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Abstract

In this work, we propose a novel unsupervised approach

to jointly learn the 3D object model and estimate the 6D

poses of multiple instances of a previously unknown ob-

ject, with applications to depth-based instance segmentation.

The inputs are depth images, and the learned object model

is represented by a 3D point cloud. Traditional 6D pose

estimation approaches are not sufficient to address this un-

supervised problem, in which neither a CAD model of the

object nor the ground-truth 6D poses of its instances are

available during training. To solve this problem, we propose

to jointly optimize the model learning and pose estimation

in an end-to-end deep learning framework. Specifically, our

network produces a 3D object model and a list of rigid trans-

formations of this model to generate instances, which when

rendered must match the observed 3D point cloud to min-

imize the Chamfer distance. To render the set of instance

point clouds with occlusions, the network automatically re-

moves the occluded points in a given camera view. Extensive

experiments evaluate our technique on several object mod-

els and varying numbers of instances. We demonstrate the

application of our method to instance segmentation of depth

images of small bins of industrial parts. Compared with

popular baselines for instance segmentation, our model not

only demonstrates competitive performance, but also learns

a 3D object model that is represented as a 3D point cloud.

1. Introduction

Estimating the 6D poses (3D rotation and 3D transla-

tion) of objects in 3D point clouds is an active research area

with myriad real-world applications. Examples of such ap-

plications include, but are not limited to, robotic grasping

and manipulation, virtual reality, and human-robot interac-

tion [1, 31, 24, 14, 21, 26, 28]. Methods proposed to solve
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this task typically make two strong assumptions (or simplifi-

cations) on the problem setup: (i) a 3D CAD model of the

object is available, and (ii) a (sufficiently large) training set

is available with annotated 6D poses of each object instance.

In this paper, we address an extremely challenging varia-

tion of this task in which neither the CAD model nor the

object poses are available during training or testing. Specifi-

cally, we aim to learn a high-fidelity 3D object model solely

from depth images, without any ground-truth information

about the object or the poses of the observed instances, while

also estimating 6D poses of the object instances and their

segmentations, all within a single deep learning framework.

The proposed task is very challenging for two key reasons.

First, it is a “chicken-and-egg problem”. On the one hand, it

is difficult to estimate the correct pose if the object model is

poor, and on the other hand, an accurate pose estimation is

necessary to learn the object model (see the Ablation experi-

ments in Sec. 4.5). Second, we do not make any assumptions

about the object shape; as a result, the object may contain

near-symmetries, which can introduce suboptimal local solu-

tions into the optimization landscape. Our general problem

setup also brings in additional challenges, such as handling

object self-occlusion and object-object occlusions.

To address this problem, we propose a novel deep learn-

ing framework, summarized in Fig. 1. Our proposed method

takes as input a depth map image of a scene (a bin con-

taining multiple instances of an object), and produces as

outputs a 3D point-cloud model of the object and the 6D

pose of every instance of the object. Our network consists

of four key elements: (i) a 3D object model, initialized as

a random point cloud, which when learned should capture

the 3D structure of the underlying object; (ii) a pose es-

timator neural network that takes as input the depth map

and produces a list of rigid transformations (3D rotations

and translations), one for each instance of the object; (iii)

a renderer that applies each rigid transformation to the 3D

object model, combines the instances, and performs hidden



Figure 1. Overview of our unsupervised approach for 3D object model learning and 6D pose estimation. The pose estimator takes as input a

depth image, then regresses a 6D pose θi for each object instance i. The learned 3D object model is rendered using the estimated poses.

The predicted point cloud is obtained by removing the occluded points from the rendered point cloud using HPR occlusion. The chamfer

distance between the predicted and the observed point cloud is used to drive the learning process. We denote forward propagation through

the model using green arrows, and backpropagation using red. (Best viewed in color.)

point removal (HPR) [13] to obtain a predicted point cloud

in which occluded points have been removed; and (iv) a

loss function that compares the predicted point cloud to the

observed point cloud (obtained from the depth image) using

chamfer distance as in [5, 32]. Instead of voxels [2, 25, 27]),

we use point clouds, which enables our system to learn high-

fidelity object models without the need for meshes (which

were used in [11, 12]). Our network is trained end-to-end

from scratch. All of the learned weights (the pose estimator

network weights and the 3D object model) are optimized

simultaneously via backpropagation.

