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Abstract

Depth estimation features are helpful for 3D recognition.

Commodity-grade depth cameras are able to capture depth

and color image in real-time. However, glossy, transparent

or distant surface cannot be scanned properly by the sen-

sor. As a result, enhancement and restoration from sensing

depth is an important task. Depth completion aims at filling

the holes that sensors fail to detect, which is still a complex

task for machine to learn. Traditional hand-tuned meth-

ods have reached their limits, while neural network based

methods tend to copy and interpolate the output from sur-

rounding depth values. This leads to blurred boundaries,

and structures of the depth map are lost. Consequently,

our main work is to design an end-to-end network improv-

ing completion depth maps while maintaining edge clarity.

We utilize self-attention mechanism, previously used in im-

age inpainting fields, to extract more useful information in

each layer of convolution so that the complete depth map is

enhanced. In addition, we propose boundary consistency

concept to enhance the depth map quality and structure.

Experimental results validate the effectiveness of our self-

attention and boundary consistency schema, which outper-

forms previous state-of-the-art depth completion work on

Matterport3D dataset.

1. Introduction

In this task, we take single input RGB and raw sens-

ing depth to complete depth value of missing parts. Depth

sensing is widely used in real-world applications from au-

tonomous driving, robotics, augmented reality to scene re-

construction. Most of the applications are for recognition

purpose. However, commercially available RGB-D cam-

eras, such as Microsoft Kinect and Intel RealSense, still fail

on sensing depth map without corruption or noise along ob-

ject edges. Sensors produce large amounts of missing pixels

when surface is shiny, transparent, too close or too far. In

indoor dataset Matterport3D [3], for example, over 15% of
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Figure 1. Our work produces clearer structures and overcomes

the hardness that previous works suffer from: interpolation and

blurred boundaries. On the first row, our model provides clear

complete depth but FCN interpolates depth value (marked in red)

at the large missing area of raw depth map. On the second row,

our model can assure boundary sharpness, while FCN generates

blurred boundaries.

values in raw depth are missing. As a consequence, com-

pleting large missing parts of sensor depth is of crutial im-

portance.

Traditional works reconstruct depth value by combining

multiple views of sensor data. Simultaneous localization

and mapping (SLAM) [1, 5] method incrementally builds a

consistent depth map of the environment while simultane-

ously determines location within this map. Previous meth-

ods [7, 14] utilizes SLAM to estimate more accurate depth

map. In our work, we do not consider multiple views of

reconstruction. Rather, we put emphasis on single view for

depth prediction, because single view prediction is more ef-

ficient when consider inference time and computing power.

For single view of depth completion, previous works that

tried to solve the problem have their own issue. Traditional

mathematical methods [4, 25] contain much hand-tuning

hyper-parameters and reach their limits in filling high qual-

ity depth holes. Recent deep learning methods [6, 34] per-

formed well yet only learned to interpolate or copy-and-

paste depth value from neighboring pixels. Blurred bound-

aries and structure can be easily recognized by visualization

of output depth. In Figure 1, the visualization results show

the above issue of copy-and-paste, interpolation, blurred

boundaries and structure. We conclude the issues of deep



learning based methods in two orientations: estimating pre-

cise depth value and producing clear structure.

In this paper, we solve the issues mentioned above. Pre-

vious works pass the whole feature maps into the network

and perform convolution. However, to complete the miss-

ing depths, some regions may be more important and some

may be minor details depending on the semantics and geo-

metric meanings of one scene. Inspired by Yu et al. [36], we

leverage the self-attention network to encourage the model

to pay attention on relevant parts, especially the semantics

of the scene. Our model benefits from the attention mech-

anism and outputs depth maps with comprehensive consid-

eration of the attentioned parts. Furthermore, with useful

information from depth representation (surface normals and

occlusion boundaries), proposed by [39], our self-attention

model meets the needs of estimating more precise depth

value rather than just interpolation.

In addition, we solve the issue of vague structures with

boundary consistency concept. In order to generate clear

depth structures, we equip another network to predict oc-

clusion boundaries given the output depth from depth com-

pletion network. As a result, the depth completion network

is indirectly refined to preserve clear boundaries in the out-

put depth, making the complete depth image to be more

structured and conformed to realistic situation. To the best

of our knowledge, we are the first to apply self-attention

mechanism and regard boundary as the main feature in in-

door depth completion task.

