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Abstract

Appearance-based gaze estimation maps RGB images to

estimates of gaze directions. One problem in gaze estima-

tion is that there always exist low-quality samples (outliers)

in which the eyes are barely visible. These low-quality sam-

ples are mainly caused by blinks, occlusions (e.g. by eye

glasses), blur (e.g. due to motion) and failures of the eye

landmark detection. Training on these outliers degrades

the performance of gaze estimators, since they have no or

limited information about gaze directions. It is also risky

to give estimates based on these images in real-world ap-

plications, as these estimates may be unreliable. To solve

this problem, we propose an algorithm that detects outliers

without supervision. Based on the input images with only

gaze labels, the proposed algorithm learns to predict a gaze

estimates and an additional confidence score, which allevi-

ates the impact of outliers during learning. We evaluated

this algorithm on the MPIIGaze dataset and on an internal

dataset. In cross-subject evaluation, our experimental re-

sults show that the proposed algorithm results in a better

gaze estimator (8% improvement). The proposed algorithm

is also able to reliably detect outliers during testing, with a

precision of 0.71 when the recall is 0.63.

1. Introduction

Human gaze has been recognized as an important cue

for inferring people’s intent in many applications, such as

human-computer interfaces [4, 25, 29], human-robot inter-

action [18], virtual reality [26, 28], social behavioral anal-

ysis [16], long-range tracking [36] and health care [12].

These successes have lead to more and more attention on

generating good gaze estimates.

Gaze estimation methods can be generally classified into

two main groups: model-based methods and appearance-

based methods [14]. Model-based methods mostly rely

upon active illumination, e.g. infrared illumination used

in pupil center corneal reflections (PCCR) [13]. To ob-
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tain the parameter of the physiological eye model, calibra-

tion is needed before usage. While these methods provide

high accuracy, they also place strong constraints on users’

head movements. Accuracy rapidly degrades as the head

pose changes and people need to do the calibration again to

continue the usage. Meanwhile, eye trackers using model-

based methods are relatively costly, as they rely upon cus-

tom hardware to provide the required illumination. On the

other hand, appearance-based methods generate gaze esti-

mates based on RGB images. They only require commonly

available off-the-shelf cameras and provide relatively un-

constrained gaze tracking. Although the accuracy is gen-

erally lower than the model-based methods, they are of-

ten cheaper, easier to setup, and more robust to head mo-

tion. Recently, the application of deep convolutional neu-

ral networks (CNNs) has reduced estimation error signifi-

cantly [42]. Results on a large number of high quality real

and synthetic datasets [10, 11, 21, 31, 33, 35, 37, 38, 42]

show that deep CNNs can learn to compensate for the large

variability caused by factors such as differences in individ-

ual appearance, head pose, and illumination [3, 6, 7, 21, 23,

30, 43].

Training an appearance-based gaze estimator requires a

large number of training samples. Low-quality samples

(outliers) are inevitable. Due to the fact that people blink

occasionally, there will be closed-eye images in both train-

ing and testing scenarios. Besides blinks, outliers can also

be caused by occlusions, blur and failures of the eye land-

mark detection (see Fig. 1 for examples). Fully trusting all

the samples is risky for two reasons. First, they may degrade

the learning, as they have no or limited information about

gaze direction. Second, during deployment taking action

based on unreliable gaze estimates is risky. For example, a

gaze-based wheelchair should not follow commands gener-

ated by gaze estimates from images where there is a blink

or when the eyes are occluded.

Alleviating the influence of low-quality samples is not a

new topic. Detecting testing samples that are far away from

the distributions of training samples has been well studied

in classification problems, e.g. [9, 15, 22, 24]. However,

most of these works considered supervised learning scenar-



Figure 1. Outliers detected by our proposed algorithm in cross-subject experiments on the MPIIGaze dataset (top row) and on an internal

dataset (bottom row). They are mainly caused by blinks, occlusions, blur and failures of the facial landmark detection. MPIIGaze does not

contain images where landmark detection fails because the landmarks are refined manually.

ios. Moreover, to our knowledge, techniques for handling

outliers in appearance-based gaze estimation have not been

studied previously.

