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Abstract

We present a new approach for single view, image-based

object pose estimation in real time. Specifically, the prob-

lem of culling false positives among several pose proposal

estimates is addressed in this paper. Our proposed ap-

proach targets the problem of inaccurate confidence values

predicted by CNNs which is used by many current meth-

ods to choose a final object pose prediction. We present

a new network called CullNet, solving this task. CullNet

takes pairs of pose masks rendered from a 3D model, and

cropped regions in the original image as input. This is

then used to calibrate the confidence scores of the pose

proposals. This new set of confidence scores is found to

be significantly more reliable for accurate object pose esti-

mation as shown by our results. Our experimental results

on multiple challenging datasets (LINEMOD and Occlu-

sion LINEMOD) clearly reflects the utility of our proposed

method. Our overall pose estimation pipeline outperforms

state-of-the-art object pose estimation methods on these

standard object pose estimation datasets. The code is avail-

able at https://github.com/kartikgupta-at-ANU/CullNet.

1. Introduction

Object pose estimation is crucial for machines to interact

with or manipulate objects in a meaningful way. It has ap-

plications in various areas such as augmented reality, virtual

reality, autonomous driving and robotics. The challenges

to be dealt with are not trivial; background clutter, occlu-

sions, textureless objects, and an often ill-posed formulation

where small changes in rotation, translation, or scale can be

confused with each other. This paper centers around the

particular problem of recovering the six degrees of freedom

pose of an object, i.e., rotation and translation in 3D with re-

spect to the camera, dealing with the above-mentioned chal-

lenges.

Here, we address the problem of 6-DoF object pose esti-

mation with respect to the camera using an RGB image, and

corresponding 3D mesh models of object classes of interest.

Specifically, each test image consists of a cluttered environ-

ment with a single instance of a textureless object class for

which the pose with respect to the camera needs to be es-

timated. We address this problem on datasets particularly

having just a couple of hundred training images with given

object pose annotations with respect to the camera. To aug-

ment the training data, available 3D mesh models are thus

rendered with several different pose variations.

Overall, this work presents a new approach to predicting

several object pose proposals in terms of 2D keypoints, fol-

lowed by a method to score these proposals. To accomplish

this, a fixed number of 3D keypoints are first selected from

the object mesh model vertices in the object centric coordi-

nate system. Given the ground truth pose of the object in

each training image, a CNN based on YOLOv3 [20] archi-

tecture is trained to predict the 2D projections of these key-

points. Among several sets of keypoints predicted by this

CNN, we select the top-k most confident set of keypoints

based on their confidence score produced by YOLOv3 and

compute the pose with respect to each set of 2D-3D key-

point correspondences using the E-PnP [10] algorithm. The

object mesh models are then rendered with the predicted k

pose estimates to estimate the segmentation masks of the

object class of interest. This segmentation mask is tightly

cropped along with the input image to form a 4-channel in-

put for our final CNN, i.e. CullNet to find the calibrated

confidence scores, used for selecting the most accurate pose

proposal. The above two CNNs, in concert, address the ob-

ject pose estimation problem more accurately because ob-

ject pose estimation is highly dependent on accurate key-

point proposals. Thus, in this work, many sets of object

keypoint proposals are predicted, amongst which an accu-

rate candidate is likely to exist. Via our scoring mechanism,

the most accurate keypoint proposal can then be selected as
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Figure 1: Comparisons of pose proposal confidence output of the Keypoint proposal network and CullNet. (a) Comparison

of confidence scores for the ‘Duck’ class in the LINEMOD dataset. (b) Comparison of confidence scores for all classes in

the LINEMOD dataset.

the final prediction.

Recent methods [8, 23, 16] also use deep learning based

methods to predict several pose hypotheses. However, these

methods rely on the same backbone network to produce

both the pose hypotheses and the confidence measure. Se-

lecting the final pose prediction from this set of hypotheses

using the object confidence measures predicted by the same

network is undesirable. The reason for this is that the ob-

ject confidences predicted by the keypoint proposal network

do not contain any estimate on how accurate the respec-

tive proposed pose is. Thus, we present a new way of re-

estimating the object pose confidence measures with an ap-

proach that also takes into account knowledge of proposed

object poses. We refer to these new scores as calibrated

pose proposal confidences. The advantage of using cali-

brated confidence scores is clearly illustrated in Figure 1.