On the whole, our main contributions of our work are:

• Enhance depth completion task using self-attention

mechanism, which has never been used in RGB-D es-

timation before.

• Propose a novel idea, boundary consistency, to pro-

duce depth map of clear structure.

• Reach state-of-the-art performance on Matterport3D

[3] on RGB-D depth completion task.

Extensive ablation study and visualization results vali-

date our proposed idea and concept. The promising results

on depth completion task makes contribution to recogni-

tion applications such as robotics and autonomous driving.

Those applications suffer from various types of degradation

of low-quality visual data, including large missing holes of

sensor depth map. Our work enhances the robustness for

recognition on sensor depth, and, consequently, contributes

to real-world recognition from low-quality images.

2. Related Work

We introduce order as follows: depth estimation, super-

resolution, reconstruction from sparse samples, image in-

painting, and, finally, our task depth completion.

2.1. Depth Estimation

Depth estimation predicts depth value from monocular

RGB image. This is a long-established problem in com-

puter vision history. However, with little information of

a single view image, this is still a hard task even for hu-

man beings to answer the exact depth distance [26]. Classic

methods like Shape from Shading [27, 38] and depth from

focus [9, 32] elaborated physical and mathematical property

about light shading and focal setting at each pixel. Recent

works extended classic methods by machine learning, like

deep depth from focus [12] and deep estimation based on

fourier domain analysis [19]. Fully connected convolution

(FCN) networks are used to predict depth map [18] or refine

coarse-scale depth value [6].

Previous works give us insight into the methods to solve

the task, but different from what our topic focuses on.

Specifically, depth estimation generate raw depth based on

RGB image, while we utilize RGB to improve raw depth to

become complete.

2.2. Depth Super-Resolution

The focus of depth super-resolution is the enhancement

of spatial resolution. Generally, raw depth data are regu-

larly sampled or quantized with low resolution. Yang et al.

[35] iteratively refined depth map in terms of both its spatial

resolution and depth precision with bilateral filtering. Mac

et al. [23] utilized Markov random field to select candidate

of depth patch. Some other works are shape-from-shading

[10, 37], rigid body self-similarity [15], and deep learning

based network [28].

Different from depth completion, these works take com-

plete but low-resolution depth map as input. In our work,

we aim at recovering the large missing parts of the depth

map, which cannot be recovered by super-resolution meth-

ods.

2.3. Depth Reconstruction from Sparse Samples

Depth reconstruction from sparse samples is an interest-

ing topic that tries to reconstruct full depth map from sparse

one. Restrictions of camera costs and power consumption

make it a necessary research topic. The difficulties of the

topic are how to maintain decent performance, while saving

costs and energy. Ma’s method [24] can be used as a plug-in

module in sparse SLAM and visual inertial odometry algo-

rithms, creating more accurate, dense point cloud. Also, Ma

[22] proposed a self-supervised framework without the need

for dense labels, achieving great performance on KITTI [8]

dataset. Some works combined semantic segmentation [16]

to improve the prediction.

2.4. Image Inpainting

Image inpainting is related to depth completion in some

ways. For example, free-form image inpainting [36] allows



Figure 2. Overview of the network architecture. Main improvement of our method are twofold: self-attention mechanism 3.1 (blue dashed

box) and boundary consistency 3.2 (green dashed box). Self-attention network pays attention on useful feature information. On the

other hand, boundary consistency loss forces attention network to preserve boundary information, allowing network to reconstruct more

structured depth map.

users to erase values of a RGB image, and then network in-

paints the missing parts of RGB values as real as possible.

Compared to our task, the same part is the missing holes of

depth sensor are similar to the erased parts of RGB image.

The different part is depth completion network is trained

to learn precise value of depth map supervised with correct

answer, while image inpainting results do not require a cor-

rect answer but a real and reasonable one. Self-attention

mechanism, which applies attention on each layer of con-

volution, is useful and powerful for image inpainting task.

Yu et al. utilized self-attention mechanism on partial convo-

lution [20] and gated convolution [36] and made astonish-

ing performance on the inpainting image. We introduce the

concept of self-attention on our task.