In this manuscript, we propose an algorithm which learns

a subject-independent appearance-based gaze estimator and

an outlier image detector simultaneously, without the need

for outlier labels. The proposed algorithm learns to esti-

mate a confidence score for the gaze estimate of each im-

age, where the confidence score is low for outlier images.

Our results in cross-subject experiments on the MPIIGaze

dataset and an internal dataset show that this algorithm (1)

improves the performance of subject-independent gaze esti-

mation since the impact of outliers is alleviated during train-

ing, and (2) can detect outliers successfully during testing.

Most importantly, our proposed algorithm does not require

any extra labels about image quality since it learns to detect

outliers without supervision.

2. Related work

2.1. Appearance-based gaze estimation

Methods for appearance-based gaze estimation directly

regress from images to gaze estimates. To achieve relatively

unconstrained gaze tracking, they need to address the large

variability in real-world situation, such as differences be-

tween subjects, in head pose and in illumination.

The application of deep CNNs to this problem has re-

ceived increasing attention. Zhang et al. proposed the first

deep CNN for gaze estimation in the wild [42, 44]. They

showed that deep CNNs improved accuracy significantly.

To further reduce estimation error, different directions have

been explored. Some work has focused on using informa-

tion from the face region outside the eye regions [21, 43].

Some work has concentrated on the head-eye relation-

ships [7, 30]. Estimation error was reduced by better uti-

lizing head pose information. Other work has focused on

extracting better features from eye images, e.g., studying

the “two eye asymmetry problem” [6], estimating the eye

landmark locations and gaze directions jointly [40], learn-

ing an intermediate pictorial representation of the eyes [27],

using dilated-convolutions to extract features at high resolu-

tion [3] and fusing information from images captured from

multiple cameras [23].

2.2. Out-of-distribution detection

Out-of-distribution detection (OD detection or ODD) is

an active research topic in the field of classification. The

goal of ODD is to identify testing samples that are far from

the training samples, which are referred to as in-distribution

(ID). For example, for a task of cat-dog classification, a

cat/dog sample is ID, while a horse sample would be OD.

One approach to OD detection is to include OD sam-

ples during training for supervised learning. Liang et al.

proposed ODIN, which increases the difference between

the maximum softmax scores of ID and OD samples [24].

Hendrycks et al. proposed to train anomaly detectors with

an auxiliary dataset [15]. These two works used external

datasets as OD samples. Lee et al. proposed to use gener-

ative adversarial networks (GANs) to synthesize OD sam-

ples, which were used to train a classifier that produced a

concentrated distribution for ID samples but a uniform dis-

tribution for OD samples [22]. These methods all use su-

pervised learning for OD detection, assuming that ID/OD

labels are available for each image.

Our work is most similar to the work of DeVries and

Taylor [9]. Their network learned confidence scores based

on images, where an image that gives an incorrect predic-

tion has a low confidence score and is discounted in the loss

function. We follow the same vein, where we use the mean

squared error during training to define a measure of con-

fidence. Our experimental results show that although this

measure can not reliably distinguish ID and OD samples, it

provides useful information that enables us to learn a reli-

able OD detector. We extend the approach in [9] to handle

two problems. First, for our datasets, the number of outliers

is far less than the number of normal samples. Second, the



outliers have similar appearance to the normal samples.

In particular, we introduce a novel concept: the con-

fidence pseudo-label. We use this pseudo-label to dy-

namically adjust hyperparameters of the loss function for

appearance-based gaze estimation and to balance the num-

ber of positive and negative samples during training.

2.3. Blink detection

Several approaches have been proposed to detect blinks

based on RGB images. Soukupova and Cech defined an eye

aspect ratio that measures the openness of eyes based on

automatically detected facial landmarks [34]. They used a

linear support vector machine (SVM) as the final classifier.

Hu et al. proposed to use a long short-term memory (LSTM)

to capture temporal information [17]. The methods were

learning based, but required labeled samples. Kassner et

al. proposed a hand-crafted algorithm to detect the pupil by

ellipse fitting [20].

