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Abstract

The motion blur in an image is due to the relative mo-

tion between the camera and the scene being captured. Due

to the degraded quality of the motion-blurred images, it is

challenging to use them in different applications such as

text detection, scene understanding, content-based image

retrieval, etc. Typically, a motion-blurred image is mod-

eled as a convolution between the un-blurred image and a

Point Spread Function (PSF). Motion de-blurring is sensi-

tive to the estimated PSF. In this paper, we propose to ad-

dress the problem of motion deblurring by estimating PSF

using a learning-based approach. We model motion blur

as a function of length and angle and propose to estimate

these parameters using a learning-based framework. It is

challenging to find distinct features to precisely learn the

extent of motion blur through deep learning. To address

this, we model an evidence-based technique to select the rel-

evant features for learning from a set of features, based on

the confidence generated by combining the evidences using

Dempster Shafer Combination Rule (DSCR). We propose to

use Clustering and Collaborative Representation (CCR) of

feature spaces to learn length and angle. We model the de-

blurred image as an MRF (Markov Random Field) and use

MAP (maximum a posteriori) estimate as the final solution.

We demonstrate the results on real and synthetic datasets

and compare the results with different state of art methods

using various quality metrics and vision tools.

Index terms— Image restoration, motion deblurring,

Point Spread Function (PSF), Dempster Shafer Combina-

tion Rule (DSCR), Clustering and Collaborative Represen-

tation (CCR), maximum a posteriori (MAP) estimate.

1. Introduction

The degradation of the image takes place due to the ad-

vent of blur and noise on the true (un-blurred) image. Mo-

tion blur occurs due to the relative motion between camera

and the scene. Typically, blurred image is modelled as a

convolution of un-blurred image and the motion PSF. Image

deblurring is a process of reconstructing true image from

the degraded image. The process of image deblurring is

challenging due to the unknown PSF. Various methods are

proposed in literature to perform image deblurring.

Image deblurring algorithms can be classified into two

categories based on the approach used to restore the image

[32]. The first category of algorithms perform PSF esti-

mation and image restoration simultaneously. The second

category of algorithms demand estimation of the PSF first

to apply classical deconvolution methods.

Numerous methods [16], [2], [23], [22] which perform

PSF estimation and image restoration simultaneously, as-

sume sparsity of image gradients. These are widely used in

trivial vision tasks including denoising, stereo, and optical

flow. However, authors in [22] show, deblurring methods

based on image gradients tend to favor blurry images over

clear images, especially for algorithms formulated within

the maximum a posterior (MAP) framework. To overcome

this problem, authors in [9], [43] discuss a heuristic edge

selection to achieve better results in the MAP framework.

Natural image priors such as normalized sparsity prior [20],

L0-regularized prior [44], and internal patch recurrence [24]

are also introduced to favour true images instead of blurred

ones. However, these natural image models do not general-

ize well for specific images such as face [30], text [6], [8],

[31], and low illumination [17] images.

A large class of deblurring algorithms use the Total Vari-

ation (TV)-type priori [4], [41], [29]. They mostly differ

in the optimization method used for solving the resulting



cost function and specific definition of the TV term. Other

methods take advantage of nonlocal differential operator as

the prior with different norms [45], [51], [38]. Sparse rep-

resentation of images in some appropriate domain is also

done in different sparsity-based methods [27], [13]. In [21],

Hessian norm priori is used for deblurring with biomedical

applications. Authors in [28] use example-based manifold

priors. A progressive intra-scale, inter-scale approach is

used in [49] for non-blind image deconvolution. Authors in

[36] have proposed a cost function that involves data fidelity

term with different derivative terms for motion de-blurring

of natural images. The challenge with these algorithms is,

the regularization parameter controls the final estimate from

being too smooth or exhibiting unpleasant noise amplifica-

tion and ringing artifacts [18].