Fig. 1a and Fig. 1b compare the distribution of the back-

bone (keypoint proposal) network or CullNet confidence

scores vs. ground truth pose proposal confidence scores for

the top-k most confident proposals of all1 test images of

the ‘Duck’ class and all classes together in the LINEMOD

dataset respectively. Confidence scores produced by Cull-

Net are more correlated to ground truth confidence scores

than scores produced by the keypoint proposal network.

Similar to recent keypoint based methods [23, 18, 16],

our approach first predicts the 2D keypoints in the RGB im-

ages in an end-to-end learning framework. To accomplish

this, we employ the backbone architecture of YOLOv3 [20]

for the prediction of a set of 2D keypoints. YOLOv3 is one

of the fastest object detectors, producing many object pro-

posals for the purpose of object detection. We amended the

original YOLOv3 to predict 2D keypoints rather than ob-

ject bounding boxes. Then, our proposed method, called

CullNet, crops image patches around the top-k most con-

fident keypoint proposals predicted by the backbone net-

1To simplify the plot, we randomly sample 3000 confidence outputs

from the set of top-k most confident proposals of all test images.

work, along with crops of their corresponding, proposed,

pose rendered masks. This is used to predict the calibrated

confidence measure which can be used either for the pur-

pose of non-maximum suppression for multi-object pose

estimation, or arg-max suppression for single object pose

estimation.

Our main contributions are three-fold. i) a new method

to calibrate the pose proposal confidences using the knowl-

edge of the corresponding predicted pose, called CullNet, ii)

a new keypoint proposal method based on YOLOv3 [20],

which follows a feature pyramid network to predict many

sets of keypoint proposals at multiple scales, and iii) an

extensive set of evaluations, producing a new state-of-the-

art, on the standard benchmark pose estimation datasets:

LINEMOD and Occlusion LINEMOD.

2. Related Work

Object pose estimation was popularly addressed using

keypoint-based methods for a long time [14, 24, 22]. How-

ever, these methods lack the ability to handle textureless

objects as their feature representations require texture in-

formation. Recent deep learning based methods try to solve

this using CNNs. The solution of the problem requires

CNNs to output pose in terms of 3D rotation and 3D trans-

lation which has been achieved in different ways.

Direct Pose Prediction One way to deal with this, is to let

the network directly predict the 3D rotation and 3D trans-

lation. However, balancing the rotation and translation loss

is not trivial as discussed in [9], where they attempt to di-

rectly predict rotation and translation vectors for the task of

camera re-localisation. PoseCNN [26] directly outputs rota-

tion and translation vectors for the object pose estimation by

predicting them separately in a multi-stage network. Unlike

PoseCNN, which predicts the rotation quaternions, SSD-6D

[8] converts the pose estimation problem into a classifica-

tion problem by discretizing the views instead of directly



predicting the pose. The above mentioned methods let the

network predict the pose from color images directly, which

can be difficult for CNNs to achieve, as the CNNs are re-

quired to learn all the geometrical knowledge from training

data alone.

Keypoint based methods Another way to formulate the

output of CNNs for object pose estimation is to detect key-

points and then use the Perspective-n-Point (PnP) algorithm

[10] to estimate the final pose. The works of [16, 18, 23]

achieve significant improvements in pose accuracy on chal-

lenging datasets, in particular on textureless objects. A key

problem in the above methods is inaccurate predicted 2D

keypoints. PnP-based pose estimation techniques have a

tendency to produce highly perturbed pose estimation re-

sults even by small amounts of noise in the predicted 2D

keypoints. BB8 [18] encounters this problem when predict-

ing a single pose proposal using a CNN on cropped object

segments. Due to the noisy regression outputs of CNNs, a

single pose proposal often does not result in an accurate one.