We evaluate the proposed algorithm qualitatively on

the task of 3D object model reconstruction for the single-

instance case. We evaluate it quantitatively for multiple-

instance cases on the task of instance segmentation from

depth images of an unknown object (in which only the num-

ber of instances is known). The results demonstrate that in

addition to performing better than or comparable to baseline

methods on instance segmentation, our model also produces

3D point-cloud models of a variety of industrial objects. To

summarize, the main contributions of this work are:

• We propose a novel task and generic unsupervised al-

gorithm to jointly learn a complete 3D object model

and estimate 6D poses of object instances in 3D point

clouds.

• We incorporate occlusion reasoning into our framework,

which enables it to learn full 3D models from depth

maps (whose point clouds do not show occluded sides

or occluded portions of objects), and handle learning

symmetric object models via modifications to our loss

function involving multiple rotation channels.

• We provide extensive experiments on unsupervised in-

stance segmentation, demonstrating that in addition to

learning a 3D object model, our method performs better

than or comparably to standard baselines for instance

segmentation.

2. Related Work

The problems of 3D object model learning, 6D pose esti-

mation, and 3D instance segmentation have been addressed

by several prior publications. We review some of the most

related work below.

3D Object Model Learning: Recovering 3D models of

objects from images using deep neural networks has been

gaining significant momentum in recent years [5, 10]. Fan et

al. [5] address the problem of 3D reconstruction from a

single image to generate 3D point clouds. Insafutdinov

and Dosovitskiy [10] address the problem of learning 3D

shapes and camera poses from a collection of unlabeled

category-specific images by assembling the pose estimators

and then distilling to a single student model. However, these

works focus on 3D reconstruction from images containing

a single object instance, which do not consider occlusion

and cluttering. Our work focuses on learning a 3D object

model from depth images with multiple object instances, and

successfully handling the occlusion issues.



With the assumption that no CAD object models are avail-

able (during either training or testing time), Wang et al. [29]

use a neural network to predict the 6D pose and size of previ-

ously unseen object instances. There are two key differences

between our work and theirs. First, their 6D pose and size

estimation uses supervision (from ground truth information

for training data), but our system does not. Second, their

pose estimation is conditioned on region proposals and cate-

gory prediction, which could make it difficult to estimate the

pose of overlapped objects within the proposed bounding

boxes. In contrast, our 6D pose estimation does not depend

on region proposals.

6D Pose Estimation: Deep neural networks have been

used to perform pose estimation from images [4, 31] and

point clouds [6]. Brachman et al. [1] present a generic 6D

pose estimation system for both object instances and scenes

which only needs a single RGB image as input. Tejani et

al. [26] propose Latent-Class Hough Forests for 3D object

detection and pose estimation in heavily cluttered and oc-

cluded scenes. Wang et al. [28] present DenseFusion, which

fuses color and depth data to extract pixel-wise dense feature

embedding for estimating 6D pose of known objects from

RGB-D images. Xiang et al. [31] introduce a convolutional

neural network, PoseCNN, for 6D object pose estimation

from RGB images. Kehl et al. [14] propose an SSD-style de-

tector for 3D instance detection and full 6D pose estimation

from RGB data in a single shot. Rad and Lepetit [21] predict

the 2D projections of the corners of an object’s bounding

box from color images, and compute the 3D pose from these

2D-3D correspondences with a PnP algorithm. Do et al. [4]

introduce an end-to-end deep learning framework, Deep-

6DPose, to jointly detect, segment, and recover 6D poses of

object instances from a single RGB image. Gao et al. [6]

propose to directly regress a pose vector of a known rigid ob-

ject from point cloud segments using a convolutional neural

network. Sundermeyer et al. [24] propose a self-supervised

training strategy that enables robust 3D object orientation

estimation using various RGB sensors while training only

on synthetic views of a 3D object model. Sock et al. [23]

address recovering 6D poses of multiple instances in bin-

picking scenarios using the depth modality for 2D detection,

depth, and 3D pose estimation of individual objects and joint

registration of multiple objects. Note that unlike our pro-

posed method, all of these works require the object’s 3D

CAD model and use supervised learning from large datasets

annotated with ground-truth 6D poses.

Instance Segmentation: Recent advances in instance

segmentation on 2D images have achieved promising results.