In contrast to these methods, our proposed algorithm

learns how to detect and discount the effect of outliers with-

out supervision during the training of gaze estimator. This

reduces the burden of data labeling. It also enables the out-

lier detector and gaze estimator to share features, which re-

duces the computational load in comparison to testing the

two problems separately.

3. Methodology

3.1. Outliers

In this work, we define outliers to be samples in which

the eyes are not fully visible or corrupted, since these im-

ages have no or very limited information about the precise

gaze directions. From available datasets, we have identified

four main cases that significantly affect gaze estimation by

human observers: blinks (more than half of the pupil is cov-

ered by the eyelid), occlusions (the center or more than half

of the pupil is not visible), failures of the facial landmark

detection (the bounding box of the eye given by the land-

mark detector does not cover the whole eye) and blur (the

pupil is not clearly visible). Some examples of outliers from

the MPIIGaze dataset [42] and an internal dataset are illus-

trated in Fig. 1.

In the following experiments, we refer to the normal

samples as negative samples and the outlier samples as pos-

itive samples.

3.2. Image Preprocessing

We use the data normalization method introduced

in [41]. This method rotates and scales an image so that

the resulting image is taken by a virtual camera directed at

a reference point on the face from a fixed distance and can-

cels out the roll angle of the head. Images are normalized by

perspective warping, converted to gray scale and histogram-

equalized. The ground truth gaze angles are also normalized

correspondingly. We use OpenFace [1] for automatic facial

landmark detection.

3.3. Weighted mean squared error

Our appearance-based gaze estimator estimates both yaw

and pitch gaze angles. A common cost function used to train

a gaze estimator is the mean squared error (MSE) between

the estimated and ground truth gaze angles, i.e.,

MSE =
1

N

N
∑

i

∥

∥gi − ĝ(xi)
∥

∥

2

2
, (1)

where i is sample index, gi is the true gaze, ĝ(xi) is the es-

timated gaze, xi is the image. In the rest of this manuscript,

we define ei =
∥

∥gi − ĝ(xi)
∥

∥

2

2
. The MSE assumes that all

samples in the training set should contribute equally. We ex-

pect a performance degradation if there exist a few outliers

in the training set.

To alleviate the impact of outliers, we considered the

weighted MSE, which can be written as follows:

weighted MSE =
1

N

N
∑

i

[

ĉ(xi)ei
]

, (2)

where ĉ(xi) is a confidence score ranging from 0 to 1. We

expect a high confidence score for a normal sample and

a low confidence score for an outlier so that outliers con-

tribute less to the cost function. During testing, ĉ(xi) can

be used to detect outliers. To avoid ĉ(xi) = 0, ∀i, we add

penalties for ĉ(xi) being too small. The final loss function

can be written as:

1

N

N
∑

i

J(ei, ĉ(xi)), (3)

where

J(e, c) = ce− αc− λ log c, (4)

where α and λ are the hyperparamters of the penalties. We

will explain the rationale for these penalties in detail later.

3.4. Architecture

The architecture of our proposed network is presented in

Fig. 2. The general architecture is inspired by iTracker [21]

and Dilated-Net [3]. It takes an image of the face and im-

ages of both eyes as input and outputs the gaze estimates.

We also adopt the gaze decomposition method proposed

in [5] to improve the performance of gaze estimation.

The input images xi are first fed to three base CNNs

that perform feature extraction on three image regions: the

whole face and the two eyes. The architecture of the base



Figure 2. Architecture of the proposed network. (a) The main network that extracts features from the input image xi. (b) The gaze

estimation branch. (c) The confidence estimation branch. (d) The base CNN is the basic component of (a). FC denotes fully-connected

layers, Conv denotes convolutional layers and Dilated-Conv denotes dilated-convolutional layers with r as the dilation rate.

CNNs is shown in Fig. 2(d). Each CNN has five con-

volutional layers, one max-pooling layer and four dilated-

convolutional layers [39]. The CNNs differ in their dilation

rates due to the differences in the sizes of the input image

regions. The dilated-convolutional layers learn high-level

features at high resolution and capture subtle appearance

differences. The feature maps extracted by the base CNNs

are then fed to fully-connected (FC) layers. The two base

CNNs that take the eyes as input share the same weights.

