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Abstract

Deep learning methods typically require vast amounts of

training data to reach their full potential. While some pub-

licly available datasets exists, domain specific data always

needs to be collected and manually labeled, an expensive,

time consuming and error prone process. Training with syn-

thetic data is therefore very lucrative, as dataset creation

and labeling comes for free. We propose a novel method

for creating purely synthetic training data for object detec-

tion. We leverage a large dataset of 3D background mod-

els and densely render them using full domain randomiza-

tion. This yields background images with realistic shapes

and texture on top of which we render the objects of inter-

est. During training, the data generation process follows a

curriculum strategy guaranteeing that all foreground mod-

els are presented to the network equally under all possi-

ble poses and conditions with increasing complexity. As a

result, we entirely control the underlying statistics and we

create optimal training samples at every stage of training.

Using a challenging evaluation dataset with 64 retail ob-

jects, we demonstrate that our approach enables the train-

ing of detectors that compete favorably with models trained

on real data while being at least two orders of magnitude

more time and cost effective with respect to data annota-

tion. Finally, our approach performs significantly better on

the YCB-Video Dataset [34] than DOPE [32] - a state-of-

the-art method in learning from synthetic data.

1. Introduction

The capability of detecting objects in challenging en-

vironments is fundamental for many machine vision and

robotics tasks. Recently, proposed modern deep convolu-

tional architecture such as Faster R-CNNs [24], SSD [16],

R-FCN [5], Yolo9000 [23] and RetinaNet [15] have

achieved very impressive results. However, the training of

such models with millions of parameters requires a massive

Figure 1. Example results of Faster R-CNN [24] trained on purely

synthetic data from 3D models. In this paper we introduce a novel

approach for creating synthetic training data for object detection

that generalizes well to real data. Our trained model is able to ro-

bustly detect objects under various poses, heavy background clut-

ter, partial occlusion and illumination changes.

amount of labeled training data to achieve state-of-the-art

results. Clearly, the creation of such massive datasets has

become one of the main limitations of these approaches:

they require human input, are very costly, time consuming

and error prone.

Training with synthetic data is very attractive because

it decreases the burden of data collection and annotation.

Theoretically, this enables generating an infinite amount of

training images with large variations, where labels come at

no cost. In addition, training with synthetic samples allow

to precisely control the rendering process of the images and

thereby the various properties of the dataset. However, the

main challenge for successfully applying such approaches

in practice still remains, i.e. how to bridge the so-called

“domain gap” between synthesized and real images. As ob-

served in [30], methods trained on synthetic data and evalu-
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ated on real data usually result in deteriorated performance.

To address this challenge, several approaches have fo-

cused on improving the realism of training data [9, 1, 8, 33],

mixing synthetic and real data [6, 8, 21], leveraging archi-

tectures with frozen pre-trained feature extractors [10, 14,

22], or using domain adaptation or transfer learning as in

[26, 4, 7].

“Domain Randomization” as introduced in [30] is an-

other strategy to narrow the gap between real and synthetic

data. The authors hypothesized that high randomization

of the synthesis process yields better generalization as re-

ality is seen by the trained models as a mere instance of

the larger domain space it was trained on. They showed

promising first results with a few objects in simple scenar-

ios. More recently, this idea was extended with the addi-

tion of real background images mixed with partial domain

randomized scenes [31, 20], and further improved through

photo-realistic rendering [32]. While those approaches pro-

vided impressive results, the main drawback still remains

i.e. their dependence on real data.

In this paper, we introduce a novel way to create purely

synthetic training data for object detection. We leverage a

large dataset of 3D background models which we densely

render in a fully domain randomized fashion to create our

background images. Thus, we are able to generate locally

realistic background clutter which makes our trained mod-

els robust to environmental changes. On top of these back-

ground images, we render our 3D objects of interest. During

training, the data generation process follows a curriculum

strategy which ensures that all foreground models are pre-

sented to the network equally under all possible poses with

increasing complexity. Finally, we add randomized illumi-

nation, blur and noise.

Our approach doesn’t require complex scene composi-

tions as in [32, 9, 1, 8, 33], difficult photo-realistic image

generation as in [32, 9, 1] or real background images to

provide the necessary background clutter [10, 14, 22, 31,

20, 32], and scales very well to a large number of objects

and general detection capabilities.

