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Abstract

We propose an approach to estimate the 6DOF pose of a

satellite, relative to a canonical pose, from a single image.

Such a problem is crucial in many space proximity opera-

tions, such as docking, debris removal, and inter-spacecraft

communications. Our approach combines machine learn-

ing and geometric optimisation, by predicting the coordi-

nates of a set of landmarks in the input image, associat-

ing the landmarks to their corresponding 3D points on an

a priori reconstructed 3D model, then solving for the ob-

ject pose using non-linear optimisation. Our approach is

not only novel for this specific pose estimation task, which

helps to further open up a relatively new domain for ma-

chine learning and computer vision, but it also demon-

strates superior accuracy and won the first place in the re-

cent Kelvins Pose Estimation Challenge organised by the

European Space Agency (ESA).

1. Introduction

Estimating the 6DOF pose of space-borne objects (e.g.,

satellites, spacecraft, orbital debris) is a crucial step in

many space operations such as docking, non-cooperative

proximity tasks (e.g., debris removal), and inter-spacecraft

communications (e.g., establishing quantum links). Exist-

ing solutions are mainly based on active sensor-based sys-

tems, e.g., the TriDAR system which uses LiDAR [12, 28].

Recently, monocular pose estimation techniques for space

applications are drawing significant attention due to their

lower power consumption and relatively simple require-

ments [11, 31, 30, 9].

Due to the importance of the problem, the Advanced

Concepts Team (ACT) at ESA recently held a bench-

mark competition called Kelvins Pose Estimation Chal-

lenge (KPEC) [3]; given images that depict a known satel-

lite under different unknown poses (see Figure 1), estimate

the pose of the satellite in each image. To develop their al-

Figure 1: Sample images of the Tango satellite from

SPEED [30]. Note the significant variations in object size,

object orientation, background and lighting condition.

gorithms, the challenge participants are given a set of train-

ing images containing the target satellite with ground truth

poses; Section 1.1 provides more details of the dataset.

The scenario considered in KPEC is a special case of

monocular vision-based object pose estimation [14, 34].

This is because the target object (the “Tango” satellite)

is known beforehand, and there is no need to generalize

the pose estimator to unseen-before instances of the object

class (e.g., other satellites). However, the background en-

vironment can still vary, as exemplified in Figure 1. Con-

trast the KPEC scenario to the generic pose estimation set-

ting [14, 34], where the provenance of the target object

is unknown a priori and generalising to unseen-before in-

stances is necessary (e.g., a car pose estimator must work

on all kinds of cars).



Figure 2: Overall pipeline of our satellite pose estimator.

Under the KPEC setting, we developed a monocular

pose estimation technique for space-borne objects such as

satellites. Inspired by works that combine the strength of

deep neural networks and geometric optimisation [26, 25,

35], our approach contains three main components:

1. using the training images, reconstruct a 3D model of

the satellite by multi-view triangulation;

2. train a deep network to predict the position of pre-

defined landmark points in the input image;

3. solve for the pose of the object in the image using the

2D-3D correspondences of the predicted landmarks

via robust geometric optimisation.

A high level pipeline of our framework is illustrated in Fig-

ure 2. Our code can be accessed in [4].

As suggested above, our method fully takes advantages

of all available data and assumptions of the problem. This

plays a significant role in producing highly-accurate 6DOF

pose estimation for the KPEC. Specifically, our method

commits an average cross validation (CV) error of 0.7277

degrees for orientation and 0.0359 metres for translation

on the KPEC training set. We achieved an overall score

of 0.0094 on the test set which ranked us the first place in

KPEC. The rest of the paper first reivews related works and

then describes our method and results in detail.