We denote the parameters of these networks by φ.

The outputs of the three feature extractors are concate-

nated and then fed to the gaze estimation branch and the

confidence estimation branch. The gaze estimation branch

has one FC followed by a linear output layer with two out-

puts corresponding to yaw and pitch. (see Fig. 2(b)). The

confidence estimation layer also has one hidden FC layer

but uses a sigmoid function in the output layer, which has

only one output (see Fig. 2(c)). We denote the parameters

of the gaze estimation branch and the confidence estimation

branch by θ and ψ respectively.

Rectified Linear Units (ReLUs) are used as the activation

functions. Zero-padding is applied to regular convolutional

layers and no padding is applied to dilated-convolutional

layers. The strides for all (dilated-) convolutional layers

are one. The initial weights of the first four convolutional

layers are transferred from VGG-16 [32] pre-trained on the

ImageNet dataset [8]. The weights in all other layers are

randomly initialized. Batch renormalization [19] is also ap-

plied to these layers. Dropout layers with dropout rates of

0.5 are applied to all FC layers. During training, all weights

in all layers are updated.

We implement our network in TensorFlow. We use the

Adam optimizer with its default parameters and a batch size

of 64. An initial learning rate of 0.001 is used. It is divided

by 10 after every ten epochs. The training proceeds for 25
epochs. We apply online data augmentation including ran-

Figure 3. Pseudo-label c∗ as a function of estimation error e for

different hyperparameter settings.

dom cropping, scaling, rotation and horizontal flipping.

3.5. Training procedure

We train the nework based on two assumptions. First, we

assume ei to be a good indicator of the quality of the input

sample. Generally most normal samples will have low esti-

mation error, whereas many outliers may have large estima-

tion error. Second, we assume that a deep network can learn

to distinguish between normal samples and outlier samples.

We define the confidence pseudo-label of sample xi, c
∗

i

or c∗(ei), to be the solution of the following optimization



problem:

c∗
i
= argmin

c

J
(

ei, c
)

subject to 0 ≤ c ≤ 1
(5)

where J is the differentiable loss function defined in (4).

The pseudo-label c∗
i

has the following closed-form solution:

c∗
i
=

{

1 if ei ≤ α+ λ
λ

ei−α
if ei > α+ λ

(6)

As the gaze estimation error ei increases, the pseudo-label

c∗
i

decreases. Their relationship is shown in Fig. 3. This

is consistent with the first assumption described above. We

choose to use both a linear penalty and a log penalty in the

loss (3) because we want the confidence pseudo-label to sat-

urate at one for small values of ei and to have control of the

rate of decrease for larger values of ei.

During training, we use different mini-batches to train

the gaze estimation branch and the confidence estimation

branch. To be specific, for the gaze estimation branch, we

Algorithm 1 Training the Gaze Estimator/Outlier Detector

1: Initialization: S = {xi, gi}Ni=1, m = 64, λ = 5e−4,

α = ( π

45
)2 rad2, THlow = 5%, THhigh = 15%,

epoch warmup = 3, epoch stop, network parameters

(φ, θ, ψ);
2: for t = 1 : epoch stop do

3: Initialization:St = S, Sp
t = ∅, Sn

t = ∅;

4: while St �= ∅ do

5: Sample s of size m from St without replacement

6: for (xi, gi) in s do

7: Calculate ei on (xi, gi)
8: Calculate c∗i according to (6) based on (ei, λ, α)
9: if c∗i ≤ 0.5 then

10: Sp
t .append((xi, gi))

11: else

12: Sn
t .append((xi, gi))

13: end if

14: end for

15: if t ≤ epoch warmup then

16: Update (φ, θ) on s minimizing (1)

17: else

18: Update (φ, θ) on s minimizing (3)

19: # samples balancing

20: Sample sp of size m

2
from Sp

t−1
with replacement

21: Sample sn of size m

2
from Sn

t−1 with replacement

22: Update (φ, ψ) on (sp, sn) minimizing (3)

23: end if

24: end while

25: if |Sn
t |/|S| < THlow then

26:
√
α ← √

α− π

180

27: else if |Sn
t |/|S| > THhigh then

28:
√
α ← √

α+ π

180

29: end if

30: end for

sample mini-batches uniformly from the training set. For

the confidence estimation branch, we try to balance the

number of normal and outlier samples within each mini-

batch. Otherwise, the trained confidence estimation net-

work would be strongly biased.