To the best of our knowledge we are the first to present

such a purely synthetic method for generating training

data for object instance detection that outperforms mod-

els trained on real data. Furthermore, we demonstrate ex-

perimentally the benefits of curriculum strategy versus ran-

dom pose generation. We also show that generated im-

ages should ideally be composed of synthetic content only

and that the whole background image should be filled with

background clutter. Finally, we perform thorough ablation

experiments to highlight the contributions of the different

components of our pipeline. In the context of the present

work, we created a unique high-quality dataset consisting

of 64 retail objects.

In the remainder of the paper we first discuss related

work, describe our pipeline for generating synthetic images,

demonstrate the usefulness of fully synthetic data, and de-

tail our experiments and conclusions.

2. Related Work

A common approach to improve detection performance

is to extend a real training dataset by adding synthetic data.

For instance, [28, 6, 8] train a single network on such a

mixed dataset. While these methods demonstrate a signif-

icant improvement over using real data only, they still re-

quire at minimum real domain-specific background images

as in [28].

[6, 8] follow an image composition approach to create

synthetic images by combining cut out objects from differ-

ent images. These approaches have the benefit of using data

from the same domain, as the cut out objects are copies of

real images, and as such, they closely match the character-

istics of the real world. The main limitation of these ap-

proaches is that they require performing the cumbersome

process of capturing images of the objects from all possi-

ble viewpoints and mask them. In particular, these methods

can’t produce images from different views or different light-

ing conditions once the object training set is fixed. This is a

clear limitation.

Other lines of work utilize photo-realistic rendering and

realistic scene compositions to overcome the domain gap

by synthesizing images that match the real world as close

as possible [9, 13, 25, 17, 1, 8, 33, 18]. While these meth-

ods have shown promising results they face many hard chal-

lenges. First, producing photo-realistic training images re-

quires sophisticated rendering pipelines and considerable

CPU/GPU resources. Second, realistic scene composition

is a hard problem on its own usually done by hand. Third,

modern rendering engines used for creating synthetic scenes

heavily take advantage of the human perception system to

fool the human eye. However, these tricks do not necessar-

ily work on neural networks and thus require more effort to

bridge the domain gap.

Following their success for image generation, Generative

Adversarial Networks (GANs) have been used in [27, 3] to

further bridge the domain gap. However, such approaches

bring substantial additional complexity as they are difficult

to design and train. To the best of our knowledge they have

not been applied to detection tasks yet.

Another line of work utilizes domain adaptation or trans-

fer learning [26, 4, 7, 12] to bridge the domain gap between

the synthetic and real domain. This can be achieved by cou-

pling two predictors, one for each domain, or by combining

the data from two domains. Domain adaptation and transfer

learning have applications far beyond the transfer from syn-

thetic to real data. Still, they require a significant amount of

real data.

Our method falls into the category of domain random-



ization [30, 31, 32, 20, 2]. The basic idea is to alter the sim-

ulated data with non-realistic changes so that reality seems

to be just a variation. [30] introduced the concept of do-

main randomization to overcome the domain gap. They

use non-realistic textures for rendering synthetic scenes to

train an object detector which generalizes to the real world.

In another line of work, [32] combines domain randomiza-

tion and photo-realistc rendering. They generate two types

of data: First, synthetic images with random distractors

and variations that appear unnatural with real photographs

as background as introduced in [31], and second, photo-

realistic renderings of randomly generated scenes using a

physics engine to ensure physical plausibility. The combi-

nation of these two types of data yields great improvement

over only one source of data and allows the network to gen-

eralize to unseen environments. [20] uses structured do-

main randomization, which allows the network to take con-

text into account. In the context of structured environments

such as street scenes, this yields state-of-the-art results, but

is not applicable to scenarios like picking an item out of a

box where there are no clear spatial relationships between

the location of the different objects.

3. Method

In this section, we present our pipeline for generating

synthetic training data as shown in Fig. 2. As opposed to

previous methods [6, 8, 21], we do not try to diminish the

domain gap by mixing synthetic and real images but cre-

ate purely synthesized training samples. Each training sam-

ple is generated by blending three image layers - a purely

synthetic background layer, a foreground object layer built

following a curriculum strategy and finally a last layer con-

taining occluders.

Since we are dealing with object instance detection and

are interested in rendering our objects geometrically cor-

rect, we make use of the internal camera parameters, i.e. fo-

cal lenth and principal point. To gain additional robustness,

we allow for slight random variations of these parameters

during training.

