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Abstract

Objects are naturally captured over a continuous range
of distances, causing dramatic changes in appearance, es-
pecially at low resolutions. Recognizing such small objects
at range is an open challenge in object recognition. In this
paper, we explore solutions to this problem by tackling the
fine-grained task of face recognition. State-of-the-art embed-
dings aim to be scale-invariant by extracting representations
in a canonical coordinate frame (by resizing a face win-
dow to a resolution of say, 224x224 pixels). However, it
is well known in the psychophysics literature that human
vision is decidedly scale variant: humans are much less ac-
curate at lower resolutions. Motivated by this, we explore
scale-variant multiresolution embeddings that explicitly dis-
entangle factors of variation across resolution and scale.
Importantly, multiresolution embeddings can adapt in size
and complexity to the resolution of input image on-the-fly
(e.g., high resolution input images produce more detailed rep-
resentations that result in better recognition performance).
Compared to state-of-the-art "one-size-fits-all" approaches,
our embeddings dramatically reduce error for small faces
by at least T0% on standard benchmarks (i.e. IJBC, LFW
and MegaFace).

1. Introduction

Objects are visually captured at a continuous range of
distances in the real world. One of the remaining open chal-
lenges in object recognition is recognition of small objects
at range [19]. We focus on the illustrative task of recog-
nizing faces across a wide range of scales, a crucial task in
surveillance [6]. This is a well-known challenge because
distinctive features (such as eyebrows [27]) may not be re-
solvable in low resolution. Contemporary face recognition
systems, which now outperform the average forensic exam-
iner on high quality images [15], perform dramatically worse
for lower resolutions (Fig. 2 and 3).

Scale: Recognition is often cast as an image retrieval task,
where the central challenge is learning an embedding for
matching image queries (probes) to a stored library (gallery).
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Figure 1: Traditional approaches for matching compare em-
bedding vectors of a query and reference image. We in-
troduce multi-resolution embeddings with several desirable
properties (1) they adapt in complexity to the resolution of
the input, such that larger embeddings are produced when
additional high-res information is available (bottom). (2)
they produce disentangled representations where frequency-
specific components can be "switched off" when not present
in the input (top). (3) they can adapted on-the-fly to any
desired resolution by "‘zero’ing out" certain frequencies (the
bottom-right embedding).

Virtually all contemporary retrieval systems learn a scale-
invariant embedding, by first canonicalizing a given image
crop to a standard resolution (of say, 224x224 pixels) before
feature extraction [17]. However, recognition accuracy for
human vision is decidedly scale variant. Humans are much
more accurate at higher resolutions, and moreover, tend to
rely on resolution-specific features to make inferences at
particular resolutions [30]. Fig. 2 shows a reference image
and candidate probe matches at varying resolutions. At
low resolutions, coarse features such as the hairline and jaw
shape seem to reveal the identity. At high resolutions, subtle
features such as the eyebrow and nose shape appear to play
an important role. Such resolution-specific identity cues
cannot be captured by a scale-invariant embedding.

Mulitresolution embeddings: We begin by showing
that a conceptually simple solution is to train multiple fixed-
resolution embeddings, and use the appropriate one depend-
ing on the resolution of the query (probe) and reference
(gallery) face to be compared. Moreover, one can signif-
icantly improve accuracy by combining these resolution-



specific embeddings into a single multiresolution represen-
tation that explicitly disentangles factors of identity into
frequency-specific components. For example, certain di-
mensions of the embedding vector are trained to encode
low-frequency cues such as hairlines, while other dimen-
sions are trained to encode high-frequency cues such as nose
shape. In the limit, one can interpret our embeddings as a
"fourier" decomposition of identity into frequency-specific
components. Importantly, because the resolution of an input
image is known, missing frequencies for low-res inputs can
be "switched off". Moreever, even when present in high-
res input, they can be "zero’d out" on-the-fly to facilitate
comparisons to low-res images (Fig. 1).

Disentangled representations: We illustrate two appli-
cations that specifically exploit disentangled embeddings.
The first is adapation: given a probe at a particular resolu-
tion, we adapt the gallery embedding on-the-fly by selecting
the appropriate frequency-specific components in the em-
bedding (Fig. 1).The second is aggregation: practical face
recognition methods often match sets of faces (say, extracted
from a video sequence). Such methods typically produce an
aggregate template representation by pooling embeddings
from faces in the set [26, 7]. We show that multiresolu-
tion pooling, that uses only high-resolution faces to produce
the high-frequency components in the final embedding, is
considerably more accurate.