As the outlier labels are not availables, we use the confi-

dence pseudo-label defined above to balance the samples.

To be specific, we let the number of samples that have

c∗ > 0.5 equal to the number of samples that have c∗
i
< 0.5

within each mini-batch.

We also use the pseudo-label to adjust the hyperparame-

ter α of the loss function during training. We set the initial

value of α = ( π

45
)2 rad2, which corresponds to 4◦, and up-

date α during training to maintain the percentage of train-

ing samples with c∗
i
< 0.5 to be between THlow = 5% and

THhigh = 15%. To stabilize the training, we first train the

network using the MSE (1) for epoch warmup = 3. The

value of λ was fixed to 5e − 4 based on a grid search. The

procedure is presented in Algorithm 1.

Our proposed algorithm may assign a high confidence

pseudo-label to an outlier if it happens to have a small

training error, or a low confidence pseudo-label to a nor-

mal sample if it happens to have a large estimation error.

However, our experimental results show that although some

confidence pseudo-labels c∗
i

may be incorrect, they provide

sufficient information for training an accurate gaze estima-

tor and reliable outlier detector.

4. Experiments

We evaluated our proposed algorithm on two datasets:

MPIIGaze dataset and an internal dataset. We created a

modified version of MPIIGaze dataset, where 10% of the

images were corrupted. The internal dataset already con-

tains many outliers due to blinks, occlusions and failures of

the landmark detection as it was recorded by video and was

not filtered.

We conducted two tests for each dataset: Test I evalu-

ated the gaze estimation accuracy, and Test II evaluated the

performance of outlier detection.

4.1. Datasets

MPIIGaze. This dataset contains full face images of 15

subjects (six female, five with glasses). We used the “Eval-

uation Subset”, which contains 3,000 randomly selected im-

ages for each subject. We refer to these samples as uncor-

rupted samples, and this dataset as Clean MPIIGaze.

We created a modified version of MPIIGaze (Corrupted

MPIIGaze) by adding 300 outlier images per subjects,

which were generated by significantly disturbing the facial

landmarks (see examples in Fig. 4).

Internal dataset. This dataset contains full face videos

of 21 subjects (10 female, 10 with glasses). It contains



Figure 4. Examples of the generated corrupted samples of Cor-

rupted MPIIGaze.

Figure 5. Example images of the internal dataset. This dataset

contains 21 subjects with large variability of head pose and face

location.

significant variations in head pose and face location. Some

example images are presented in Fig. 5. OpenFace [1] was

used for facial landmark detection. The sample rate was 10

fps.

We used this dataset to create two new datasets. The first

dataset, Clean Internal, contained most of the collected

images in the dataset. We removed images whose confi-

dence for the landmark detection given by OpenFace was

lower than 0.02 or images with significantly abnormal land-

marks. We also removed images during blinks, which were

detected by the algorithm proposed in [2] with an empirical

threshold. Clean Internal contains 496, 695 images (about

24, 000 images per subject).

The second dataset, Corrupted Internal, contains the

images in which the faces are in the lower regions in the

images. This set contains more samples that fail landmark

detection. It contains 185, 357 images in total (about 8, 800
images per subject).

4.2. Dataset labeling

To evaluate the performance of outlier detection, we la-

beled a subset of each dataset. We manually labeled each

sample as being either normal or an outlier. For the MPI-

IGaze dataset, we labeled the set of uncorrupted samples

whose estimated confidence scores were less than or equal

to 0.5, i.e.,
{

xi : ĉ(xi) ≤ 0.5
}

. The size of this subset is

659.