Also, BB8 is not able to perform the task of object pose es-

timation in real-time. To this end, Tekin et al. [23] uses the

YOLOv2 object detection network to predict keypoint pro-

posals, but the method lacks an effective way to cull false

positives. It uses neighbourhood weighted averaging for

the keypoints proposals centered around the most confident

keypoint proposal. Recently proposed PV-Net [17] tries to

address the problem of partial occlusion in RGB based ob-

ject pose estimation by regressing for dense pixel-wise unit

vectors pointing to the keypoints, which are combined to-

gether using RANSAC like voting scheme.

Pose refinement methods Recent deep learning solutions

have also considered techniques for pose refinement from

RGB images [11, 15] as a way to bridge the gap between

RGB and RGBD pose accuracies. DeepIM [11] uses a

FlowNet backbone architecture to predict a relative SE(3)

transformation to match the colored rendered image of an

object using initial pose to the observed image. Manhardt

et al. [15] introduce a visual loss that optimizes the pre-

dicted refinement of translation and rotation by aligning the

contours of the object in a rendered pose with an initial ro-

tation and translation, and the scene images. The problem

specifically targeted in this paper is about culling false pos-

itives from several object pose proposals, and such a refine-

ment mechanism can still be used at the end of our pipeline.

To the best of our knowledge, there is no work directly ad-

dressing the problem of unreliable object pose confidences

produced by CNNs.

Inaccurate object confidences also cause performance

degradation in multi-object pose estimation where multi-

ple object pose proposals are predicted for each object.

Most state-of-the-art object detection methods [21, 19, 13],

are dependent on non-maximum suppression (NMS) to cull

overlapping, less confident, object proposals. NMS relies

on the confidence measure produced by a CNN for a pro-

posal, which is, again, noisy. Our proposed approach ad-

dresses the above mentioned problems associated with the

object confidence output of CNNs by calibrating the confi-

dence measures using knowledge of each pose hypothesis.

These calibrated confidence predictions can then be used

both in single and multi object pose estimation.

3. Approach

In the discussion above, we identify the outstanding is-

sue of overconfident false positives (or inaccurate pose pro-

posals) in current state-of-the-art object pose estimation

methods. We address these issues with our proposed object

pose estimation pipeline illustrated in Figure 2. Our key-

point proposal method is inspired by YOLOv3 [20] which

can produce many sets of object keypoint proposals in real-

time. Our proposed network, CullNet, produces calibrated

object confidences using knowledge of the proposed pose

in relation to the observation in the original image. These

calibrated confidences can then reliably be used to select a

final estimate of the object pose from several object pose

proposals.

Using a feature pyramid network [12], the backbone ar-

chitecture outputs several pose proposals in the form of 2D

keypoints. The network is based on the Darknet-53 archi-

tecture [20]. One of the crucial advantages of the YOLO

network architecture is the gain in speed for object pose

prediction, as it is one of the state-of-the-art real-time object

detection approaches. The network takes an input image of

resolution 416×416 and produces outputs at three scales in

the form of 3D tensors with spatial sizes 13 × 13, 26 × 26
and 52 × 52 cell grids where each grid point corresponds

to a 2n + 1 + c dimensional vector which includes 2n xy

coordinates of 2D keypoints, one proposal confidence and

c class scores. In the case of YOLO object detection, the

confidence loss is learnt based on ground truth IoU overlap

between the prediction boxes and the ground truth boxes.

Such a formulation of IoU is not easily established in the

case of 2D projections of correspondences. We use a con-

fidence function c(x) proposed in [23] to assign probabil-

ities to distances between each individual 2D keypoint in

the pose proposals and ground truth 2D keypoints based on

some threshold. It is defined as follows:

c(x) =

⎧

⎨

⎩

exp
(

α

(

1−
D(x)
dth

))

−1

exp(α)−1 , if D(x) < dth

0 otherwise
. (1)

