Figure 5, a side-by-side comparison with two other

methods on the refined dataset MPI RD is displayed. As

shown, our method performs better at separating shading

from albedo information. For example, in the bamboo

scene, our method outputs consistent shadow on the bam-

boo under the girl’s feet while other methods do not. Sim-

ilar observations can be made around the girl’s neck in the

bandage scene, the monster’s wing in the cave scene, and

the girl’s leg in the market scene.

Table 3. Numerical results on the MIT intrinsic dataset.

MSE LMSE

Methods albedo shading avg total

Barron et al. [2] 0.0064 0.0098 0.0081 0.0125

Zhou et al. [38] 0.0252 0.0229 0.0240 0.0319

Shi et al. [31] 0.0216 0.0135 0.0175 0.0271

MSCR [33] 0.0207 0.0124 0.0165 0.0239

Revisiting [12] 0.0134 0.0089 0.0111 0.0203

Ours 0.0120 0.0095 0.0108 0.0170

(Note that Barron et al.’s method [2] relies on specialized priors and

masked objects particular to this dataset.)

We also experiment on the MIT intrinsic dataset [14],

which consists of object-level real images. As in [12], we

use the 220 images in the dataset. To compare with previ-

ous methods, the split from [2] is used. Our refined MPI

Sintel dataset has gray scale shading images, thus we firstly

pre-train the model on the MPI RD and then fine-tune it on

the MIT training set. The numerical results are shown in

Table 3. Our method achieves the best results for most of

the columns in the table. Qualitative results are illustrated
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Figure 5. Qualitative comparison on our refined MPI Sintel

dataset. The visual results are evaluated on the scene split. Our

method is better at separating albedo and shading components.

Input MSCR Ours GTRevisiting

Figure 6. Qualitative comparison on the MIT intrinsic dataset.

in Figure 6. We can observe that our method predicts sharp

and accurate intrinsic layers.



Input Bi et al. Revisiting Ours Bi et al. Revisiting Ours

Figure 7. Qualitative comparison on the IIW dataset. The second to fourth columns are the albedo images, and the fifth to seventh columns

are the shading layers.

5.2.2 On the IIW dataset

Table 4. Numerical results on the IIW test set.

Methods WHDR(mean)

Baseline(const shading) 51.37

Baseline(const reflectance) 36.54

Shen et al. 2011 [30] 36.90

Retinex(color) [14] 26.89

Retinex(gray) [14] 26.84

Garces et al. 2012 [13] 25.46

Zhao et al. 2012 [37] 23.20

L1 flattening [5] 20.94

Bell et al. 2014 [4] 20.64

Zhou et al. 2015 [38] 19.95

Nestmeyer et al. 2017(CNN) [25] 19.49

Zoran et al. 2015* [39] 17.85

Nestmeyer et al. 2017 [25] 17.69

Bi et al. 2015 [5] 17.67

CGIntrinsic [21] 14.80

Revisiting [12] 14.45

Ours 13.90

In Table 4, we report the numerical results evaluated

on the test set of the IIW dataset. Our proposed method

achieves the best performance with a mean WHDR value

of 13.90%, which is a considerable improvement compared

to the second best one [12] with a mean WHDR value of

14.45%. To better illustrate the performance of our method,

we display groups of qualitative comparisons with the state-

of-the-art methods in Figure 7. In the first row, the detailed

intrinsic decomposition results are shown in the zoom-in

windows. It can be observed that our method successfully

preserves the texture of the floor tiles in the albedo layer,

while the other approaches treat such texture as shading. In

the second row, in a zoomed-in view, it can be noted that

our albedo layer contains clearer contours for the magazine

cover on the table. In the third row, the white block near the

left edge of the image is decomposed properly with albedo

consistency by our method. In the fourth row, the table in

the left corner of the image is well separated from the box

under the table in our albedo layer. These examples show

that our method can extract better albedo and shading layers

from original images, and preserve more detailed informa-

tion in intrinsic decomposition.

6. Conclusion

In this paper, we present a novel two-stream encoder-

decoder network for intrinsic image decomposition. Our

method is able to exploit the discriminative properties of

the features for different intrinsic images. Specifically,

the feature divergence loss is designed to increase the dis-

tance between features corresponding to different intrinsic

images, and the feature perceptual loss is applied to con-

strain the feature distribution. These two modules work

together to encode discriminative features for intrinsic im-

age decomposition. We provide an algorithm to refine the

MPI Sintel dataset to make it more suitable for intrinsic

image decomposition. The visual results in the MPI RD

and the more challenging IIW dataset demonstrate that our

proposed method can achieve superior results with better

albedo/shading separation.
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