Authors in [1], [3], [42], [7] and [14] propose to esti-

mate the PSF and then apply classical de-convolution pro-

cess. Authors in [40] propose an algorithm that uses the

Harr wavelet transform (HWT) in discriminating different

types of edges in order to determine the extent of blur in an

image. Authors in [1] propose to transform image in cep-

strum domain to estimate the motion blur kernel. Authors in

[19] use Radon transform to obtain the properties of motion

blur in cepstral analysis. Authors in [46] estimate extent of

motion blur with the help of periodic patterns in frequency

spectrum. They propose blur direction identification using

Hough transform and blur length estimation by collapsing

the 2D spectrum into 1D spectrum. Authors in [15] pro-

pose another method consisting of Hanning window and

histogram equalization as pre-processing steps. They ap-

ply Hanning window to remove boundary artifacts and also

improve the contrast of the image by performing histogram

equalization. Rekleities [35] use steerable filter to detect the

motion blur angle corresponding to maximum response of

gradients. Chang et al. [3] makes use of bispectrum to de-

tect motion blur parameters. Yoshida et al. [48] present a

method using Discrete Cosine Transform (DCT) of image

to detect uniform motion blur parameters.

Above methods are sensitive to the estimation of mo-

tion blur parameters. To address this, authors in [10] dis-

cuss a learning based approach to determine the motion

blur parameters using radial basis function, and use neu-

ral networks to estimate length of the blur. They use sum of

Fourier coefficients as features. Authors in [5] use Artificial

Neural Networks (ANN) and methods of multi-resolution

decomposition of image to extract motion blur features, and

use SVM (Support Vector Machines) for classification of

different extent of motion blur. They demonstrate the chal-

lenges of using deep learning algorithms in de-blurring the

natural images or images with compression distortions, and

claim the results to have blocky, blur, and ringing artifacts.

The deep learning methods find challenges in learning the

features for PSF estimation. It is challenging to find distinct

features to precisely learn the extent of motion blur. To ad-

dress this, we propose to score features based on the confi-

dence generated by combining the evidences using Demp-

ster Shafer Combination Rule (DSCR), and select the rele-

vant features for learning. The novelty of this work lies in

proposing a new way of modelling the PSF as a function of

motion blur parameters (length and angle) and then using

learning based framework to estimate the blur parameters.

We demonstrate that our estimate of the PSF is much more

accurate than SoA. Another major contribution of the work

is in the technique used to select the features using evidence

theory and DSCR for estimating the motion blur parameters

of the PSF.

Towards this, we propose to model blur PSF as a linear

function of length and angle of motion blur. We use learn-

ing based framework to estimate the length and angle to

determine PSF and then deblur the image. Towards this, we

make the following contributions:

• We propose to estimate PSF and model deblurred im-

age as MRF (Markov Random Filed) and use MAP

(maximum a posteriori) estimate as the final solu-

tion. We minimize the posterior energy using graph-

cut [25].

• We propose to model PSF as a function of length and

angle (motion blur parameters) and use learning based

framework to estimate PSF. Towards this,

– We synthetically generate data for learning extent

of motion blur using natural images.

– We propose to use a variant of clustering and col-

laborative representation (CCR) of the features

for learning.

– We propose to select the relevant features for

CCR based on the confidence generated using

DSCR.

– We propose to generate the confidence for differ-

ent features using DSCR by combining the ev-

idences generated using the variance in feature

descriptors for motion blur with different blur pa-

rameters (length-l and angle-θ).

• We demonstrate the results on real and synthetic

datasets and compare the results with different state of

art methods using qualitative analysis.

2. Motion De-bluring

Typically, blurred image is modelled as a convolution of

true image and the PSF, and is given by

g = f ⊛ h+ η (1)

where g denotes the blurred image, f is the true image, h is

PSF, and η denotes the noise (additive Gaussian noise).



In frequency domain, blurred image is modelled as mul-

tiplication of true image and Optical Transfer Function

(OTF), and is given by,

G = FH + η (2)

Where H is the PSF in frequency domain, known as OTF.

If the scene f to be captured, translates with respect to

the camera at a constant velocity (vrelative) under an angle

of θr radians with the horizontal axis in the exposure in-

terval [0, texposure], the distortion can be modelled as uni-

dimensional.