The distance D(x) is the Euclidean distance between

the predicted 2D keypoints represented by x and respec-

tive ground truth 2D keypoint. The confidence function is

set to 0 for predictions with a distance value greater than or



Figure 2: Overview of our pose estimation pipeline. Our approach operates in two stages: a) three 3D tensors are outputted

using a YOLOv3 based architecture at 3 different scales in the form 2n + 1 + c outputs along a spatial grid of each tensor.

b) using k sets of 2D keypoint proposals, k pose proposals are estimated using the E-PnP algorithm, then the original image

and the pose rendered mask are cropped tightly fitting the rendered mask. Cropped RGB patches concatenated with the

corresponding pose rendered masks are passed to CullNet to output calibrated object confidences. Calibrated confidences are

finally used to pick the most confident pose estimate.

equal to the threshold dth. The sharpness of the exponential

function is defined by the parameter α. In place of the IoU

based confidence measure of YOLOv3, the final confidence

for each proposal, is thus calculated as the mean value of

c(x) over n 2D keypoint predictions.

The backbone network described above predicts 13 ×
13 + 26 × 26 + 52 × 52 = 3549 object pose proposals

in terms of 2n xy coordinates of 2D projected correspon-

dences of object keypoints. In case of single or multiple

instances of an object in the scene, choosing one or many of

them is not trivial. In object pose prediction, a culling pro-

cess with inaccurate object confidence scores often results

in culling a better candidate for pose prediction because of

being predicted with a lower confidence. We thus propose a

new confidence calibrating network called CullNet, to pre-

dict better confidence measures based on the pose informa-

tion of each pose proposal. In between the backbone net-

work and CullNet, there is an intermediate processing step

to associate pose information with each keypoint proposal

as explained below.

First, we take the top-k most confident 2D keypoint pro-

posals output by the backbone network and estimate the

pose for these k proposals using the PnP algorithm. For

each of the k pose proposals, we render binary object seg-

mentation masks. We want to emphasise here that this mask

rendering does not require any extensive computation as

it does not involve a colored mask. These segmentation

masks can simply be calculated by finding the 2D projec-

tions of all the mesh vertices of an object. Each rendered

mask of proposals is cropped out, tightly around the seg-

mentation boundaries. With the same cropping coordinates,

corresponding RGB patch is formed after cropping the in-

put image. Then, the cropped segmentation mask is con-

catenated as the fourth channel along with corresponding

RGB patch. For each top-k most confident proposals, our

proposed CullNet takes concatenated RGB patch and mask

(112 × 112 × 4) to predict how accurately each pose pro-

posal aligns with the cropped RGB patch. We formulate the

ground truth confidence measure for our final output from

the proposed CullNet using Eq. 1. The Euclidean distance

D(Xj , [Ri|ti]) mentioned in Eq. 1 is

D(Xj , [Ri|ti]) =
∥

∥

∥
K(RiXj + ti)−K(R̂Xj + t̂)

∥

∥

∥

2
.

(2)

Here Xj denotes the jth 3D vertex from the object’s mesh

model, [R̂|t̂] is the ground truth pose, K is the intrinsic cam-

era parameters and [Ri|ti] is the ith predicted pose amongst

the top-k most confident pose proposals from the keypoint

proposal network. It is important to note here that the final

ground truth value for the calibrated confidence i.e. Ĉ∗

i , is

the mean over the 2D projections of all m mesh vertices of

an object as:

Ĉ∗

i =
1

m

m
∑

i=1

(c(Xi,K[Ri|ti])). (3)

CullNet is based on the Resnet50 architecture with the

group norm [25] replacing the batch norm. It takes a 4 chan-

nel input of masked out RGB patches. Group Normaliza-

tion helps in faster convergence of the network with larger

batch sizes including patches from the same images hav-

ing a non − i.i.d. distribution, that degrades batch norm’s

statistic estimation [6].



3.1. Training

Our complete approach is trained in two stages. First we

train the backbone network and then train CullNet using the

proposals generated by the backbone network.

Keypoint proposal network In the first stage, the back-

bone network needs to learn prediction of 2D keypoints,

confidence scores and class probabilities. The predictions

for 2D keypoints are done in the down-scaled size of image

coordinates to 13 × 13, 26 × 26 and 52 × 52 respectively.