2.5. Depth Completion

Depth completion is to fill in missing holes in the rel-

atively dense depth images. The definition of depth com-

pletion concept is proposed by Zhang et al. [39]. Earlier

works [2, 30] evaluated performance on pixels captured

by commodity RGB-D cameras. Under the circumstances,

they can at best output raw depth (captured by the sensor),

which contains large missing holes. Zhang extended the

term ”Depth Completion” to predicting the complete depth

map generated from multi-view reconstruction.

In Zhang’s work, he proved surface normals and occlu-

sion boundaries from RGB are two geometric representa-

tions best for deep depth completion. Zhang also claimed

that deep regression method simply learns to copy and in-

terpolate depth value, so he optimized loss with sparse

Cholesky factorization scheme [31] and reach state-of-the-

art performance.

In our work, we re-verify the copy and interpolation is-

sue of standard FCN. We overcome the obstacles that FCN

encounters, and our model can generate depth map with

clear boundaries and structures through an end-to-end neu-

ral network. Our approach outperforms the previous meth-

ods. Compared to Zhang’s, we have faster inference time

by replacing the Cholesky optimization, which is more de-

sirable for real world applications.

3. Method

In this paper, we investigate how to complete indoor

depth image given a single RGB-D image with effective

deep learning method. Our work mainly focuses on the

following two questions: ”How to overcome the difficulty

that network simply learns to interpolate depth value?” and

”how to make clear structures of depth image?”

3.1. Self-Attention Mechanism

The first issue we address is that previous deep learning

methods tend to copy and interpolate nearby depth value

as outputs as shown in Figure 1. Since in most cases, pre-

dicting average depth values for unobserved area makes the

loss drop rapidly, so the network can easily fall into lo-

cal minima of copy and interpolation instead of predicting

precise depth values. To solve this problem, we propose

to use self-attention mechanism on each convolution layer.

The network is allowed to focus on precise feature values

at each convolution stage and forward useful information.

With self-attention, the network can be more robust in pre-

dicting precise depth values and would not be easily trapped

in local minima of copy and interpolation.

We use gated convolution, proposed by Yu et al. [36], as

our backbone component. Yu et al. used gated convolution

on free-form image inpainting task. We use gated convolu-

tion on our task, since, first, depth completion task aims to

complete missing depth value, which is similar to free-form

masks from users. Additionally, completing precise depth

value is similar to inpainting with realistic RGB pixel val-

ues. As a result, we gain insight from the strong connection

between the two different tasks.

For an input I of a convolution block, and convolution

blocks for feature extraction Convf and for gating Convg ,



the mathematical formulation for self-attention mechanism

can be presented as:

Gating = σ (SN(Convg(I))) (1)

Feature = φ (SN(Convf (I))) (2)

Output = Feature ⊙ Gating (3)

where σ is sigmoid function, SN is spectral normalization, φ

is any activation function, and ⊙ is the pixel-wise multipli-

cation. The self-attention mechanism is in the presence of

an additional gating operation that Feature ⊙ Gating. It al-

lows the model to learn effective dynamic feature selection,

and also highlights the feature meanings for each channel

map and each spatial location.

Since Convg learns to identify region that is useful and

important, according to the above equation, the model pre-

serves useful region of Feature in the Output. Therefore, the

gated convolution can predict more accurate depth values

by paying more attention on local and detailed information

extracted by the self-attention mechanism.

3.2. Boundary consistency

Ordinary FCN methods are likely to generate depth im-

age of copy and interpolation as explained above. This

causes the output depth to have blurred boundaries and

structures. For instance, line segments may be slightly

distorted and object occlusion boundary is vague in most

cases. Since depth completion is a complex regression

problem, FCN models can hardly learn to generate depth

map of sharp boundaries where neighboring pixel values

differ greatly. In order to fix the problem, we introduce

boundary consistency to encourage models to learn clear

boundaries and structures.

Boundary consistency constrains the output depth map

to have boundary information by constructing another net-

work, boundary consistency network. The boundary consis-

tency network, modified from U-Net [29], takes complete

depth as input and predicts the occlusion boundary. It is

trained end-to-end along with self-attention network. The

boundary consistency network encourages the self-attention

network to generate sharp edges so that boundary consis-

tency network can estimate more precise boundary values.