We then model the length of motion l as a product

of relative velocity vrelative and the maximum exposure

texposure. i.e.

l = vrelative × texposure (3)

Also the point spread function (PSF) h, for uniform mo-

tion blur can be modelled as a function of length l or L and

angle θ and is given by [34], [47], [39],

h =

{
1

L
if
√

x2 + y2 ≤ L
2

and x
y
= −tanθ

0 otherwise
(4)

where, x and y are the independent variables defining the

axes for f and g. Similarly, OTF can be given by the sinc
function and is defined by,

H(u, v) = sinc(πL(usinθ + vcosθ)) (5)

We estimate the length l and angle θ using proposed learn-

ing based framework.

We model deblurred image as MRF and use MAP es-

timate as the final solution. The energy function for the

observation model is given by,

E(f |g) =
∑

∀p

Dp(fp)

︸ ︷︷ ︸

Data term

+λ
∑

p,q∈Np

Vp,q(f(p), f(q))

︸ ︷︷ ︸

Prior term

(6)

where,

Dp(fp) =
∑

∀p

(g − hf)
2

and,

Vp,q(f(p), f(q)) = min(T , |f(p)− f(q)|)

where h is blur PSF, Np is a neighborhood term, λ is a

weight given to regularization term. Data term Dp(fp) is

a cost of assigning a label to a pixel, Vp,q is a prior term

which acts as a regularization term, and T is a threshold and

is used as a tuning parameter. However, for the cases other

than the noisy observations, we find that the regularization

weight λ is to be kept low to avoid over smoothening. We

minimize the posterior energy using graph-cut [25].

3. Learning Based PSF Estimation

In this section, we discuss the proposed framework for

restoration of blurred image by learning based PSF esti-

mation. The framework of learning based PSF estimation

for image restoration is shown in Figure 1. The frame-

work involves generation of training data for learning mo-

tion blur, feature extraction, feature selection and feature

clustering towards collaborative representation for PSF es-

timation, and deconvolution to obtain the de-blurred image.

The training dataset is generated by synthetically adding

blur to a set of un-blurred images with different blur pa-

rameters (length-l and angle-θ). The texture features are its

variants are extracted towards feature selection based on the

confidence generated using DSCR. The selected features

undergo clustering and collaborative representation towards

learning different blur parameters. The motion blur param-

eters of the test image (blurred image) are estimated using

the trained model and the corresponding PSF is determined.

The estimated PSF is then used to deblur the image in a de-

convolution framework.

3.1. Generation of training dataset

Towards generation of the training dataset, a set ‘K’, of

151 images covering a span of natural image distribution

as described in [12] are considered. In our experiment, we

synthetically generate a set of blurred images Bl,θ
i using

different extent of blur parameters (different values of l and

θ) for each image i in K. We consider l ranging between

[1, 30] and θ ranging between [1, 45]. Thus, a set of Bl,θ
i

= 1350 images are generated for every i in K, collectively

generating Bl,θ = 203850 training images.

We use the set Bl,θ and their corresponding l and θ labels

as the training data to generate a learning based model.

3.2. Feature extraction

A set FN of texture features are considered towards se-

lection of relevant feature set FK (where, FK ∈ FN ) to

perform clustering and collaborative representation. These

FK features contribute to generate a codebook for estima-

tion of l and θ of the blur kernel (PSF).

A set FT of texture features consisting of mean (µ), vari-

ance (σ2), standard deviation (σX ), entropy (ǫ), smooth-

ness (S) are extracted for every image in the training

dataset Bl,θ. Also, first order gradients(both horizontal-

FOHG and vertical-FOV G) and second order gradients

(both horizontal-SOHG and vertical-SOV G) are extracted

for every image in the training dataset to obtain gradient

vectors. We extract the texture features from each of the

gradient vectors (i.e FT from FOV G, FOHG, SOV G,

SOHG) and thus collectively form a feature set FN of 25

features for every image in the training dataset Bl,θ.

The change in the feature descriptor for a couple of fea-

tures in FN is observed to be negligible for small variation



Figure 1. Framework of learning based PSF estimation for image deblurring

in blur parameters. Hence, we propose an algorithm to se-

lect a few features from FN which can effectively contribute

towards learning variation in blur parameters.

3.3. Selection of features

All the features in the feature set FN do not contribute

in learning motion-blur. Hence, it motivates to design a

framework to select relevant feature set FK from the set of

features FN . To achieve this, we propose to generate con-

fidence C towards retention for every feature in FN . The

confidence C is estimated by combining the evidences us-

ing Dempster Shafer Combination Rule (DSCR). Every ev-

idence is modelled as a set of masses towards belief (mb),

disbelief (md), uncertainty (mu).