1.1. Dataset

The KPEC was designed around the Spacecraft PosE

Estimation Dataset (SPEED) [30], which consists of high-

fidelity grayscale images of the Tango satellite; see Fig-

ure 1. There are 12,000 training images with ground

truth 6DOF poses (position and orientation) and 2,998 test-

ing images without ground truth. Each image is of size

1920×1200 pixels. Half of the available images have no

background (i.e., the background is the space void) while

the other half contain the Earth as the background. Mirror-

ing the setting during proximity operations, the size, orien-

tation and lighting condition of the satellite in the images

vary significantly, e.g., the number of object pixels vary be-

tween 1k and 500k; see Figure 3 for an example. For more

details of the dataset, see [30].

2. Related works

Monocular vision-based pose estimation has a large

body of literature. We review the major classes of previ-

ous work, before surveying the specific case of spacecraft

pose estimation.

2.1. Monocular pose estimation

Keypoint methods Traditional pose estimation tech-

niques usually use hand-crafted keypoint detectors and de-

scriptors, e.g., SIFT [21, 20], SURF [6], MSER [22] and

BRIEF [8]. The key step is to produce a set of 2D-2D or

2D-3D keypoint correspondences, then estimate the pose

using non-linear optimisation from the correspondence set.

The keypoints are detected automatically and described us-

ing heuristic measures of geometric and photometric in-

variance. However, while the keypoint methods are robust

to a certain extent, they typically fail where there is large

variations in pose and lighting conditions. Nonetheless,

the earlier research has given birth to effective and well-

Figure 3: Large variation in object size in the images.



Figure 4: Illustration of the HRNet architecture in our landmark regression model.

understood geometric algorithms (e.g., PnP solvers) that are

able to estimate the pose accurately and robustly, given a

reasonable correspondence set; we exploit these techniques

in our pipeline.

End-to-end learning The success of deep learning in im-

age classification and object detection has motivated a large

number of works on end-to-end learning for pose estima-

tion [34, 7, 15, 16, 17, 23]. Generally speaking, these meth-

ods exploit the convolutional neural network (CNN) archi-

tecture to learn a complex non-linear function that maps

an input image to an output pose. While such end-to-

end methods have demonstrated some success, they have

not achieved similar accuracy as geometry-based solutions

(e.g., those that optimise pose from a correspondence set).

Moreover, recent work [29] suggests that “absolute pose re-

gression approaches are more closely related to approxi-

mate pose estimation via image retrieval”, thus they may

not generalise well in practice.

Feature learning methods Instead of handcrafting de-

scriptors to be robust against varying kinds of distortion so

that the distances between them can be used reliably to in-

dicate keypoint matching, some methods resort to machine

learning to identify keypoints detected from different views,

such as Fern [24]. It uses a Naive Bayes classifier to rec-

ognize keypoints based on a binary descriptor similar to

BRIEF [8], which is produced by pixel intensity compar-

isons.

While the keypoint matching problem can be solved us-

ing machine learning, deep CNN-based feature learning

methods typically fix the 2D-3D keypoint associations and

learn to predict the image locations of each corresponding

3D keypoint such as [26, 25, 35]. They mainly differ in

model architecture and the choice of keypoints. For in-

stance, [25] uses semantic keypoints while [35] chooses the

vertices of the 3D bounding box of an object. In our space-

borne scenario, objects are typically not occluded and have

relatively rich texture. As a result, we opt for object sur-

face keypoints in order to better relate them to strong visual

features.

Another common characteristic of aforementioned

CNN-based methods is that, in spite of their various de-

signs of architecture, they all gradually transform the fea-

ture maps of the input image from high-resolution represen-

tations to low-resolution representations, and recover them

to high-resolution representations again at a later stage. Re-

cent research has shown the importance of maintaining a

high-resolution representation during the whole process in

various tasks including object detection and human pose

estimation [32, 33]. Specifically, the High-Resolution Net

(HRNet) [32] which maintains a high-resolution representa-

tion while exchanging information across the parallel multi-

resolution subnetworks throughout the whole process, as il-

lustrated in Figure 4, produces heatmaps of landmarks with

superior spatial precision. To achieve state-of-the-art accu-

racy in satellite pose estimation, in our framework we use

the HRNet for predicting the locations of 2D landmarks in

each image.