In the remainder of this section, we will describe in detail

how we create each of these layers and the underlying prin-

ciples which guided the design of the rendering pipeline.

3.1. Background Layer Generation

The background generation method is designed follow-

ing three principles: maximize background clutter, mini-

mize the risk of showing a network the same background

image twice, and create background images with structures

being similar in scale to the objects in the foreground layer.

Our experiments indicate that these principles help to create

training data which allows networks to learn the geomet-

ric and visual appearance of objects while minimizing the

chances of learning to distinguish synthetic foreground ob-

jects from background objects simply from different prop-

erties like e.g. different object sizes or noise distributions.

The background layer is generated from a dataset of 15k

textured 3D models, which is disjoint from the foreground

object dataset. All 3D background models are initially de-

meaned and scaled such that they fit into a unit sphere.

The background layer is created by successively select-

ing regions in the background where no other object has

been rendered, and rendering a random background object

onto this region. Each background object is rendered with

a random pose and the process is repeated until the whole

background is covered with synthetic background objects.

Key to the background generation is the size of the pro-

jected background objects, which is determined with re-

spect to the size of the foreground object as detailed in 3.2.

Therefore, we generate a randomized isotropic scaling S

which we apply to our unified 3D models before rendering

them. We use the scaling to create objects such that the size

of their projections to the image plane corresponds to the

size of the average foreground object. More specifically, we

compute a scale range S = [smin, smax] which represents

the scales which can be applied to objects such that they

appear within [0.9, 1.5] of the size corresponding to the av-

erage foreground object size. For each background image,

we then create a random sub-set Sbg ⊂ S to ensure that

we do not only create background images with objects be-

ing uniformly distributed across all sizes, but also ones with

primarily large or small objects. The isotropic scaling value

sbg is now drawn randomly from Sbg such that background

object sizes in the image are uniformly distributed.

For each background scene, we additionally convert each

object’s texture into HSV space, randomly change the hue

value and convert it back to RGB to diversify backgrounds

and to make sure that background colors are well dis-

tributed.

3.2. Curriculum Foreground Layer Generation

For each foreground object, we start by generating a

large set of poses uniformly covering the pose space in

which we want to be able to detect the corresponding ob-

ject. To do so, we use the approach described in [10] and

generate rotations by recursively dividing an icosahedron,

the largest convex regular polyhedron. This approach yields

uniformly distributed vertices on a sphere and each vertex

represents a distinct view of an object defined by two out-

of-plane rotations. In addition to these two out-of-plane ro-

tations, we also use equally sampled in-plane rotations. Fur-

thermore, we sample the distance at which we render a fore-

ground object inversely proportional to its projected size to

guarantee an approximate linear change in pixel coverage

of the projected object between consecutive scale levels.

Opposite to the background generation, we render the

foreground objects based on a curriculum strategy (see
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Figure 2. Our synthetic data generation pipeline. For each training image we generate a background scene by randomly placing 3D models

from a background object database until each pixel in the resulting image would be covered (see Section 3.1). Then, we add one or many

foreground objects to the scene; each object is randomly positioned in the image but follows a deterministic schedule for rotation and

scale (see curriculum strategy in Section 3.2). Finally, we render the scene using simple Phong illumination [19] with a randomly placed

light source with a random light color, followed by adding random noise to the image and random blur. We also compute a tightly fitting

bounding box using the object’s 3D model and the corresponding pose.
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Figure 3. Example curriculum for a single object. We show the

object in the following order to the network: we start with the first

scale and view and iterate through all in-plane rotations, followed

by different out-of-plane rotations at the same scale. Once we have

iterated through all in- and out-of-plane rotations, we proceed to

the next scale in the same fashion.

Fig. 3). This means that there is a deterministic schedule

at which step each object and pose should be rendered:

1. We start with the scale that is closest to the camera

and gradually move to the one that is farthest away.

As a result, each object initially appears largest in the

image, being therefore easier to learn for the network.

As learning proceeds, the objects become smaller and

more difficult for the network to learn.

2. For each scale, we iterate through all possible out-of-

plane rotations, and for each out-of-plane rotation, we

iterate through all in-plane rotations.

3. Once we have a scale, an out-of- and an in-plane rota-

tion, we iterate through all objects, and render each of

them with the given pose at a random location using a

uniform distribution.

4. After having processed all objects, at all in- and out-of

plane rotations, we move to the next scale level.