The features in FN are observed to have high variation

in magnitude and demands normalization as the CCR algo-

rithm is sensitive to magnitude. Every feature in FN is nor-

malized to 1 using max normalization. The variance V1 is

computed amongst the feature descriptors, for the training

samples with same labels. 1 − V1 is considered as mass

of belief mb for evidence E1. Similarly, variance V2 is

computed amongst the feature descriptors of all the train-

ing samples generated for each un-blurred image in K. V2

is considered as mass of belief mb for evidence E2. For a

feature to have higher confidence C, the hypothesis is mod-

elled such that, it is expected to have low intra-class vari-

Table 1. Dempster Shafer Combination Table [37]

∩ mb(E1) md(E1) mu(E1)
mb(E2) ψ1 ∅ ψ1

md(E2) ∅ ψ2 ψ2

mu(E2) ψ1 ψ2 Ω

ance amongst its descriptors (i.e lower value for V1) and

high inter-class variance amongst its descriptors (i.e higher

value for V2).

The mass of disbelief md for both the evidences E1 and

E2 is considered to be 0 as we do not model a strong disbe-

lief function towards the set hypothesis. Hence, the mass of

uncertainty mu for both the evidences E1 and E2 is consid-

ered to be 1−mb.

The evidences E1 and E2, are combined using the DSCR

as demonstrated in Table 1 [37] [33]. The product of be-

lief and disbelief gives rise to conflict, and is represented

by ∅. The product of belief and belief, or the product of

belief and uncertainty represents a component of combined

belief and is represented by ψ1. Similarly ψ2 represents the

component of combined disbelief.

The Combined belief of the evidences E1 and E2 is con-

sidered as confidence C, and is given in the Equation 7 as

C =

∑
ψ1

1−
∑

∅
. (7)



A confidence Ci is generated for every feature ‘i’ in FN

where i ∈ N . The features with higher confidence (Ci >
J ) contribute towards formation of a reduced feature set

FK and is considered for learning. Here the threshold J
is set heuristically. The confidences obtained for different

features are shown in Table 2 and Table 3 for varying length

and varying angle respectively.

Table 2. Confidences for features on blurred dataset with constant

angle θ and varying length l

Texture Input FOHG FOVG SOHG SOVG

features image

(blurred)

µ 0.275 0.936 0.0082 0.538 0.0024

σ2 0.105 0.915 0.0045 0.512 0.0022

σX 0.154 0.549 0.0084 0.338 0.086

ǫ 0.085 0.135 0.065 0.065 0.033

S 0.065 0.338 0.224 0.066 0.128

Table 3. Confidences for features on blurred dataset with constant

length l and varying angle θ

Texture Input FOHG FOVG SOHG SOVG

features image

(blurred)

µ 0.275 0.082 0.925 0.0034 0.504

σ2 0.114 0.0459 0.935 0.013 0.543

σX 0.149 0.0094 0.249 0.0462 0.235

ǫ 0.081 0.035 0.235 0.033 0.065

S 0.065 0.0924 0.348 0.128 0.087

From Table 2 and Table 3 we observe, the confidence C
of mean µ and variance σ2 of first order features have higher

confidence for blurred images. In Table 1, it is evident that

horizontal features are relatively higher for blurred images

with different length l, and in Table 3 it is evident that ver-

tical features are relatively higher for blurred images with

different angle θ. We consider these features as competent

features for classification. Adding more features with high

confidence may certainly improve the results, but we ob-

serve, in Table 1 and Table 3, no other features have high

confidence. Adding any other feature with less confidence

deteriorates the results.

We generate separate codebooks to learn length l and an-

gle θ for the motion-blur.

3.4. Feature clustering using CCR

of mean µ and variance σ2 of first order horizontal gra-

dient vectors form the feature space to learn length l, and

of mean µ and variance σ2 of first order vertical gradient

vectors form the feature space to learn angle θ for the mo-

tion blur. We cluster the feature space using a variant of

bayes classifier, and later associate a label to every cluster

to obtain collaboratively represented codebook towards es-

timation of length l and angle θ.