The 2D keypoint predictions are expressed as an offset from

the top-left corner of the grid cells. The ground truth con-

fidence scores for the set of 2D keypoints based pose pro-

posal corresponding to each grid cell are calculated using

Eq. 1 where the mean confidence of each set of proposals

is calculated as the average over each keypoint confidence.

We use a sigmoid function to restrict the predicted confi-

dence score to the range [0, 1]. We minimize the following

loss function to train our backbone network.

L = Lcoord + Lconf + Lcls (4)

Here, the terms Lcoord, Lconf and Lcls denote the keypoint,

confidence and the classification loss, respectively. We

use mean-squared error for the coordinate and confidence

losses, and cross entropy for the classification loss. The re-

spective loss functions are formulated as follows for each

of the three 3D tensor outputs of the keypoint proposal net-

work:

Lcoord =
1

N

S2
∑

i=1

1
obj
i

n
∑

j=1

[(xij − x̂ij)
2 + (yij − ŷij)

2] (5)

Lconf =
1

N

S2
∑

i=1

1
obj
i (Ci − Ĉi)

2+

1

M

S2
∑

i=1

(1− 1
obj
i )(Ci − Ĉi)

2 (6)

Lcls =
1

N

S2
∑

i=1

1
obj
i (−ŷ⊤

i log(yi)). (7)

where 1
obj
i denotes if the object’s centroid keypoint appears

in cell i, where it is 1 else it is 0 and the normalizing con-

stants N =
∑S2

i=1 1
obj
i and M =

∑S2

i=1(1−1
obj
i ). Ci and Ĉi

represent predicted and ground truth confidence scores of

the keypoint proposal network. xij , yij and x̂ij , ŷij denote

xy coordinates for n predicted and ground truth keypoints

for each set of proposals amongst S2 keypoint proposals,

where S varies from 13, 26 and 52 in three different scales.

Here, yi and ŷi represent predicted and ground truth class

probability vectors.

Culling Mechanism In the final stage of training, Cull-

Net needs to learn a prediction of a calibrated pose-aware

confidence measure. We use the sigmoid function to pre-

dict outputs of CullNet in the range [0, 1]. The ground truth

calibrated confidences at this stage are calculated based on

Eq. 1, as an average of the confidence of all 2D projections

of mesh vertices at each predicted pose proposal respec-

tively, using Eq. 3. For each image, the backbone network

passes the top-k most confident object keypoint proposals to

the CullNet. Then, pose hypotheses are estimated for each

keypoint proposal using the E-PnP algorithm [10]. CullNet

then uses concatenated cropped RGB image patches and

mask renderings as an input (rescaled) for each proposal

to produce a confidence measure on how accurate the pro-

posed pose is. We use mean-squared error for the calibrated

confidence loss.

3.2. Inference

For inference, we first output the top-k most confident

keypoints proposals of each object. Then, for each key-

point proposal, the object pose is estimated using the E-

PnP algorithm. Based on the predicted pose of the top-k

most confident keypoint proposals, tightly cropped object

regions in a pose rendered mask and corresponding patches

in concatenation are input to CullNet to predict calibrated

confidences. Finally, using arg-max on the calibrated confi-

dences outputted by CullNet, we find the estimated pose for

the object.

4. Experiments

We evaluate our approach on the task of single object

pose estimation and show comparisons with the state-of-

the-art RGB based object pose estimation approaches.