For rendering, we allow cropping of foreground objects

at the image boundaries up to 50%. In addition, we al-

low for overlap between each pair of foreground objects

up to 30%. For each object, we randomly try to place it

n = 100 times in a foreground scene. If it can’t be placed

within the scene due to violations of the cropping or overlap

constraints we stop processing the current foreground scene

and start with the next one. For the subsequent foreground

scene, we start where we have left off the last scene.

3.3. Occlusion Layer Generation

We also generate an occlusion layer where we allow ran-

dom objects from the background dataset to partially oc-

clude the foreground objects. This is done by determining

the bounding box of each rendered foreground object and by

rendering a randomly selected occluding object at a uniform

random location within this bounding box. The occluding



object is randomly scaled such that its projection covers a

certain percentage of the corresponding foreground object

(in a range of 10% to 30% of the foreground object). The

pose and color of the occluding object is randomized in the

same way it is done for background objects.

3.4. Postprocessing and Layer Fusion

Having the background, foreground and occlusion layer,

we fuse all three layers to one combined image: the occlu-

sion layer is rendered on top of the foreground layer and

the result is rendered on top of the background layer. Fur-

thermore, we add random light sources with random pertur-

bations in the light color. Finally, we add white noise and

blur the image with a Gaussian kernel where both, the ker-

nel size and the standard deviation, are randomly selected.

Thus, background, foreground and the occluding parts share

the same image properties which is contrary to other ap-

proaches [10, 14, 22, 31, 20, 32] where real images and

synthetic renderings are mixed. This makes it impossible

for the network to differentiate foreground vs. background

merely on attributes specific to their domain. In Fig. 2 we

show some images generated with our method.

4. Experiments

In this section, we report detailed experiments and re-

sults underpinning the benefits of our strategy. After de-

scribing our experimental setup, we demonstrate that syn-

thetic data generation permits to train state-of-the-art ar-

chitectures at no cost that compete favorably with models

trained on real data. Furthermore, we show through abla-

tion experiments the benefits of curriculum vs random pose

generation, the effects of relative scale of background ob-

jects with respect to foreground objects, the effects of the

amount of foreground objects rendered per image, the ben-

efits of using synthetic background objects, and finally the

effects of random colors and blur. We also evaluate our ap-

proach on the publicly available YCB-Video Dataset [34],

and compare it to DOPE [32] - a state-of-the-art method in

learning from synthetic data. In our unoptimized pipeline, it

takes about 0.5s-1.5s to generate a synthetic training image

using an OpenGL software renderer.

4.1. 3D models

In all our experiments (section 4.2 through 4.6), we fo-

cus on the detection of 64 different instances of foreground

objects showing all very different properties in terms of col-

ors, textures (homogeneous color vs. highly textured), 3D

shape and materials (reflective vs. non-reflective). As il-

lustrated by Fig. 4, these objects are mostly classical re-

tail objects that can be found in a supermarket. In addi-

tion to these objects of interest, we leverage a large set of

approximately 15k objects from different application fields

such as industrial objects, household objects or toys that are

used for composing the background. For each foreground

or background object, we generated a textured 3D model

using our in-house 3D scanner.

4.2. Real Training and Evaluation Data

In the present work, we performed all our real data acqui-

sitions using the Intel Realsense D435 camera. While this

camera permits to capture RGB and depth images, we focus

on RGB only. Using this camera, we built a training and

evaluation benchmark of 4851 and 250 real RGB images,

respectively, at a resolution of 960x720. Our benchmark

training set consists of images picturing random subsets of

the objects of interest disposed on cluttered background and

in different lighting conditions (natural day/evening light

vs. artificial light). The evaluation set consists of images

displaying the objects of interest randomly distributed in

shelves, boxes or layed out over random clutter. Since it

is crucial for reliable object detection, we made sure that

in both sets each object is shown in various poses and ap-

pears equally (roughly around 380 times for each object in

the training set and around 40 times in the evaluation set).

All those images were labeled by human annotators and ad-

ditionally controlled by another observer to ensure highest

label quality. This step permitted to correct around 10%

of mislabeled examples which is crucial for fair compar-

ison with synthetic data benefiting from noise-free labels.