For the internal dataset, we labeled 10% of Corrupted

Internal by downsamping it from 10 fps to 1 fps. This sub-

set contained 18, 535 images in total, among which 1, 326
(7.15%) samples were labeled as outliers.

4.3. Results - MPIIGaze dataset

In Test I, we trained on Corrupted MPIIGaze and tested

on Clean MPIIGaze to evaluate the gaze estimation accu-

racy. In Test II, we trained on Corrupted MPIIGaze and

tested on Corrupted MPIIGaze to evaluate the performance

of outlier detection. Subjects used in training and testing

were different. We conducted 15-fold leave-one-subject-

out cross-validation.

Test I: Performance of gaze estimation. We com-

pared our proposed method with two baselines without

confidence estimation: one was trained on Clean MPI-

IGaze, and the other was trained on Corrupted MPIIGaze.

The mean angular errors over 15 subjects from Clean

MPIIGaze are presented in Table 1.

Without confidence estimation, the gaze estimation

error degraded from 4.5◦ to 5.1◦ when the corrupted

images were added into training set. This indicates that

including low-quality samples in the training set signifi-

cantly degrades the performance. Our proposed confidence

estimation reduced the gaze estimation error from 5.1◦

to 4.7◦ (7.8%), i.e., the degradation decreased by 66.7%
(from 0.6◦ to 0.2◦). This small degradation remaining is

partly because that some normal samples were assigned

low confidences as their training errors were high.

Test II: Outlier detection. We first tested on Cor-

rupted MPIIGaze. We compared the confidence score

from the confidence estimator, ĉ, of the uncorrupted and

corrupted samples. For the uncorrupted samples, 95%
samples had ĉ > 0.9. For the corrupted samples, 99%
samples had ĉ < 0.1. All of the corrupted samples had

ĉ < 0.5, except for one sample for which ĉ = 0.69.

We then tested on Clean MPIIGaze. Among the 45, 000
original uncorrupted samples, 659 samples (1.5%) were as-

signed ĉ ≤ 0.5. These samples have low ĉ mainly due to

blinks or blur. Some examples are presented in Fig. 1. We

Training set
Confidence

estimation
Mean error

Clean MPIIGaze No 4.5◦

Corrupted MPIIGaze No 5.1◦

Corrupted MPIIGaze Yes 4.7◦

Table 1. Cross-Subject Gaze Estimation on Clean MPIIGaze.

Training set
Confidence

estimation
Mean error

Corrupted Internal No 4.1◦

Corrupted Internal Yes 3.8◦

Table 2. Cross-Subject Gaze Estimation on Clean Internal.



0 0.1 0.2 0.3 0.4 0.5

Threshold

0.5

0.6

0.7

0.8

0.9

1
P

re
c
is

io
n

Figure 6. Precision as a function of the threshold of ĉ tested on the

uncorrupted samples of Clean MPIIGaze.
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Figure 7. Mean angular error of predicted positive/negative sam-

ples as a function of decision threshold C0 on Clean MPIIGaze.

manually labeled the 659 detected outliers, and found that

507 out of 659 samples were outliers, i.e., the precision was

76.9%. We plot the precision as a function of the threshold

of ĉ in Fig. 6. The smaller the threshold, the higher the pre-

cision. The precision was above 90% when the threshold

was 0.1. These results are significant given that the number

of normal samples is far larger than that of outliers.

We also evaluated the relationship between the estima-

tion error and ĉ. For a decision threshold C0 ∈ [0, 1]
on ĉ, we calculated the mean angular of predicted positive

samples (ĉ ≤ C0) and that of predicted negative samples

(ĉ > C0). Fig 7 presents the mean angular errors as a func-

tion of decision threshold C0. The results show that when

the threshold was small, e.g. C0 = 0.5, the mean angular

error of samples with ĉ ≤ C0 was significantly greater than

the mean angular error of samples with ĉ > C0. This in-

dicates that the outliers detected by our proposed algorithm

indeed have large estimation errors.