Evaluation: Evaluating our method is hard because most
benchmarks provide faces only at high-resolution. This
reveals the inherent bias of the community for scale invari-
ance! It is tempting to create artificial scale variation by
resizing such images [16]. In fact, we do so for diagnos-
tic experiments, resizing the well-known LFW datset [13]
into different resolutions. However, recent work has shown
that downsampling is not a good model for natural scale
degradation [5]. As such, we present final results on the
IIBC [23] benchmark, which is unique in that it includes the
raw images on which faces were extracted, and so contains
natural scale variation. Our results show that multiresolution
embeddings can naturally cope with the various factors that
influence real low resolution faces like jpeg artefacts, motion
blur etc. by adapting the embedding on-the-fly to a lower
resolution.

We also compare our algorithm on resized versions of the
popular Megaface dataset to showcase our algorithm on a
larger scale. Additionally, we compare the performance of
our approach with more recent face recognition networks in
the supplement.

2. Related work

CNN based face recognition: Recent methods for face
recognition aim to learn an nonlinear embedding through a
variety of loss functions, including triplet loss [28], softmax
loss [24], and angular softmax loss [22]. We use the well-
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Figure 2: We illustrate the drop in recognition performance
with resolution. The numbers at the bottom of each probe
image is the similarity score obtained by comparing a probe
of specified resolution with the reference image using a state-
of-the-art face recognition model [7]. However, humans
can make accurate inferences on these pairs of images by
comparing resolution-specific features. For example, we rely
on hairstyle, face shape etc. to accurately compare the very
low resolution probe image with the reference image, and on
finer details like eyebrows when verifying high res images.
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Figure 3: To explore how resolution affects recognition per-
formance, we evaluate a state-of-the-art face embedding
(VGGFace?2 [7]) on resolution-constrained subsets of a stan-
dard face recognition dataset IIBC[23]. Note the significant
drop in performance as resolution decreases (i.e. 20 pixels).
At a false-positive rate of 1073, the true positive rate for
small (20 pixel) faces drops by 60%.

known VGG face network [7] as our backbone for fine-
tuning. Instead of learning an “one-size-fits-all” embedding,
we learn a multiresolution representation that can be adapted
to different resolutions. Our approach to scale-invariance is
inspired by previous work on pose invariance [14], which
learns separate models for frontal and profile faces.
Human vision: Extensive studies on human vision show
that human are surprisingly good at recognizing low-res
faces [30]. [9] shows that human accurately recognize famil-
iar faces even as small as 16x16. [6] points out the familiarity
is the key — the more human are familiar with the face sub-
ject the more they can tolerate the poor quality of imagery.
Perhaps the closest analogy to familiarity is learning-based
recognition methods. Contemporary face recognition ap-
proaches train face embeddings on millions of images for
many iterations. In some sense, given any new face image,
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Figure 4: Impact of resolution- specific models We demon-
strate the massive improvement in the performance of our
resolution-specific models compared to the baseline VGG2
embedding (trained for 224x224) on the task of low-res
face verification. On the left, we test our resolution-specific
model tuned for images of height 16 (LFW-16), SR+FT(16).
On the right, we test a resolution-specific model tuned for
images of height 20 (LFW-20), SR+FT(20). We show that
super-resolving the low res image back to 224x224 (SR+FT)
performs better than basic bicubic upsampling (Bicubic),
and VGG2. We also show that SR+FT(20) performs better
than SR+FT(16) on LFW-20. It shows that we need to train
resolution-specific models at multiple resolutions for best
performance. Full plots shown in supp. material.

it must have seen faces that feel familiar.

Multi scale representations in neural networks: Using
representations drawn from multiple scales has been inte-
gral to computer vision tasks ever since the seminal work
on gaussian pyramids [1]. More recently, researchers have
been using deep representations drawn from multiple scales
to include greater context for Semantic Segmentation [34],
Object Detection [18] and other vision tasks. Our work
is inspired by such approaches, but differs in its execution
because the dimensionality of our underlying embedding
depends on the image resolution.