The amount of time spent for acquiring the real images was

around 50 hours and labeling required approximately 600

hours for the training set, with 25 additional hours spent for

correction. Note that for real data, acquisition and anno-

tation efforts are always required if new objects are added

to the dataset, and images mixing the new objects and the

legacy objects need to be generated. In contrast, time spent

for scanning the 64 foreground objects was roughly 5 hours,

and this is a one time effort: if new objects are added to the

dataset, only one scan per additional object is required.

4.3. Network Architecture

Modern state-of-the-art object detection models consist

of a feature extractor that aims at projecting images from

the raw pixel space into a multi-channel feature space and

multiple heads that tackle different aspect of the detection

problems, such as bounding box regression and classifica-

tion. In the present work, we use the popular Faster R-CNN

[24] architecture with an Inception ResNet feature extrac-

tor [29]. Weights of the feature extractor have been pre-

trained on the ImageNet dataset. Our implementation uses

Google’s publicly available open source implementation of

Faster R-CNN [11].

4.4. Synthetic vs. Real Experiments

In this experiment, we are demonstrating that our syn-

thetic data generation approach permits to train models that



Figure 4. The 64 objects of our training and evaluation dataset.

Figure 5. Some results from our real eval dataset: Faster R-CNN trained on our synthetically generated training data robustly detects

multiple objects under various poses, heavy background clutter, partial occlusion and illumination changes.

suffer less from the domain gap. To underpin this hypoth-

esis, we compare several Faster R-CNN models initialized

with the same weights, the first five being trained using real

datasets of different sizes and data augmentation, the sixth

being trained according to [10] and the seventh using our

synthetic generation pipeline. All models have been trained

using distributed asynchronous stochastic gradient descent

with a learning rate of 0.0001 for 850K iterations. Fig. 6

shows the performance of the models in terms of mean av-

erage precision (mAP in blue), mean average precision at

50% intersection over union between ground truth and de-

tected boxes (mAP@50IOU in red), average recall at 100

detection candidates (AR@100 in yellow) and the time to

create the training sets (man-hrs in green). These results

show that our approach is on par with the highest perform-

ing models trained on real data while being much more effi-

cient in creating a training dataset, and outperforms [10] by

a wide margin. As we show in the following experiments,

the reasons for this improvement is twofold: First, we use

purely synthetic training images, and thus create no domain

gap within the images (for more details see sec. 4.6), and

second, we propose a curriculum strategy for learning (see

4.5.1).

4.5. Ablation Experiments

In the following experiments, we highlight the benefits

of our curriculum learning strategy and investigate the ef-

fects of relative scale of background objects with respect to

foreground objects, the effects of the amount of foreground

objects rendered per image, the influence of the background

composition and finally the effects of random colors and

blur. As in the previous experiments, models are trained

using distributed asynchronous stochastic gradient descent

with a learning rate of 0.0001.

4.5.1 Curriculum vs. Random Training

As described in the methods section 3.2, data is generated

following a curriculum that ensures that all objects are pre-

sented to the model equally with increasing complexity. In

this experiment, we compare two Faster R-CNN models ini-

tialized with the same weights and trained with the same set

of poses, the only difference being that the poses are ran-

domly shuffled for the first model while the second model

receives the poses in curriculum order. Fig. 7 shows the ben-

efits of our approach versus random pose sampling strategy.



Figure 6. We compare training a model (Faster R-CNN) with vary-

ing amounts of real data, as well as the synthetic training approach

from [10] and our synthetic training. All models have been trained

for the 64 objects of our dataset and tested on the real evaluation

dataset (see Sec. 4.2). We can see a saturation in performance with

increasing real dataset size, and observe that our synthetic training

approach is on par with the highest performing models trained on

real images. One major advantage of creating synthetic datasets is

that it takes significantly less time than creating real datasets.
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Figure 7. Curriculum strategy significantly outperforms random

pose selection.

4.5.2 Relative Scale of Background Objects

In the following experiments, we analyze the effects of

varying the relative scale range of background objects with

respect to foreground objects. Fig. 8 shows that best re-

sults can be obtained for a range that yields background ob-

jects of similar or larger size than foreground objects. Us-

ing smaller scale ranges yields background images that look

more like textures, making it easier for the network to dis-

tinguish the foreground objects.