Many of those 2D instance segmentation approaches are

based on segment proposals [7, 20, 3]. DeepMask [20] learns

to generate segment proposal candidates with a correspond-

ing object score, then classify using Fast R-CNN. Dai et

al. [3] propose a multi-stage cascade to predict segment can-

didates from bounding box proposals. Mask R-CNN [7]

extends Faster R-CNN by adding a parallel branch to pre-

dict masks and class labels on top of the region proposal

network to produce object masks for instance segmentation.

Inspired by these these pioneering 2D approaches, 3D in-

stance segmentation [30, 33, 19] on point clouds has also

been attempted. Wang et al. [30] propose a similarity group

proposal network to predict point grouping proposals and a

corresponding semantic class for each proposal for instance

segmentation of point clouds. Pham et al. [19] address the

problems of semantic and instance segmentation of 3D point

clouds using a multi-task point-wise network. Li et al. [33]

propose a generative shape proposal network for instance

segmentation. To the best of our knowledge, no previous

work both learns a 3D object model and infers 6D pose from

a 3D point cloud in an unsupervised fashion.

3. Proposed Approach

In this section, we present our unsupervised approach

for model learning and 6D pose estimation, and describe

its application to instance segmentation in 3D point clouds.

In Sec. 3.1, we describe our network architecture. Sec. 3.2

focuses on the core of our approach, the 3D object model

and pose estimator network that are jointly learned through

backpropagation. Sec. 3.3 describes how occlusion modeling

is utilized to facilitate the learning of full 3D object model

from point clouds obtained from depth images. Sec. 3.4

describes the unsupervised loss function. Finally, Sec. 3.5

explains how the predicted point cloud is used for instance

segmentation in 3D point clouds.

3.1. Architecture Overview

Suppose the number of instances N is known, and that

all instances are rigid 6D transformations of a single 3D

shape. Without loss of generality, we define the complete

3D object model X using the form of a point cloud rep-

resentation that describes the object surface. We denote

X = {xi | 1 ≤ i ≤ m} ∈ R
3 as a set of m points with 3D

positions. We denote 6D poses θ ∈ SE(3) as a homogeneous

transformation matrix. In other words, a 6D pose θ = [R|t]
consists of a 3D rotation R ∈ SO(3) and a 3D translation

t ∈ R
3. We denote a viewpoint (camera center) as C. Since

we estimate the 6D poses of objects at a given camera view,

the poses are defined w.r.t. the camera coordinate frame.

Fig. 1 illustrates the overall proposed architecture. The

learned portion of the system consists of a learned 3D object

model and a pose estimator network. The learned object

model is a point cloud in which the 3D point locations are

learnable parameters. Given a depth image with N instances

as input, the pose estimator outputs an estimated a 6D pose

θi for each instance i ∈ [1, · · · , N ]. Next, the system gen-

erates a rendered point cloud by transforming N instances

of the learned object model using the estimated 6D poses.



The occlusion module then uses the HPR operator to remove

points in the rendered point cloud that would not be visible

from the given camera view. This occlusion modeling facili-

tates the learning of a complete 3D object model, because

only unoccluded points will be compared with the observed

point cloud. Finally, chamfer distance, an unsupervised loss,

is used to evaluate the difference between the predicted point

cloud and observed point cloud. The object model and the

pose estimator are jointly updated by backpropagating the

chamfer distance from the loss layer. We now discuss each

module in detail.

3.2. Learning

3D Object Model Learning: We use a 3D point cloud

X ∈ Rm×3 to represent a learnable 3D object model. It is

randomly and uniformly initialized within a cube of size ρ

centered at the origin of the coordinate system, and is then up-

dated during back propagation. The estimated pose for each

instance is applied to render the 3D object model. After ren-

dering, we remove the hidden points using HPR occlusion,

which is discussed in Sec. 3.3. We performed experiments

with multi-layer perceptrons to generate a more structured

point-cloud object model, but they did not improve the per-

formance.

Pose Estimator: For the pose estimator, we use a

ResNet-18 network [8] as the backbone to input a depth

image and estimate a 6D pose θi for each instance i. To

represent 3D rotations, since the Euler-angle representation

can result in gimbal lock1 [34], we instead use quaternions

to represent rotations. The pose estimator regresses the 3D

rotation and translation parameters for each instance. In total,

we have a vector θi ∈ R
7×1 to learn rotation and translation

for each instance, where the first four parameters encode the

quaternion representation of the rotation, and the remaining

three parameters indicate the 3D translation. If each input

depth map contains N instances of an unknown object, then

the output of the pose estimator module is a 7N × 1 vector

containing an estimated pose for each instance.