Low resolution face recognition: Recent works on low-
resolution face recognition can be classified into two cate-
gories [32]. The first category can be referred to as super-
resolution based [2, 3, 21, 20, 11, 12, 35, 33, 16] approaches.
Given a low-res probe, these methods first hallucinate the
high-res version, and then verify/classify the high-res ver-
sion. Alternatively, one might learn a feature representation
that is designed to work at low resolutions [8, 4]. Such rep-
resentations are often based on handcrafted features (such
as color). In our approach, we learn resolution-specific fea-
tures instead of hand-crafting them. Additionally, we employ
super-resolution networks as a pre-processing stage that is
trained end-to-end with the resolution-specific embedding.

Perhaps the most relevant work to ours is [33], which
learns a fixed-resolution deep network to regress a high-res
embedding from low-res images using a L2 loss. In compar-
ison, we learn multi-resolution embeddings that are directly
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Figure 5: We describe different strategies for learning em-
bedding networks tuned for a particular resolution of r
pixels, that make use of pre-training. Bicubic interpo-
lates training images of size 7 to a canonical resolution
(224x224), and then fine-tunes a pre-trained embedding net-
work. Super-resolution(SR) replaces bicubic interpolation
with an off-the-shelf super-resolution network (not shown in
figure). SR+Finetuning(SR+FT) fine-tunes both the front-
end super-res network and the embedding network.

trained to minimize (categorical) identity mis-classifications.

3. Method

As argued above traditional face recognition models suf-
fer a massive drop in performance on low-resolution images
(Fig. 3). In this section, we explore various simple strategies
to remedy this. We make use of an artificially-resized LFW
dataset where all images are sized to a target resolution of X
pixels (denoted as LFW-X) to support design decisions.

3.1. Resolution-specific models

The most intuitive way to alleviate the impact of resolu-
tion is to train separate models for specific resolutions. But,
how does one train an embedding for say, a 16x16 image?

Training images: Ideally, we should train these models
with real low-resolution images of size 16x16, but in general,
there may not be enough in a given training set. An attrac-
tive alternative is to augment the training set with resized
images, a common practice in multi-scale training. We find
that upsampling images may introduce blurry artifacts, but
downsampling is a relatively benign form of augmentation
(even given the caveats of [5]). In practice, we downsample
images from VGGFace? to the resolution of interest to train
resolution-specific models for all resolutions < 60.

Pre-training: Armed with a training set of 16x16 images,
which network architecture do we use to learn an embed-
ding? One option is training a custom architecture from
scratch for that resolution. But this makes it hard to take
advantage of pretrained backbone networks trained on faces
resized to a fixed input size (finetuning networks pretrained
on high-res images was shown to perform better than train-
ing them from scratch on low-res images [25, 29]). So, we
upsample the downsampled images back to 224x224 with
Bicubic interpolation, and fine-tune a ResNet-50 (pretrained



16x16 20x20

Figure 6: We illustrate the difference in upsampling strate-
gies, on images of height 16 (left), and images of height 20
(right). Bicubic interpolated images arc shown in the top
row, while SR+FT upsampled images are shown in the cen-
tral row. We can observe that the SR+FT upsampled images
are sharper near the edges from the difference images in the
bottom row. Zoom in to contrast between the sets of images.

on VGGFace? at full-resolution) on such training images.
To evaluate this approach, we train and test a face verifica-
tion model on LFW-X. Fig. 4 demonstrates that simple
resolution-specific models results in a dramatic relative im-
provement over an off-the-shelf embedding (VGG2): 60%
for LFW-16 and 15% for LFW-20.

Super-resolution (SR): We posit that the specific method
for upsampling the input image might have a large effect
on recognition performance. Fig. 5 replaces the bicubic up-
sampler with a (lightweight) super-resolution (SR) network.
Interestingly, Fig. 4 demonstrates that super-resolution net-
works may lose identity relevant information (also observed
in [16]). In supplementary material, we show that this ef-
fect is even more pronounced with deeper state-of-the-art
super-res networks operating on real images.

Super-resolution with Fine-tuning (SR+FT): Finally,
we finetune the lightweight super-resolution network along
with the backbone face embedding model with categorical
cross-entropy loss, to guide the SR model to retain identity
information. Fig. 4 shows that SR+FT outperforms bicubic
interpolation. Fig. 6 visualizes images generated by the fine-
tuned super-resolution network, which are sharper than the
bicubic result.