4.1. Implementation Details

We use Darknet-53 pretrained on the ImageNet classifi-

cation task as our backbone network. In the Keypoint pro-

posal training, we train only for classification and regres-

sion loss for the first 50 epochs and all losses for the next

50 epochs. CullNet is trained for 15 epochs. The sharpness

of the confidence function α is set to 2 and the distance

threshold to 30 pixels. We found k to be best at 6 keeping

the speed-accuracy trade-off in mind. The backbone net-

work has been trained with a batch size of 16 and CullNet

with a batch size of 128. We start with a learning rate of

0.001 for the backbone network using the SGD optimizer

and divide the learning rate by a factor of 10 after 50 and

75 epochs respectively. We use a learning rate of 0.01 for

the culling network using the SGD optimizer and divide the

learning rate by a factor of 10 after 10 epochs. The num-

ber of group norm channels in CullNet are found to be best

at 32. To avoid overfitting, we use extensive data augmen-

tation for training CullNet by randomly changing the hue,



Ape Bvise Cam Can Cat Driller Duck Box Glue Holep Iron Lamp Phone Avg.

2D Reprojection-5px

Ours w/ BC 97.7 99.0 97.9 98.9 98.7 96.4 97.0 98.7 98.2 99.0 97.2 95.4 95.6 97.7

Ours w/o BC 97.6 99.0 98.6 98.9 98.6 96.5 96.8 98.7 98.3 99.0 96.0 94.7 95.1 97.5

Tekin et al. [23] 92.1 95.1 93.2 97.4 97.4 79.4 94.7 90.3 96.5 92.9 82.9 76.9 86.1 90.4

BB8[18] 95.3 80.0 80.9 84.1 97.0 74.1 81.2 87.9 89.0 90.5 78.9 74.4 77.6 83.9

DeepIM (*) [11] 98.4 97.0 98.9 99.7 98.7 96.1 98.5 96.2 98.9 96.3 97.2 94.2 97.7 97.5

BB8[18] (*) 96.6 90.1 86.0 91.2 98.8 80.9 92.2 91.0 92.3 95.3 84.8 75.8 85.3 89.3

Brachmann[2] (*) 85.2 67.9 58.7 70.8 84.2 73.9 73.1 83.1 74.2 78.9 83.6 64.0 60.6 73.7

AD{D|I}-10%

Ours w/ BC 55.1 89.0 66.2 89.2 75.3 88.6 41.8 97.1 94.6 68.9 90.9 94.2 67.6 78.3

Ours w/o BC 34.5 79.2 71.5 85.8 71.1 89.3 39.3 86.1 87.6 70.4 85.8 73.9 63.8 72.2

Do et al. [3] 2 38.8 71.2 52.5 86.1 66.2 82.3 32.5 79.4 63.7 56.4 65.1 89.4 65.0 65.2

Tekin et al. [23] 21.6 81.8 36.6 68.8 41.8 63.5 27.2 69.6 80.0 42.6 74.9 71.1 47.7 55.9

BB8[18] 27.9 62.0 40.1 48.1 45.2 58.6 32.8 40.0 27.0 42.4 67.0 39.9 35.2 43.6

SSD-6D[8] 0 0.2 0.4 1.4 0.5 2.6 0 8.9 0 0.3 8.9 8.2 0.2 2.42

DeepIM (*) [11] 77.0 97.5 93.5 96.5 82.1 95.0 77.7 97.1 99.4 52.8 98.3 97.5 87.7.0 88.6

Manhardt [15] (*) - - - - - - - - - - - - - 34.1

BB8[18] (*) 40.4 91.8 55.7 64.1 62.6 74.4 44.3 57.8 41.2 67.2 84.7 76.5 54.0 62.7

SSD-6D[8] (*) - - - - - - - - - - - - - 76.3

Brachmann[2] (*) 33.2 64.8 38.4 62.9 42.7 61.9 30.2 49.9 31.2 52.8 80.0 67.0 38.1 50.2

Table 1: The comparison of accuracies of our method and the baseline methods on the LINEMOD dataset using standard

pose evaluation metrics. (*) denotes pose refinement methods. BC refers to bias correction using error modes from train data.

saturation and exposure of the image by up to a factor of

1.5. We also randomly scale and translate the image by up

to a factor of 20% of the image size. During the training of

CullNet, we double the number of pose proposals for each

image by randomly perturbing the estimated pose from the

keypoint proposal network to avoid overfitting. We choose

corners and the centroid of the cuboid bounding the object

as the 9 keypoints in our experiments (similar to Tekin et al.

[23]).