2.2. Spacecraft pose estimation

Monocular spacecraft pose estimation techniques usu-

ally adopt a model-based approach. For example, [11, 31]

first preprocess the images and use feature detectors to iden-

tify prominent features such as line segments and basic ge-

ometric shapes. Search algorithms are then used to find

the right matches between the detected features and the 3D

structure. Lastly poses are computed using PnP solvers

such as EPnP [19] and are further refined using optimisa-

tion techniques. As summarised in Section 1, our approach



also generates 2D-3D correspondences; however, we use a

trained deep network to regress the coordinates of 2D land-

marks.

The Spacecraft Pose Network (SPN) [30] is the semi-

nal work on the SPEED. SPN uses a hybrid of classifica-

tion and regression neural networks for the pose estimation

problem. To perform classification, SPN discretises the 3D

rotation group SO(3) into m uniformly distributed base ro-

tations. SPN first predicts the bounding box of the satellite

in the image with an object detection sub-network. Then, a

classification sub-network retrieves the n most relevant base

rotations from the feature map of the detected object. This

regression sub-network learns a set of weights and outputs

the predicted rotation as a weighted average of the n base

rotations. Lastly, SPN solves the relative translation of the

satellite utilising constraints from the predicted bounding

box and rotation.

For a more comprehensive survey of spacecraft pose es-

timation, we refer the reader to [9].

3. Methodology

Figure 2 describes the overall pipeline of our methodol-

ogy, which consists of several main modules: using a small

subset of manually chosen training images (9 images were

chosen), we first reconstruct a 3D structure of the satellite

with a number of manually chosen landmarks (11 was cho-

sen in our implementation) via multi-view triangulation (re-

call that the training images were supplied with ground truth

poses). An object detection network is then used to predict

the 2D bounding box of the satellite in the input image. The

bounded subimage is then subjected to a landmark regres-

sion network to predict the 11 landmark image positions.

Finally, we solve for the poses using the predicted 2D-3D

correspondences. Details of the main steps are described in

the rest of this section. Our code is available in [4].

3.1. Multi-view triangulation

We represent the structure of the object with a small

number N of 3D landmarks {xi}
N
i=1 such that they cor-

respond to strong visual features in the images. For the

satellite, we select its eight corners plus the centres of the

ends of its three antennas, which make a total of N = 11
landmarks. We use multi-view triangulation to reconstruct

the 3D structure. To generate the input for triangulation

(i.e., 2D-3D correspondences), we manually match every

3D point with 2D corresponding points over a few hand-

picked close-up images from the training set. Let zi,j de-

note the 2D coordinates of the i-th landmark obtained from

the j-th image, the 3D landmarks {xi} are reconstructed by

Figure 5: The reconstructed 3D model with 11 landmarks

and 3 examples of the bounding boxes determined by the

projected 2D landmarks.

solving the following objective1:

min
{xi}N

i=1

∑

i,j

||zi,j − πT
∗

j
(xi)||

2
2 , (1)

where T
∗
j is the ground truth pose of image j and πT is the

projective transformation of a structural point into the image

plane with pose T and known camera intrinsics. Figure 5

shows the 11 selected 3D landmarks and the reconstructed

model as a wireframe.

3.2. Object detection

Our pipeline starts by obtaining a bounding box of the

object in the image. The aforementioned set of structural

landmarks {xi} facilitates object detection since the con-

vex hull of their 2D matches {zi} covers almost the whole

object in any image. Hence a simple but effective method

to obtain the ground truth bounding box is to slightly relax

the (axis-aligned) minimum rectangle that encloses all zi,

as shown in Figure 5. We use this method for the training

images for which we obtain the ground truth 2D landmarks

{z∗i } by projecting {xi} to the image plane with the ground

truth camera pose T
∗, i.e.,

z
∗
i = πT∗(xi), i = 1, ..., N . (2)

For the testing images, we train an object detection

model to predict the bounding boxes. We use an off-

the-shelf object detection model described in [33], which

applies an HRNet as backbone in the Faster-RCNN [27]

framework. The HRNet backbone is initialised with a pre-

trained model HRNet-W18-C2 [33]. We train the detection

model on the MMDetection platform [10] and follow the

training settings as in [33].