3D Transformation: From the estimated pose θi for in-

stance i, we compute the rotation matrix Ri and the transla-

tion vector ti. Then, we directly apply the 3D transformation

to the object model X . We refer to this as 3D transformation

with one rotation channel. However, during the experiments

we found that for some elongated objects, the learned 3D

object models are (incorrectly) symmetric across a plane

perpendicular to the long axis (e.g. Bolt, Obj14, and Obj24

shown in Fig. 3(b)). We argue that it is because an incorrect

estimated pose that is a 180◦ rotation (in a plane containing

the long axis) away from the true pose would be a local

minimum of the optimization. This would in turn cause

the model learning to converge to a shape that is invariant

1Certain configurations result in a loss of degree of freedom for the

rotation.

with respect to such a 180◦ rotation. In order to prevent the

model from getting stuck in this incorrect local minimum

of optimization, we propose to use two rotation channels in

the 3D transformation module. It has benefited the model

learning of several objects, as shown in Fig. 3(c). We now

describe the details of using one vs. two rotation channels.

One-rotation-channel setting: For each instance i, we

apply the rotation matrix Ri and translation vector ti to the

object model X to render the transformed point cloud using

XTi
= RiX + ti, where i ∈ [1, · · · , N ].

Two-rotation-channels setting: For each instance i, in

addition to using the rotation matrix Ri obtained from θi as

the first channel’s rotation matrix, R1
i = Ri, we also use Ri

to obtain a second channel’s rotation matrix: R2
i = −Ri.

The intuition is that if one channel’s rotation is near the

incorrect local minimum described above, then the other

channel’s rotation will be near the correct global minimum.

The transformed point clouds of the first and second rotation

channel are X1
Ti

= RiX+ti and X2
Ti

= −RiX+ti, respec-

tively. Note that although −Ri is an orthogonal matrix, it is

not a rotation matrix because it has determinant −1. Thus for

an object X with no plane of symmetry, such as the camera

head in Fig. 3(a), X2
Ti

will not be a physically realizable

rigid transformation of X . However, as long as an object X

has a plane of symmetry, then X2
Ti

will be equivalent to a

rigid transformation of X . This is probably why using two

rotation channels
(

in Fig. 3(c)
)

does not improve the learned

object model for the camera head, but it does improve the

learned model of the other objects (each of which has sym-

metry across a plane). For objects with planar symmetry,

using two vs. one rotation channels is a trade-off between a

high-fidelity object model and training time, because given

N instances, there are 2N possible combinations of rotations,

which require longer training time.

3.3. HPR Occlusion

Since the observed point cloud is sampled from a given

camera view C, some parts of objects are occluded (not visi-

ble). However, the rendered point cloud is generated using

a complete 3D object model. To match the predicted point

cloud with the observed point cloud, we need to remove from

the rendered point cloud those points that would be occluded

from the given camera view C. Thus, we integrate the HPR

operator, which computes occlusions directly from point

clouds (no mesh required), in our HPR occlusion module.

The occlusion module consists of two steps: inversion

and convex hull construction. Given the transformed point

cloud XT and camera view C placed at the origin, we can

create a D-dimensional sphere with radius R, centered at

the origin C, and all the points in XT are included in the

sphere. Here, we perform inversion using spherical flipping,

which is to reflect every point xi inside the sphere along

the ray from C to xi to its image outside the sphere. After



the construction of convex hull of the reflected points and

camera view C, the point xi is marked visible from C if its

image point resides on this convex hull.

After removing the hidden points from the rendered point

cloud, we obtain the predicted point cloud, which is used

to calculate the chamfer distance from the observed point

cloud. The HPR occlusion is able to improve the quality

of the learned object model and facilitate the learning of a

complete 3D object model, as discussed in Sec. 4.5.

3.4. Unsupervised Loss

The difference between the predicted point cloud and

observed point cloud is calculated using chamfer distance.

Note that the predicted and observed point clouds do not

need to contain the same number of points. Let S denote the

observed point cloud, and S̃ the predicted point cloud. For

our loss function, we compute the reconstruction error of S̃

using the chamfer distance as in [32]:

L(S, S̃) = (1)

max

{

1

|S|

∑

x∈S

min
x̃∈S̃

||x− x̃||2,
1

|S̃|

∑

x̃∈S̃

min
x∈S

||x̃− x||2

}

.