4.5.3 Amount of Rendered Foreground Objects

In this experiment, we study the influence of the amount of

foreground objects rendered in the training images. Fig. 9

clearly shows that a higher number of foreground objects

yields better performance. Please note that we only set an

0.27

0.39
0.45

0.54 0.55
0.59 0.6

0.45

0.57

0.67
0.73

0.77 0.77
0.82

0.36

0.47

0.56
0.64 0.63

0.68 0.66

[min_scale, max_scale]

0

0.25

0.5

0.75

1

[0.3, 0.9] [0.3, 0.8] [0.1, 0.7] [0.7, 1.3] [0.5, 1.1] [0.5, 1.5] [0.9, 1.5]

mAP mAP@50IOU AR@100

Analysis of the effects of relative scale range of background objects

Figure 8. Comparison between models trained using different rela-

tive scale ranges for background objects. As we see, properties of

the background clutter significantly influences the detection per-

formance.
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Figure 9. Effect of limiting the number of foreground objects in

one image. Detection performance increases with the number of

foreground objects rendered in one training image.
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Figure 10. On the left, the model is trained using foreground ob-

jects rendered on background images which are partially real and

synthetic (as in [31, 20]), and on the right, using foreground ob-

jects rendered on purely synthesized background images.

upper limit to the number of foreground objects drawn in

one image, thus, the average number of objects is typically

lower. In particular, in the early stages of curriculum learn-

ing we can only fit 8-9 objects in one image on average.
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Figure 11. Influences of the different building blocks of our ren-

dering pipeline. Blurring and random light color are important yet

simple operations to apply to the synthetic images to improve the

results.

4.6. Effects of Background Composition

In this experiment, we analyze the effect of using purely

synthesized background images against real background

images which are partially augmented with synthetic ob-

jects. To this end, we fix the percentage of the image which

is covered by foreground objects (20% in our case). In the

first case, the background is a mixture where 70% of a train-

ing sample consists of a real background image and 10%
of synthesized background. In the second case, the back-

ground consists entirely of synthetically rendered objects.

Our results in Fig. 10 show that the fully synthetic back-

ground coverage outperforms images in which only parts of

the image are covered by synthetic objects.

4.6.1 Further Ablation Experiments

In the experiments displayed in Fig. 11, we investigated

the influence of the single steps in the image generation

pipeline. We found that blurring and random light color

are most influential, followed by allowing less random light

color variations.

4.7. Evaluation on YCB-Video Dataset

In this section, we use the publicly available YCB-Video

Dataset [34] to compare our approach with the the state-of-

the-art method DOPE proposed in [32]. This dataset pro-

vides textured 3D scans of the objects of interest and corre-

sponding 3D poses as well as 2D bounding boxes for each

evaluation image. To the best of our knowledge, it has been

mainly used for 6D pose estimation and we are not aware

of any other method evaluating on it in the context of object

detection. For comparing with our model, we take the poses

predicted by DOPE and project them back onto the image

to compute the bounding boxes. As [32], we only train a

subset of 6 objects of the YCB dataset. For evaluation, we

use the same set of key frames as described in [34] and
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Figure 12. Results on YCB-Video Dataset [34]. We compare our

method to DOPE [32] on the YCB-Video Dataset [34]. As we can

see we significantly outperform DOPE on this dataset.

used by [32]. Fig. 12 shows that our approach significantly

outperforms DOPE [32].

5. Discussion

We would like to emphasize the main benefits of fully

synthetic approaches for object detection. Consider an ob-

ject detection system deployed in a warehouse. They need

to maintain a catalogue of thousands of consumer products

changing at a high frequency. While the annotation of large

collections of products is itself very costly, the constant up-

dating of this training data, as a result of changing cata-

logues, amplifies this issue even more and makes it infeasi-

ble to scale. On the other hand, 3D models often exist dur-

ing the product design phase or can be easily acquired with

off-the-shelf 3D scanners. For these reasons, we strongly

believe that fully-synthetic data generation approaches are

critical for making the deployment and maintenance of large

scale object detection pipelines tractable in fast changing

real-world environments.

6. Conclusion

In this work, we leverage foreground and background 3D

models for generating synthetic training data for object de-

tection. We introduce a generation and rendering process

that follows a curriculum strategy to ensure that all objects

of interest are presented to the network equally under all

possible poses and conditions with increasing complexity.

We experimentally demonstrate that models trained purley

in the synthetic domain outperform models trained with im-

ages composed by a mixture of synthetic and real data. Fi-

nally, we show that our approach yields models that com-

pete favorably with object detectors trained purely on real

images. In future work, we will investigate the applicabil-

ity of our approach for instance segmentation and pose es-

timation where collecting annotations becomes even more

difficult.
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