4.4. Results - Internal dataset

Similar to MPIIGaze, in Test I we trained on Corrupted

Internal and tested on Clean Internal. In Test II we trained

on Corrupted Internal and tested on Corrupted Internal. We

conducted five-fold cross-subject cross-validation.

Test I: Performance of gaze estimation. We trained

a network without confidence estimation as a baseline. We

tested on Clean Internal. The mean angular errors over
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Figure 8. The precision-recall curves of different algorithms on

Corrupted Internal.The circle indicates the best F1-score.
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Figure 9. Mean angular error of predicted positive/negative sam-

ples as a function of decision threshold C0 on Corrupted Internal.

subjects are presented in Table 2. Our proposed method

achieved an error of 3.8◦, which was 0.3◦ (7.3%) lower

than the 4.1◦ achieved by the baseline.

Test II: Outlier detection. We first tested on the

subset of Corrupted Internal that was labelled. Fig. 8

presents the precision-recall curves. The precision of a

random guess was 7.15%. The area-under-curve (AUC) of

our proposed algorithm was 0.68. The circle on the black

curve indicates the position of the best F1-score (0.67),

where the precision was 0.71 and the recall was 0.63.

We then tested on the entire Corrupted Internal dataset.

Fig. 9 presents the mean angular errors as the threshold on ĉ

varied. Similar to the results obtained from the MPIIGaze,

we observed a large gap between errors of samples with low

ĉ and high ĉ.

4.5. Analysis

We evaluated the relationship between the pseudo-label

c∗ and the estimated label ĉ at the end of training by 15-fold

cross-validation trained on Corrupted MPIIGaze. Fig. 10

presents the histograms of c∗ and ĉ for all folds.

For the uncorrupted samples, the distributions of c∗ and ĉ

were very similar. The distributions were both concentrated
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(c) c∗ of corrupted samples

0 0.2 0.4 0.6 0.8 1

Confidence estimation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
a

b
il

it
y

(d) ĉ of corrupted samples

Figure 10. The histograms of c∗ and ĉ for the uncorrupted and cor-

rupted samples at the end of training on Corrupted MPIIGaze. The

distribution of c∗ and that of ĉ is quite different for the corrupted

samples.

around 1. This is not surprising, since the vast majority of

samples are not outliers and have low estimation errors.

For the corrupted samples, their distributions were differ-

ent. While 30.2% of the corrupted samples had c∗ > 0.9,

none of them had ĉ > 0.9 (the maximum value of ĉ = 0.87).

Also, while only 61.7% of the samples had c∗ < 0.1, 99.4%
of the samples had ĉ < 0.1. The confidence pseudo-label

c∗ is not a reliable measure of whether or not a sample is

an outlier. However, our network can still use this informa-

tion to train a confidence score estimate ĉ that can be used

to detect outliers reliably. This is because the parameters of

the network are chosen to minimize (3), not the difference

between ĉ and c∗.

5. Conclusions

Outliers (low-quality samples) in appearance-based gaze

estimation are caused by factors such as blinks, occlusions,

blur and failures of the facial landmark detection. We

proposed an effective algorithm that learns to detect out-

liers during training of an appearance-based gaze estima-

tor. Only gaze direction labels are required. Outlier labels

are not required. This reduces manual work required in la-

belling the dataset. Outliers are assigned low confidence

scores so that their impact on the trained network is reduced.

In our experiments, this lead to a 7.3% − 7.8% reduction

in error compared to a model trained without our proposed

algorithm. The learned outlier detector was able to detect

outliers reliably, with a precision 0.71 when the recall was

0.63.

One limitation of this work is that the confidence pseudo-

label does not distinguish between outliers and samples

where eyes are clearly visible and well localised but the es-

timation errors are high. These difficult samples should be

very useful for the training, but their impact might be re-

duced by our current algorithm. Further improvement may

be possible by better modelling this problem.

Appearance-based gaze estimation can play an important

role in many real-world scenarios, e.g. human-robot inter-

action, and driver monitoring. The proposed algorithm can

reduce the risk caused by low-quality samples, increasing

the reliability of gaze-based control systems.
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