The term minx̃∈S̃ ||x − x̃||2 enforces that every 3D point

x in the observed point cloud has a matching 3D point x̃

in the predicted point cloud, and vice versa for the term

minx∈S ||x̃ − x||2. The max operation enforces that both

directional distances between S and S̃ must be small. For the

one-rotation-channel setting, we calculate the loss directly

using Eq. (1).

Loss for two rotation channels: For two rotation chan-

nels, there are 2N combinations of rotations given N in-

stances, requiring a modified loss function:

L =

2
N

∑

i=1

wi · Li, where wi =
exp

(

−γ Li

Lsum

)

∑2N

j=1
exp

(

−γ
Lj

Lsum

)

, (2)

where Lsum is the summation of loss across 2N channel

combinations, Li is the loss calculated using Eq. (1) for each

channel combination i, wi is softmin weight for the loss Li

of each combination, and γ is a variable that starts at 0 and is

increased (with step size 0.002) at each iteration of learning.

The goal of the softmin-weighted loss is to initially weight

both rotation channels equally, but to gradually force the

learning process to select a single winning rotation channel

for each instance as training progresses.

3.5. Instance Segmentation in 3D Point Clouds

The learned object model and estimated 6D poses can

be used for instance segmentation in 3D point clouds. For

each point xi in the observed point cloud S, we find its

nearest neighbor in the predicted point cloud, and assign xi

Figure 2. The pipeline of instance segmentation in 3D point clouds,

and the evaluation metric of instance segmentation. For every point

in the observed point cloud S, we assign to the point the instance

label of its nearest neighbor in the predicted point cloud. The

performance of instance segmentation is evaluated by calculating

the pairwise F1 score.

the instance label of that nearest neighbor. In this way, we

can segment all the instances in the observed point cloud, as

shown in Fig. 2.

The labeling of different instances has to be invariant to

permutations, i.e., it does not matter which specific label an

instance is assigned, as long as the label is not the same as

the labels of the other instances. Following the evaluation

metric based on counting pairs in clustering [22], we propose

to evaluate the performance of instance segmentation using

pairwise F1 score, as shown in Fig. 2, which is described in

detail as follows. Let Sgt and Spred denote the observed point

cloud with ground-truth instance labels and with predicted

instance labels, respectively. For a pair of points (a, b) in

the observed point cloud, let (ag, bg) denote their instance

labels from Sgt, and let (ad, bd) denote their instance labels

from Spred. We define the pairwise labels for Sgt as

L(ag, bg) =

{

1, if ag = bg.

0, otherwise.
(3)

Similarly, we define the pairwise labels L(ad, bd) for Spred.

For every possible pair of points (a, b), we compare the

ground-truth pairwise label L(ag, bg) to the predicted pair-

wise label L(ad, bd), and consider the predicted label for the

pair correct if L(ad, bd) = L(ag, bg). We use this to com-

pute the precision (P ) and recall (R), and compute pairwise

F1 score using F1 = 2P ·R
P+R

. We report each method’s F1

score for instance segmentation in Table 1.

4. Experiments

4.1. Datasets

We generate synthetic depth images by feeding the 3D

CAD model of different objects to our customized simulator.



Figure 3. 3D object models that our method learned for six industrial objects from depth images containing one instance (N = 1). (a) True

object CAD models, compared with the 3D object models learned using the setting of (b) one rotation channel or (c) two rotation channels.

The simulator uses PhysX-3.3.0 [16] to model the physics

of dropping N identical objects one at a time into a bin,

then renders the objects to generate a depth image. We then

extract the observed 3D point cloud directly from each depth

image. To illustrate the robustness and generalization of our

algorithm, we select six industrial objects: a bolt, camera

head, and nut from our own library, plus three representative

industrial objects (Obj01, Obj14, and Obj24) from the public

T-LESS dataset [9]. The 3D CAD models of the six objects

are shown in Fig. 3(a).

For each of the six objects and each number of instances

N = 1, 2, 3, 4, we generated 5,000 depth images (and cor-

responding 3D point clouds) as our training dataset. (In the

scenario of bin picking, each bin contains multiple instances

of a single object.) We select 500 images from the training

dataset as our evaluation dataset. (When evaluating unsuper-

vised learning, it is common for the evaluation set to be a

subset of the training set.)