1We used the routine triangulateMultiview in MATLAB.
2The pretrained model was downloaded from [2].



3.3. Landmark regression

Each training image is coupled with a bounding box and

a set of ground truth 2D landmarks {z∗i } as described in

Section 3.2. We use these labels to supervise the training

of a regression model to predict the 2D landmarks in the

testing images. Additionally, to handle images that only

capture partial object, we label the visibility vi of each 2D

landmark z
∗
i of each image in the training set where

vi =

{

1 if z∗i is inside image frame,

0 otherwise.
(3)

We used the HRNet as described in [32] to regress the

2D landmark locations. Specifically we used pose-hrnet-

w32 [1] for our architecture (Figure 4), which has 32 chan-

nels in the highest resolution feature maps. The output of

the model is a tensor of 11 heatmaps; one for each 3D land-

mark. Because of this model-designed one-to-one associa-

tion between 3D landmarks and heatmaps, the model solely

has to learn the image location of each 3D landmark but not

the heatmap-3D landmark associations.

To increase the prediction accuracy as well as robust-

ness against the Earth background, we crop each image

with their bounding boxes and resize them to fit the input

window of the regression model. We conduct this pro-

cess in both the training and the testing phase. For the

later, we predict the bounding boxes of the testing images

with the object detection model. Because HRNet main-

tains a high-resolution representation, it is able to produce

high-resolution heatmaps with superior spatial accuracy.

To leverage this characteristic of HRNet, we increased the

size of the input window as well as the size of the output

heatmaps to 768× 768 from the default 256× 256.

We train the model from scratch by minimising the fol-

lowing loss:

ℓ =
1

N

N
∑

i=1

vi(h(zi)− h(z∗i ))
2 , (4)

i.e., the mean squared errors between the predicted

heatmaps h(zi) and ground truth heatmaps h(z∗i ) of the

visible landmarks in each image. The notation h(·) de-

notes a heatmap representation of a 2D point. We generate

the ground truth heatmaps as 2D normal distributions with

means equal to the ground truth locations of each landmark,

and standard deviations of 1-pixel. The loss function ℓ is

defined based on a single image. In a mini batch, ℓ is sim-

ply averaged. The model is trained for 180 epochs with the

Adam optimizer [18]. Other training setup is adopted from

[32].

3.4. Pose estimation

The final step in our pipeline is to estimate the pose

T ∈ SE(3) for a test image given the predicted 2D-3D cor-

respondences {(zi,xi)} as described in Section 3.3. We

estimate T by solving the robust non-linear least-squares

problem

min
T

∑

i

Lδ(ri(T)) (5)

with residuals

ri(T) = ‖zi − πT(xi)‖2 , (6)

and subject to cheirality constraints. Lδ : R → [0,∞) is

the Huber loss

Lδ(r) =

⎧

⎪

⎨

⎪

⎩

r2

2
if |r| ≤ δ

δ|r| −
δ2

2
otherwise.

(7)

We use Levenberg-Marquardt (LM) to solve Eq. (5); we

called LMPE to our C++ implementation with the Ceres

Solver [5]. We can run LMPE after setting δ and choosing

an initial linearisation point T0; however, picking a value

for δ, and potential outlying correspondences could impact

on producing an accurate estimation. Instead, we propose

a Simulated Annealing scheme (SA-LMPE) as depicted in

Algorithm 1 to progressively adjust δ and remove potential

outlying correspondences. A correspondence (zi,xi) is re-

garded as an outlier if

ri(T
∗) > ǫ (8)

for a threshold ǫ, and the ground truth pose T
∗. In prac-

tice, we use the residual with respect to the current pose

ri(Tt+1) to indicate potential outliers for removal.