3.5. Deconvolution/De-blurring

The mean µ and variance σ2 of first order vertical and

horizontal gradients of a test image are mapped with the

separate clustered features (one for l and another for θ) to

estimate length l and angle θ. The estimated length l and

angle θ is used to construct the PSF (Blur kernel). The PSF

and blurred image is deconvolved to obtain the de-blurred

image [26]. We propose to model de-blurred image as a

MRF using MAP and minimize the posterior energy us-

ing graph-cut [11]. We address the effect of local blur and

variation in blurriness by performing patch based estima-

tion of blur parameter and use the same for de-blurring. We

perform graph-cut based energy minimization to overcome

the artifices introduced during patch based motion blur re-

moval, and as we perform energy minimization using graph

cut, the estimation of l and θ is tolerable with an error of ±2
units.

(a) (b) 24.583844

(c) 23.084613 (d) 21.950030

(e) 27.662977 (f) 42.375142
Figure 2. Results of proposed algorithm on Synthetic dataset D1:

(The values indicate their corresponding PSNR with the ground

truth image.) (a) ground truth image, (b) synthetically blurred im-

age with l = 25 and θ = 18, (c) deblurred image using [44], (d)

deblurred image using [18] and (e) deblurred image using [32], (f)

deblurred image using the proposed algorithm.



4. Results and Discussions

In this section, we demonstrate the results of the pro-

posed framework on both synthetic and real datasets. We

compare our results with methods proposed in [44], [18]

and [32]. It is observed that the proposed method elimi-

nates the artifacts [18] and also the ringing or block effects

[32] as discussed in Section 3.5. We perform qualitative and

quantitative analysis on the deblurred image obtained from

the proposed framework. For quantitative analysis, we cal-

culate RMS (Root Mean Square) error, PSNR (Peak Signal

to Noise Ratio), NMI (Normalized Mutual Information) and

SSIM (Structural Similarity) index of de-blurred image with

the ground truth image for synthetic dataset.

4.1. Deblurring of synthetic dataset

In this section, we demonstrate the process of generation

of synthetic dataset and the effect of deconvolution and op-

timization on deblurring. A PSF is constructed with random

length l and angle θ such that l ∈ [1, 30] and θ ∈ [1, 45]. The

un-blurred (ground truth) image (/∈ K) is convolved with

the constructed PSF to obtain a blurry image. The ground

truth images are shown in Figure 2(a), Figure 3(a), and 4(a)

respectively and the synthetically generated blurry images

are shown in Figure 2(b), Figure 3(b), and 4(b) respectively.

The synthetically blurred images are deconvolved using

the proposed framework of PSF estimation. The results are

shown in Figure 2(f), Figure 3(f), and 4(f) respectively. We

compare the results with the other techniques as proposed

in [50], [18], [32]. The results are shown in Figure 2(c-e),

Figure 3(c-e), and 4(c-e) respectively. The quality of the

de blurred image obtained using the proposed framework is

observed to be better than the other SOA algorithms.

For quantitative analysis, we calculate RMS (Root Mean

Square) error, PSNR (Peak Signal to Noise Ratio), NMI

(Normalized Mutual Information) and SSIM (Structural

Similarity) index of de-blurred image with the ground truth

image for synthetic dataset, and is shown in Table 4.

4.2. Deblurring of real dataset

Authors in [26] discusses about the defocus blur being

space invariant. The proposed algorithm works well even

if,

• Motion blur is not uniform.

• An additional defocus blur is present.

As the patch wise de-blurring addresses non-uniform

motion blur, and energy minimization using graph cut ad-

dresses space invariant defocus blur, the above stated is-

sues are addressed. It can be observed that the proposed

algorithm works well for the real dataset shown in Figure

5-7(Dataset captured by moving the mobile camera in the

random planar direction to introduce motion blur) which

(a) (b) 18.592351

(c) 14.639934 (d) 13.248199

(e) 20.135180 (f) 38.938777
Figure 3. Results of proposed algorithm on Synthetic dataset D2:

(The values indicate their corresponding PSNR with the ground

truth image.) (a) ground truth image, (b) synthetically blurred im-

age with l = 18 and θ = 27, (c) deblurred image using [44], (d)

shows the deblurred image using [18] and (e) deblurred image us-

ing [32], (f) deblurred image using the proposed algorithm.