We qualitatively evaluate the reconstructed 3D object

model and numerically evaluate the performance of instance

segmentation on the evaluation dataset. The ground-truth

instance labels of the depth images and point clouds are only

used during evaluation of instance segmentation, not during

training, because the training is unsupervised. We evaluate

the performance of instance segmentation using the pairwise

F1 score (see Section 3.5).

4.2. Implementation Details

We use PyTorch [17] as the framework to implement our

algorithm. The pose estimator consists of a ResNet-18 [8]

to regress the 3D transformation parameters θi for i =
1, · · · , N . The resolution of depth images is 224 × 224.

We replicate the depth image into three channels as input to

the ResNet-18. No data augmentation is used during training.

We select Adam [15] as the optimizer with default param-

eters. We choose initial learning rate lm = 1e−3 to learn

the 3D object model, and lr = 1e−4 for the ResNet-18 pose

estimator. The learning rate is decreased by a factor of 0.31
after every 50 epochs. For each object, a separate model is

trained for each of N = 1, 2, 3, and 4 instances. Each model

is trained for 250 epochs, with batch size 250.

4.3. Learned 3D Object Model

Fig. 3(b) and (c) show the 3D object models learned from

single instance (N = 1) data using the one-rotation-channel

setting and the two-rotation-channel setting, respectively,

for the six industrial objects. Our method is able to learn

reasonable high-fidelity 3D object models using one rota-

tion channel for the Nut and Obj01. However, it learned

(incorrect) symmetric object models for the Bolt, Obj14, and

Obj24. Using two rotation channels enables the method to

reconstruct high-fidelity 3D object models for these objects

that more closely match the object CAD models shown in

Fig. 3(a). As explained in Section 3.2, the Camera Head

does not have a plane of symmetry, which may explain why

our two-rotation-channel setting did not improve the learned

model for that object. On the whole, the learned 3D object

models in Fig. 3 demonstrate the capability of our algorithm

to reconstruct a complete 3D object model without any su-

pervision from an object CAD model or ground truth pose.

4.4. Instance Segmentation Results

As the task we are solving is new, we could not find

proper baselines based on deep neural networks. Therefore,

we quantitatively compare the performance of instance seg-

mentation of our unsupervised algorithm with two non-deep

clustering baselines: K-means [18] and Spectral Cluster-

ing [18]. As explained in Sec. 3.5, we use the predicted

point cloud generated by our method to perform instance

segmentation on each input 3D point cloud.

We report the pairwise F1 scores in Table 1. As we can

see, with N = 2 and 3 instances, our algorithm significantly

outperforms the two baselines across all six objects. K-

means is slightly better than ours for N = 4 instances on



# Instances Methods Bolt Camera Head Nut Obj01 Obj14 Obj24 Ave. on 6 objects

N=2

K-means 0.89 0.89 0.99 0.97 0.98 0.98 0.95

Spectral Clustering 0.96 0.91 0.90 0.91 0.87 0.94 0.90

Ours (one-rotation-channel) 0.99 0.94 1.0 1.0 1.0 1.0 0.98

Ours (two-rotation-channels) 0.96 0.93 0.99 0.97 1.0 1.0 0.98

N=3

K-means 0.79 0.74 0.98 0.93 0.96 0.96 0.89

Spectral Clustering 0.90 0.83 0.96 0.91 0.81 0.89 0.88

Ours (one-rotation-channel) 0.98 0.93 0.98 0.93 0.98 0.99 0.97

Ours (two-rotation-channels) 0.99 0.84 0.98 0.93 0.96 0.99 0.95

N=4

K-means 0.71 0.65 0.97 0.90 0.92 0.94 0.85

Spectral Clustering 0.85 0.76 0.94 0.86 0.77 0.85 0.84

Ours (one-rotation-channel) 0.81 0.85 0.96 0.90 0.87 0.86 0.88

Ours (two-rotation-channels) 0.88 0.84 0.96 0.89 0.91 0.85 0.89

Table 1. Instance segmentation comparison of baseline clustering methods with our method. F1 scores of instance segmentation on the

validation dataset are shown. The complexity of instance segmentation increases with the number of instances N in each input depth image.