With moderate balance between the weights of losses, our

self-attention network successfully completes depth map

with sharper and clearer structures. The overview pipeline

is shown in Figure 1, we add an additional encode-decode

boundary consistency network to the original self-attention

network. We name it ”boundary consistency” because we

use occlusion boundary as depth input feature and require

our model to preserve the boundary information in the com-

plete depth map.

The boundary estimation result is supervised by Sobel

[17] boundary from ground truth depth image. There are

two reasons we use Sobel as our target loss. (1) The gen-

erated edges are sharp, clear and few variate compared to

some other methods. (2) Sobel Algorithm can extract oc-

clusion boundaries without being too sensitive to the noise.

With the help of occlusion boundary ground truth from

Sobel, our generated depth map can learn sharper and

clearer structures, preventing outputs like blurred bound-

aries and interpolation.

3.3. Depth Representation

In Zhang et al. [39] work, he mentioned two impor-

tant depth representations: surface normals and occlusion

boundaries. Surface normals relate strongly to local lighting

variations, providing more information about local surface

properties. Occlusion boundaries also represent local tex-

ture features observed from RGB images. Both of the two

representations can be robustly detected by networks, called

depth representation network in the following. Because it is

proven by [39] that surface normals and occlusion bound-

aries are powerful, we simply combine the two representa-

tions with RGB and raw depth as the input of self-attention

network.

3.4. Loss Functions

The following section would introduce each component

of our loss in detail. The total loss can be written as:

L = LSA − λSLS + λBCLBC + λNLN + λBLB (4)

Given input RGB, depth representation networks pre-

dict normals N and boundaries B. The depth represen-

tation losses are LN = 1
|p|

∑

p ‖N(p) − N0(p)‖
2 and

LB = 1
|p|

∑

p ‖B(p)− B0(p)‖
2, where N0, B0 are ground

truths and p is a pixel in image channel.

Then, RGB, depth representations and raw depth are

combined as input of self-attention network which pre-

dicts complete depth D. The ground truth depth D0

comes from rendering multiple raw depth views of the

same scene. The loss for self-attention network is LSA =
1

|p∈obs|

∑

p∈obs ‖D(p) − D0(p)‖. Note that we only con-

sider observed pixels, which have valid depth values in

ground truth D0, as mentioned in [39]. Missing parts in

ground truth depth map are ignored. We denote p ∈ obs to

be observed pixels.

To enhance structural information, we add small frac-

tion of structural related loss LS , Structural Similarity In-

dex (SSIM) [33]. SSIM measures quality assessment based

on the degradation of structural information. In our task,

the higher SSIM index is, the more structured the complete

depth is. With SSIM, we expect our network to learn higher

quality and undistorted depth map with better structure.

Finally, complete depth D is fed into boundary consis-

tency network and outputs B. The ground truth depth D0



Figure 3. In the visualization result, we can see that our method learns better on the geometric meaning. For example, on the first row, our

model notices the corridors on the right hand side next to the pillar and judge the depth to be deep (mark in red). Other methods tend to

interpolate the large vacancy with nearby values, like Zhang fills in light blue depth value.

generates ground truth B0 with Sobel [17]. The boundary

consistency loss is LBC = 1
|p|

∑

p ‖B(p)−B0(p)‖.

4. Experimental Results

4.1. Dataset

We did not use the widely-known NYUv2 dataset [30],

since the dataset does not provide complete ground-truth

depth map for a single captured RGB-D image. Instead, we

ran the experiments on Matterport3D dataset [3] to evaluate

our proposed methods. Matterport3D is an indoor large-

scale RGB-D dataset with 10.8k real panoramic views and

90 real indoor scenes. The dataset is scalable, diverse and

representative of indoor depth completion task. We use the

same training and testing lists as Zhang [39] did. We re-

move large bias image pairs (about 5%), and, finally, the

dataset contains about 1M training data and 474 testing

data. The ground truth of Matterport3D is generated from

Zhang by multi-view reconstruction; that is, multiple cam-

era views of the same scene can reconstruct a more com-

plete indoor information, including depth map.