(a) (b) 23.033257

(c) 21.398908 (d) 17.068997

(e) 22.728462 (f) 56.392085
Figure 4. Results of proposed algorithm on Synthetic dataset D3:

(The values indicate their corresponding PSNR with the ground

truth image.) (a) ground truth image, (b) synthetically blurred im-

age with l = 20 and θ = 30, (c) deblurred image using [44], (d)

deblurred image using [18] and (e) deblurred image using [32], (f)

deblurred image using the proposed algorithm.

contains non uniform motion blur, and also space invari-

ant defocus blur. We have evaluated the performance of our

algorithm on more than 260 images of motion blur videos.



Table 4. Quality parameters for synthetic dataset. Here, RMS (Root Mean Square) error, PSNR (Peak Signal to Noise Ratio), NMI

(Normalized Mutual Information) and SSIM (Structural Similarity) index of de-blurred image with the ground truth image are the quality

parameters and Dataset 1 (D1) , Dataset2 (D2),Dataset 3 (D3) and Dataset 4 (D4) are the datasets used for analysis

Dataset Image NMI SSIM PSNR RMS

D1 Blurred image 2.482705 0.914193 24.583844 15.023312

Proposed Algorithm 11.736824 0.996997 42.375142 1.939917

SRNID-2013 [44] 0.083126 0.888192 23.084613 17.863607

RSBIR-2014 [18] 0.553647 0.872171 21.950030 20.363459

IRDCP-2016 [32] 2.138787 0.945457 27.662977 10.537476

D2 Blurred image 1.474246 0.746286 18.467450 30.414169

Proposed Algorithm 3.583922 0.997341 38.938777 2.881385

SRNID-2013 [44] 1.238660 0.612724 14.639934 47.261623

RSBIR-2014 [18] 1.250685 0.561964 13.248199 55.478477

IRDCP-2016 [32] 1.598599 0.812184 20.135180 25.099777

D3 Blurred image 1.744086 0.746767 23.033257 17.983004

Proposed Algorithm 4.117008 0.999465 56.392085 0.386310

SRNID-2013 [44] 1.655465 0.695470 21.398908 21.704012

RSBIR-2014 [18] 1.580482 0.588321 17.068997 35.729374

IRDCP-2016 [32] 1.724773 0.752749 22.728462 18.625360

(a) (b) (c) (d) (e)
Figure 5. Results of proposed algorithm on Real dataset 1: (a) Input image, (b) deblurred image using [44], (c) deblurred image using [18]

and (d) deblurred image using [32], (e) deblurred image using the proposed algorithm.

We demonstrate the algorithm on different real datasets.

The results of the same are shown in Figure 5, Figure 6 and

Figure 7. We perform quality analysis using the Google vi-

sion API as the ground truth is not available for quantitative

analysis. We observe, no text detection in the input image

or in the deblurred image using the state of art techniques.

The text: “Intermediate course, Study material, Modules

1 te, Paper 1: Accounting, Module -2” being detected in

the deblurred image using the proposed framework for Real

dataset 1 as shown in Figure 5. We observe similar trends

in the other datasets.

5. Conclusions

In this paper, we have proposed to address the problem of

motion deblurring of an image by estimating Point Spread

Function (PSF) using a learning-based framework. We

modeled motion blur as a combination of length and angle

parameters in the PSF, and proposed a learning based tech-

nique to estimate the motion blur parameters to compute the

PSF. We have also proposed a technique to select the rel-

evant features for learning based on confidence generated

by combining evidences using Dempster Shafer Combina-

tion Rule (DSCR). We have proposed to learn length and

angle of motion blur by Clustering and Collaborative Rep-

resentation (CCR) of feature spaces. We have proposed to

model deblurred image as a MRF (Markov Random Filed)

and use MAP (maximum a posteriori) estimate as the final

solution. We have demonstrated the results on real and syn-

thetic datasets and compared the results with different state

of art methods using quality metrics and vision tools.
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and (d) deblurred image using [32], (e) deblurred image using the proposed algorithm.
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