Figure 4. The qualitative results of instance segmentation of 3D point clouds with N = 3 (left) and N = 4 (right) instances.

the Nut, Obj01, Obj14 and Obj24. However, our method

outperforms K-means on the Bolt and Camera Head by about

10% and 20%, respectively. We believe that this is because K-

means is good at clustering the objects with roughly spherical

shapes but not more elongated objects. In contrast, our

algorithm is able to handle both types of object shapes. Fig. 4

shows qualitative results of instance segmentation in 3D

point clouds for N = 3 and N = 4 instances, obtained

using the single-rotation-channel setting.

Note that our algorithm is addressing a much more diffi-

cult task than simply instance segmentation. Unlike the two

baseline algorithms, our algorithm does not just segment the

point clouds into instances, but also simultaneously learns a

high-fidelity 3D object model and estimates the 6D pose of

objects in an unsupervised manner.

4.5. Ablation Experiments

We run a number of ablation experiments to analyze the

importance of various aspects of our algorithm. The com-

plete numerical results of all ablation experiments are pro-

vided in the supplementary material.

Different rotation representations. We compare the

reconstruction quality of the learned object model and the

performance of instance segmentation using three rotation

representations: axis-angle, ortho6D [34], and quaternion.

Fig. 5 compares the learned 3D models of the Nut for N = 1



Figure 5. Effect of the algorithm’s rotation representation on the learned 3D object model. The learned 3D object model is shown from two

different views for N = 1 (top) and N = 2 (bottom) instances of the Nut.

Figure 6. Left: The learned 3D object models using the simplified

two-rotation-channel setting, with different values of radius r in

HPR occlusion, with N = 1 (top) and N = 2 (bottom) instances

of the Bolt. Right: Two views of the 3D object models learned

without HPR occlusion for N = 1 (top) and N = 2 (bottom).

Figure 7. The learned 3D object models of Bolt using the (a) one-

rotation-channel, (b) two-rotation-channel, and (c) simplified two-

rotation-channel setting, for different numbers of instances N .

and 2. It is apparent from the figure that the quaternion

representation of 3D rotations yields a slightly better 3D

model. This mirrors the numerical results, reported in the

supplementary material, which show that the quaternion

representation is able to achieve a smaller average chamfer

distance (smaller loss) than the other two representations.

Varying the radius r in HPR occlusion. In HPR occlu-

sion, the value of the radius parameter r affects the number

of visible points in the predicted point cloud. In Fig. 6, we

show the effect of varying the HPR radius value on the 3D

object model learned by our method. For a single instance

(N = 1) of Bolt, it can learn a reasonable object model

for r = 2.0 and r = 2.9. However, with r = 3.14 the 3D

object model more resembles a cylinder. For two instances

(N = 2), it learns a 3D object model similar to a dumbbell

with r = 2.0, while it learns reasonable 3D object models

with r = 2.9 and r = 3.14. Without using HPR occlusion

(right), it learns a flat 3D object model for both N = 1 and

N = 2. This demonstrates that the HPR occlusion module is

critical for learning complete high-fidelity 3D object models.

Simplified two-rotation-channel setting. To simplify

the training process for the two-rotation-channel setting,

we can calculate a modified loss using L = min(Li), for

i = 1, · · · , 2N , instead of using the softmin-weighted loss.

The learned 3D object models are shown in Fig. 7. Using one

rotation channel, it learns a dumbell-shaped (two-headed)

3D object model of the Bolt. However, our method is able

to learn a high-fidelity object model of the Bolt using the

simplified two-rotation-channel setting. The higher-fidelity

object model also results in improved instance segmenta-

tion: For N = 4, the F1 scores for the one-rotation-channel,

two-rotation-channel, and simplified two-rotation-channel

settings are 0.81, 0.88, and 0.90, respectively.

5. Conclusion

We introduce a novel method to perform a novel task:

the joint unsupervised learning of a 3D object model and

estimation of 6D pose from depth images of multiple in-

stances of an object. We also apply the method to instance

segmentation in 3D point clouds. Unlike the traditional task

of 6D pose estimation, our problem considers those cases

in which neither the CAD model nor the ground-truth 6D

pose is available during training or testing. To handle pose

ambiguity of an unknown object, we jointly optimize the

model learning and pose estimation in an end-to-end deep

learning framework. To handle occlusions, we incorporate

an occlusion model into our architecture, which enables the

predicted point cloud to match the point cloud that was ob-

tained from the input depth map. The task, and our proposed

approach, have applications in numerous areas including

augmented reality, robotics, and 3D scene understanding.
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