Algorithm 1 SA-LMPE.

Require: 2D-3D matches H0 := {(zi,xi)}, initial pose

T0, initial values for δ and ǫ, cooling parameters

δmin, ǫmin > 0, 0 < λδ, λǫ ≤ 1, and number of itera-

tions tmax.

1: t ← 0.

2: while t < tmax do

3: Tt+1 ← LMPE(Ht,Tt, δ).
4: Ht+1 ← {(zi,xi) ∈ Ht | ri(Tt+1) ≤ ǫ}.

5: δ ← max(δmin, λδδ).
6: ǫ ← max(ǫmin, λǫǫ).
7: t ← t+ 1.

8: end while

9: return Tt.

There is a virtuous circle in our annealing process: an

accurate pose will help on carefully removing potential out-

liers (Line 4), while lesser outlying corrupted data will pro-

duce a more accurate estimation (Line 3). Thus, initial δ

and ǫ values progressively “cool down” (Step 5 and Step 6),



Metric
SPN [30]

(on test set)

Ours

(on training set CV)

Mean IOU 0.8582 0.9534

Median IOU 0.8908 0.9634

Mean ER (degree) 8.4254 0.7277

Median ER (degree) 7.0689 0.5214

Mean ET (metre) N/A 0.0359

Median ET (metre) N/A 0.0147

Mean |t∗ − t| (metre) [0.0550, 0.0460, 0.7800] [0.0040, 0.0040, 0.0346]

Median |t∗ − t| (metre) [0.0240, 0.0210, 0.4960] [0.0031, 0.0030, 0.0134]

Table 1: Performance comparison between the SPN and the proposed method.

until reaching minimum predefined values (δmin, ǫmin) or a

maximum number of iterations tmax.

For the SPEED images, we obtained the initial pose T0

in Algorithm 1 by using a RANSAC fashion PnP solver3

(with kernel P3P [13] and minimal four-points sets) on the

predicted correspondences.

4. Evaluation

In this section we report the evaluation metrics and ex-

perimental results of our methodology.

4.1. Metrics

We evaluate the estimated pose of each image using a

rotation error ER and a translation error ET . Let q∗ and q

denote the rotation quaternion ground truth of an image and

its estimation. Analogously, let t∗ and t denote the ground

truth and estimated translation vectors of an image. We then

define ER and ET as

ER = 2 cos−1 (|z|) , (9)

where z is the real part of the Hamilton product between q∗

and the conjugate of q, i.e., z + c = q∗ conj(q) , where c is

the vector part of the Hamilton product and

ET = ||t∗ − t||2 . (10)

We report our object detection results via the Intersection

Over Union (IOU) score based on CV. For each image, its

IOU score is the intersection area divided by the union area

of the predicted and the ground truth bounding boxes.

We compare against KPEC’s participants trough the

scores defined in the KPEC: namely the rotation score SR,

the translation score ST , and the overall score S. SR is the

same as ER but in radians,

ST =
||t∗ − t||2
||t∗||2

, (11)

3We used the routine estimateWorldCameraPose in MATLAB.

and

S = SR + ST . (12)

4.2. Experiments

Since the KPEC withheld the ground truth poses of the

test set, we cannot conduct analysis based on the test set

other than providing the overall score. Instead, we analysed

our method using 6-fold CV over the training set. Specif-

ically, we split the 12,000 training images into 6 groups,

and then for each group, we train an object detection (Sec-

tion 3.2) model and a landmark regression (Section 3.3)

model with the images in the remaining 5 groups. We test

each model with their respective designated group, i.e., the

complement of the 5 groups we train the model with. Thus

each model is equipped with a disjoint test group so that in

total, they cover all 12,000 images in the training dataset.