4.2. Evaluation Metrics

We use similar evaluation metrics in [39]. As mentioned

in 3.4, we calculate loss based on observed data; that is,

observed pixel values in ground truth depth. Given ground

truth depth D0 and complete depth D, the metrics include:

• Root Mean Square Error (RMSE):

√

1

|obs|

∑

p∈obs

‖D(p)−D0(p)‖2 (5)

• Mean Error (Mean):

1

|obs|

∑

p∈obs

‖D(p)−D0(p)‖ (6)

• SSIM [33]:

(2µD0(p)µD(p) + c1)(2σD0(p)D(p) + c2)

(µ2
D0(p)

+ µ2
D(p) + c1)(σ2

D0(p)
+ σ2

D(p) + c2)
(7)

where c1 = 0.0001, c2 = 0.0009.

• δt: percentage of pixels within the error range t, the

error range is defined by equation 8.

max(
D(p)

D0(p)
,
D0(p)

D(p)
) < t (8)

where t ∈ {1.05, 1.10, 1.25, 1.252, 1.253}, p ∈ obs.

4.3. Performance

As shown in Table 1, our proposed method defeats

all other works, including traditional methods and previ-

ous state-of-the-art [39], and shows significant performance

gain on RMSE and Mean error. Not only SSIM metric but

also most delta values show improvement with boundary

consistency and self-attention. SSIM is an index standing

for the depth quality and structure. Delta percentage is a

measurement of relative depth difference, which means the

pixels closer to depth sensor requires more precise predic-

tion. Our model attains the highest performance on all of

the above evaluation metrics.

Figure 3 shows the visualization results. Previous meth-

ods sometimes misunderstands the geometric meaning of

one scene once raw depth is missing large coverage of depth

value, which cause copy and interpolation. On the contrary,

our self-attention network realizes the geometric features

from RGB, normal and boundary and produces depth maps

with more accurate geometric meaning than others. The red

1We reproduce Zhang’s work on github and find they use root median

square error instead of root mean square error. Thus, we show the results

reproduced ourselves.



Model RMSE↓ Mean↓ SSIM↑ 1.05 ↑ 1.10 ↑ 1.25 ↑ 1.252 ↑ 1.253 ↑
Bilateral 1.978 0.774 0.507 0.385 0.497 0.613 0.689 0.730

MRF [11] 1.675 0.618 0.692 0.506 0.556 0.651 0.780 0.856

AD [21] 1.653 0.610 0.696 0.503 0.560 0.663 0.792 0.861

FCN 1.262 0.517 0.605 0.397 0.527 0.681 0.808 0.868

Zhang [39] 1 1.316 0.461 0.762 0.657 0.708 0.781 0.851 0.888

Ours 1.092 0.342 0.799 0.661 0.750 0.850 0.911 0.936
Table 1. We achieve state-of-the-art performance on Matterport3D dataset. We compare our method with some inpainting methods,

including traditional methods, such as anisotropic diffusion, joint bilateral filter, FCN-based methods (ResNet18) and Zhang [39] et al.

The result shows our significant improvement on all of the evaluation metrics.

circle in Figure 3 shows the power of self-attention mech-

anism on our task. Our network notices detailed geometric

properties, like walls and corridors. Besides, with bound-

ary consistency Figure 4, our network learns architectural

details, like the wall’s edge, and produces depth with desir-

able quality.

4.4. Ablation Studies

For better understanding of our works, we investigate the

effects of each component of our method. The following

ablation study concentrates on the following three things:

self-attention, SSIM loss and boundary consistency.

4.4.1 Self-Attention

The first two rows of Table 2 exam whether self-attention

mechanism has positive effect on the result of complete

depth. Indeed, self-attention makes huge gains of perfor-

mance over traditional FCN models. In this setting, we take

ResNet18 [13], which has similar parameters, as the classic

FCN method.

As we can see in Figure 5, on the right hand side of

corridors next to the pillar, model with self-attention(SA)

notices those depth value should be distant, while without

SA misunderstands the geometric meaning. We believe that

the improvement comes from the attention on convolution

features to helps the model focus on important regions and

features. In this case, self-attention mechanism helps model

to learn more geometric meanings.

4.4.2 SSIM Loss

By adding small weight of SSIM loss to optimize, the self-

attention network learns to balance structural information

without degradation much on RMSE and delta percentage.