4.2. Evaluation Metrics

We use two standard metrics to evaluate the 6D pose

accuracy, namely 2D reprojection error, and the AD{D|I}
metric as used in [2, 8, 18].

2D Reprojection measures the mean distance between

the 2D projections of the object’s mesh vertices using the

ground truth pose and the estimated pose, for each object

pose instance. A pose instance is considered correct if the

mean distance is less than 5 pixels.

In contrast, the AD{D|I} metric measures the mean dis-

tance between the transformed coordinates of mesh vertices

using the ground truth pose and the estimated pose for each

object pose instance. A pose instance is considered correct

if the mean distance is less than 10% of the object mesh

model’s diameter. To handle rotationally symmetric ob-

jects, the mean distance is calculated based on the closest

point distance as done in [18].

4.3. LINEMOD Dataset

The LINEMOD dataset [5] is a standard benchmark

dataset for 6D pose estimation. This dataset is comprised of

13 object classes involving many challenges such as back-

ground clutter and textureless objects. Each RGB image has

been annotated with only the central object in the scene. We

use the same data split for each class as Brachmann et al. [2]

used, with around 200 images for each object in the training

set and 1,000 images in the test set. To prevent overfitting,

for training we generated synthetic images by rendering ob-

jects with uniformly sampled viewpoints with backgrounds

randomly selected from the SUN397 dataset [27]. To keep

the distributions of real and synthetic images the same and

also to avoid learning any information from the checker-

board background, we augment the real training images by

using the segmentation mask from real images and chang-

ing the background from images randomly sampled from

the PASCAL-VOC dataset [4].

We show comparisons with competing RGB based ob-

ject pose estimation methods in Table 1. Our approach

outperforms all existing methods comfortably on the 2D-

Reprojection metric. It also performs slightly better than the

state-of-the-art pose refinement methods on this metric. We

want to emphasise the fact that our method, which works

using a two stage pipeline does not use any pose refinement

method. Pose refinement methods most often require mul-

tiple iterations of refinement along with complete colored

renderings of mesh models. Our approach requires only a

segmentation mask rendering from the top-k confident pose

estimates to calibrate the confidence scores within a single

pass through CullNet.

Our proposed approach also performs better than all ex-

2For this method, results on the 2D Reprojection metric are not avail-

able.



Figure 3: Percentage of correctly estimated poses at different thresholds of reprojection error (in pixels) for different objects

of the LINEMOD dataset [5].

isting comparable methods when evaluated on the AD{D|I}
metric. However, the DeepIM [11] pose refinement method

outperforms our approach on this metric whereas ours per-

form better on the 2D-Reprojection metric. We investigated

this issue which led to the findings that the LINEMOD

dataset has many instances of noisy pose annotations due

to registration errors between the RGB and the depth image

because the pose annotation process was done using ICP

on the depth images. A similar observation was also made

by Manhardt et al. [15] evaluating their deep pose refine-

ment method. To partially address this issue, we calculate

the error statistics on the LINEMOD training data using the

ADD metric from the pose estimated by our final trained

network pipeline. We make the histogram plots (using 400

bins) for the ADD error in z-axis after transforming coor-

dinates of mesh vertices using the estimated pose for each

object pose instance. Then, we use the modes of training

errors along the z-axis for each class as an offset to correct

the bias. The offset is added to the translation in z-axis of

all the predicted pose instances by our method, to partially

solve the bias problem arising due to noisy annotations.

4.4. Ablation Studies

We conduct ablation studies to evaluate the effective-

ness of CullNet in comparison to other potential methods

for the culling process on the LINEMOD dataset in Table 2

(a) and Figure 2 (b). Two such candidate methods are arg-

max selection of the most confident pose proposal and using

RANSAC on the top-k most confident pose proposals.