Following the above CV procedure, we estimate the pose

of every training image. In effect, we predict the image

coordinates of every 3D landmark to obtain 2D-3D corre-

spondences from which we obtained an initial pose using

RANSAC with a PnP kernel, which we finally refine with

Algorithm 1. We make clear that we invoke Algorithm 1

with all predicted 2D-3D correspondences and not with the

consensus set after RANSAC.

For the test set, we exploit the advantage of ensemble

methods since we have 6 trained models resulted from the

6-fold CV. We average the 6 heatmaps predicted by the 6

trained models for each landmark and each test image be-

fore we obtain the final 2D landmark coordinates. The rest

of the precedure is the same as described in Section 3.4.

4.3. Results

We first compare against SPN [30]; Table 1 report the

performance results. Our proposed method achieves supe-

rior performances in both object detection and pose estima-

tion. Both our rotational and translational errors are at least

one degree of magnitude smaller than SPN.

In terms of the KPEC scores, our average overall score
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Figure 6: Score evolution for SA-LMPE over all images.

(a) RANSAC (b) SA-LMPE

Figure 7: Histograms of reprojection errors of all landmarks

from all images with respect to (a) the initial poses ob-

tained by RANSAC, and (b) the final poses after the SA-

LMPE refinement. For better visualisation of the RANSAC

histogram, we truncated its long tail by removing the 1%
largest errors.

of the training set based on a 6-fold CV is 0.0117. To in-

vestigate the effect of the pose refinement, Figure 6 displays

the evolution of average scores during the refinement pro-

cess while Figure 7 provides a comparison of reprojection

residuals before and after the refinement. Based on the error

distribution of the initial poses in Figure 7(a), we set δ = 5
and ǫ = 50 to initialise SA-LMPE. For the cooling param-

eters we take δmin = 1, ǫmin = 4, and λδ = λǫ = 0.7. We

set the maximal number of iterations tmax = 10. SA-LMPE

removed 8495 potential outliers in total which is equiva-

lent to approximately 0.7 outliers per image. As shown in

Figure 6, the pose refinement improves the average overall

score S from 0.0167 to 0.0117.

Our overall score of the test set is 0.0094 which is

slightly better than the training set CV 0.0117, thanks to the

benefits from the ensemble of 6 models. Table 2 provides

the top 10 scores in KPEC. We provide Figure 8 and 9 for

visual inspection of object detection, landmark regression

and pose estimation results on a sample of the test set. Note

Rank Participant Name Score

1 UniAdelaide 0.0094

2 EPFL cvlab 0.0215

3 pedro fairspace 0.0571

4 stanford slab 0.0626

5 Team Platypus 0.0703

6 motokimura1 0.0758

7 Magpies 0.1393

8 GabrielA 0.2423

9 stainsby 0.3711

10 VSI Feeney 0.4658

Table 2: Top 10 scores of KPEC.

that we did not cherry-pick the images from testing results

-they were selected at random. Visual inspection indicates

high accuracy of our approach even with images that have

very small object size.

5. Conclusion

We propose a monocular pose estimation framework for

space-borne objects such as satellite. Our framework ex-

ploits the strength of deep neural networks in feature learn-

ing and geometric optimisation in robust fitting. In partic-

ular, the high-resolution representation of images used in

HRNet enables accurate predictions of 2D landmarks while

the SA-LMPE algorithm allows further removal of inaccu-

rate predictions and refinement of poses.

Our approach won the first place in the the KPEC. Our

CV-based evaluation also indicates our method significantly

outperforms previous work on the SPEED benchmark.

Acknowledgement

This work was jointly supported by ARC project

LP160100495 and the Australian Institute for Machine

Learning.



Figure 8: A montage of random test images with the predicted bounding boxes of the satellite and the estimated 2D landmarks.

Figure 9: A montage of the same test images in Figure 8 with the predicted poses shown as green wireframes.
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