The straightforward results that SSIM score improves 8.6%
after adding SSIM loss represent network successfully pro-

duce higher quality of depth map values.

As we can see in Figure 5, on the second row of columns

w/SA and SA+SSIM, the background surface is smooth and

accurate. Also, the edge detected from Sobel shows the en-

hancement of depth image quality and reduction in noise,

which can be seen from the layered lines on the floor and

ceiling.

4.4.3 Boundary Consistency

The last two rows of Table 2 show boundary consistency

loss helps a lot in generating better depth map. There is

extraordinary improvement in SSIM and delta percentage.

65.7% of δ1.05 and 75.8% of δ1.10 require highly sophis-

ticated prediction of depth map for most of depth values.

Besides, 3% of SSIM gains implies boundary consistency

helps enhance the structure and sharpness of boundary and

validates the effectiveness of boundary consistency.

As we can see in Figure 5, the structure of the bottom left

sofa is clearer both in depth map and Sobel edge detection.

Besides, the floor and ceiling are smoother with boundary

consistency shown in the Sobel edge detection.

Figure 4. With the help of boundary consistency and SSIM loss,

our method produces depth map of clearer structures. The upper

row is original output depth, and the lower row is the partial am-

plification of the upper one. In the left two columns, our wall

structure is clear. In the right two columns, our depth quality is

higher, since boundary detail is not blurred.

4.5. Comparison

In this section, we compare our main advantages over

previous state-of-the-art work [39]. Mentioned in Section

4.3, self-attention mechanism can be easier to learn geo-

metric information than other methods. We find Zhang’s

method depended heavily on raw depth. Once there are

large holes in raw depth, like views of a wide and deep



Model RMSE↓ Mean↓ SSIM↑ 1.05 ↑ 1.10 ↑ 1.25 ↑ 1.252 ↑ 1.253 ↑
W/O SA 1.262 0.517 0.605 0.397 0.527 0.681 0.808 0.868

SA 1.095 0.400 0.706 0.497 0.629 0.785 0.881 0.923

SA+SSIM 1.096 0.397 0.767 0.488 0.626 0.787 0.884 0.926

SA+SSIM+BC 1.092 0.342 0.799 0.661 0.750 0.850 0.911 0.936
Table 2. Effect of each component of our model. We show that our proposed self-attention mechanism (SA), SSIM loss and boundary

consistency (BC) enhances completion performance.

Figure 5. In the visualization result, we can see our proposed SA+SSIM+BC (self-attention, SSIM loss and boundary consistency) performs

the best. The upper row is the Sobel edge detection results from the depth images of bottom row. From left to right images, we can see

the depth background surface and bottom left sofa gradually improve both in structure and boundary. Model can learn better geometric

meanings and semantics with the help of SA, SSIM and BC.

space, Zhang’s method fell short of understanding the geo-

metric meaning and easily fit onto noises in raw depth. The

results seems to be simple interpolation but not realization

of the whole view via clues from RGB and depth represen-

tation features.

Running real-time of sensing depth and training time

can be an issue for most depth completion models. Our

work is end-to-end trainable and training time is faster than

optimization-based algorithms. Zhang proposed model that

was not end-to-end trainable and used global optimization.

Our proposed method overcomes those difficulties and out-

performs previous works.

4.6. Attention Map

To show the self-attention mechanism can capture the

structure information, we randomly sample the attention

output from our network. The result is shown in Figure

6. The attention map is able to distinguish the occlusion

boundaries and the geometric shape of the objects in the

scene.

5. Conclusion

In this work, we propose to use self-attention mechanism

and boundary consistency to improve performance in depth

completion task. Self-attention mechanism allows network

to learn more geometric meanings and complete depth with

Figure 6. Visualization of some self-attention maps. Some filters

pays attention on the missing holes (a), and some on the back-

ground and structures (b). More importantly, some filters pay at-

tention on the semantics and object boundaries (c). For decoding

phase, (d) shows the geometric meaning that the missing depth

value behind the white walls at the right of the image should be

relatively distant.

more precise values. Boundary consistency improves both

the depth boundary and image quality, producing clearer

and sharper structures. Extensive experiments demonstrate

that our proposed method reach state-of-the-art on Matter-

port3D dataset. Moreover, ablation study validates the ef-

fectiveness of each component we propose.
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