We evaluate CullNet on top of multiple keypoint pro-

posal networks, namely YOLOv2 and YOLOv3. Our

method comfortably outperforms argmax based selection

of the most confident pose proposal for both keypoint pro-

posal networks as shown in Table 2 (a). This clearly reflects

the problem of un-calibrated confidence scores in case of

argmax based selection in both YOLOv2 and YOLOv3. We

also show pose accuracies for all classes of the LINEMOD

dataset at varying reprojection error thresholds in the 2D-

Reprojection metric in Figure 3. These results resonate the

effectiveness of CullNet in improving the final pose esti-

mates over a varying range of reprojection error thresholds

for the 2D Reprojection metric.



Culling Methods
2D-Reprojection

Metric

YOLOv2 + argmax 91.6

YOLOv3 + argmax 95.7

YOLOv2 + Top-6 CullNet 93.4

YOLOv3 + Top-6 CullNet 97.7

(a) Accuracy comparisons on LINEMOD dataset us-

ing different culling methods on multiple keypoint

proposal networks.

(b) Robustness of RANSAC vs. CullNet with varying

number of top-k most confident pose proposals using

YOLOv3 as keypoint proposal network.

Table 2: Ablation studies to show the effectiveness of CullNet on LINEMOD dataset.

2D Reprojection-5px AD{D|I}-10%

Methods
BB8 Tekin PoseCNN Jafari OURS Tekin PoseCNN OURS

[18] [23] [26] [7] (with BC) [23] [26] (with BC)

ape 28.5 7.01 34.6 24.2 55.98 2.48 9.6 21.97

can 1.20 11.20 15.1 30.2 39.11 17.48 45.2 24.52

cat 9.60 3.62 10.4 12.3 34.2 0.67 0.93 9.77

driller 0.0 1.40 7.4 - 29.32 7.66 41.4 26.11

duck 6.80 5.07 31.8 12.1 53.46 1.14 19.6 23.62

eggbox - - 1.9 - 0.17 - 22 20.43

glue 4.70 6.53 13.8 25.9 23.48 10.08 38.5 28.02

holepuncher 2.40 8.26 23.1 20.6 72.98 5.45 22.1 41.4

average 7.60 6.16 17.2 20.8 38.59 6.42 24.9 24.48

Table 3: The comparison of accuracies of our method and the baseline methods on the Occlusion LINEMOD dataset. BC

refers to bias correction using error modes from train data.

We also show how robust our method is to variations

in the number of most confident pose proposals chosen for

culling process in Table 2 (b). CullNet is shown to be ex-

tremely stable to a large number of pose proposals whereas

the accuracy starts degrading as k grows in the case of

RANSAC. This is related to the fact that our method can ac-

tually differentiate between falsely detected object regions

and correct object regions. This property specifically helps

in cases where after increasing k, we introduce false object

proposals such as yellow cup instead of yellow duck.

4.5. Occlusion LINEMOD Dataset

Though this work does not attempt to address the prob-

lem of partial occlusions in RGB based object pose estima-

tion, it is interesting to see how our approach behaves on

such hard examples after training only on the completely

un-occluded pose instances only. For this, we evaluated our

approach on the Occlusion LINEMOD dataset [1]. This

dataset was created by annotating 8 objects in a sequence

of 1215 frames from the LINEMOD dataset. This dataset

contains challenging cases of severe partial occlusions. We

use the same trained models for evaluation on the Occlusion

LINEMOD dataset as we use for the LINEMOD dataset.

We show comparisons with state-of-the-art RGB based

pose estimation methods on the Occlusion LINEMOD

dataset in Table 3. Our approach outperforms most of the

state-of-the-art methods with a huge margin on the 2D-

Reprojection metric. It also performs comparably against

state-of-the-art on the AD{D|I} metric. This is an inter-

esting result considering that we do not use any occluded

examples during our training process.

5. Conclusion

We have introduced a new object pose estimation

pipeline based on RGB images only. Our pose estimation

pipeline consists of a keypoint proposal network producing

several object pose proposals and a new culling mechanism

to select the best final pose estimate. We show detailed

experimentation on two challenging benchmark datasets

where it outperforms state-of-the-art methods. We also

show superiority of our approach to RANSAC and other

culling strategies in terms of pose accuracies and robustness

against variations in the number of pose proposals.
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