Multiple resolution-specific embeddings: Fig. 4 sug-
gests models tuned for particular resolutions (16px) might
outperform models tuned for similar but distinct sizes (20px).
To avoid training an exorbitant number of models, we choose
a fixed number of ‘anchor resolutions’ r spaced along a lin-
ear scale of 16px, 35px, and 50px. We found this to provide
a good tradeoff of memory and performance. Please see the
Experiments section for additional details.

3.2. Multi-resolution (MR) embeddings

The above results suggest that one should train a set
of resolution-specific models to improve recognition per-

formance. It is natural to ask if these different resolution-
specific embeddings could be ensembled together to improve
performance. In order to apply a different network to a given
input image, we would need to upsample or downsample it.
As previously argued, downsampling an image is less prone
to introducing artifacts, unlike upsampling. This suggests
that given an image at a fixed resolution, one can ensemble
together embeddings tuned for lower resolutions by down-
sampling.

Independent MR (MR-I): A reasonable solution is to
concatenate these embeddings together to produce a ‘multi-
resolution’ embedding.
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where, z; is a lower resolution version of a given image
x resized to anchor height r;, and ¢; denotes a resolution-
specific model tuned for that specific resolution. We find that
normalizing each resolution-specific embedding is necessary
to match the relative scales of the embeddings.

MR-I inference: Given an input image at a particular res-
olution, we create its downsampled versions corresponding
to anchor resolutions of equal or smaller size. This collec-
tion of blurred images are processed with resolution-specific
streams that produce embeddings that are concatenated to-
gether to produce the final multi-resolution vector given by
Equation 1 for MR-I models. With such a representation, the
similarity score between an image pair (x, y) downsampled
to the same anchor resolution is evaluated as follows,

_ P@)"o(y)
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The similarity score is equal to the mean cosine similarity
of the resolution-specific embeddings. Qualitatively, this
is equivalent to comparing probe and reference images at
multiple scales.

Jointly-trained MR (MR-J): Because the above ap-
proach naively concatenates together independently-trained
embeddings, they might contain redundant information. To
truly disentangle features across scale, we would like to
jointly train all constituent resolution-specific embedding
"streams" of a network. Following the grand tradition
of residual networks [10], joint training would force the
resolution-specific streams tuned for higher resolutions to
learn residual complementary information.

Fig.7 demonstrates the operation of a joint multi-
resolution model. It shows that certain parts of an MR-J
network are designed to only operate on inputs of certain
resolutions, while other parameters are shared. For example,
given a low resolution image (r1xry), the network outputs
only a part of the overall embedding (blue), while it out-
puts the full embedding for a higher resolution image(rsxrs).

s(®(x), ®(y)) @)



Method | Embed dim. | TPR at le-3 FPR

MR-] 128 61.2
MR-I 128 60.7
SR+FT 128 543
VGG2 2048 38.7

Table 1: Given a fixed embedding dimension (say 128),
does MR embedding perform better than its fixed coun-
terparts? The table shows that MR embeddings, both joint
and independent, composed of two 64 dimensional embed-
dings perform much better than a single resolution embed-
dings of same size SR+FT, and also the 2048 dimensional
baseline model VGG2 on real low resolution images (height
< 40px.). We use real images Lo better visualize the differ-
ence between the models. Full plots are shown in the supp.
material.

Given an input image, the outputs of these resolution spe-
cific streams are concatenated together to output a true multi-
resolution embedding as discussed earlier. We show in the
supplementary material that joint training forces higher reso-
lution streams to learn to ignore low resolution features like
gender [31] etc., demonstrating that they encode disentan-
gled features.

Parameter sharing: What is the optimal policy to share
parameters between the resolution-specific streams? We ex-
periment with two extreme strategies to help us identify the
ideal approach. (a) we test a model in which no parameters
are shared across different resolutions, i.e. each stream op-
erates independently till the final output stage. We refer to
this model as MR-J(W) or MR-J(Wide). (b) at the other
extreme, we test another model in which small 3-layered
resolution-specific streams operate on an embedding output
by a fully shared network. We refer to this model as MR-].
As a consequence of aggressively sharing parameters across
different resolutions, MR-J is much more efficient than MR-
J(W). Its memory footprint and computational complexity
are comparable to a single ResNet-50 model (25M vs 23M
params). We direct the reader to the supplementary material
for a detailed description of the training scheme.

In the Experiments section, we show that multi-resolution
embeddings significantly outperform VGG2, and also our
resolution-specific models SR+FT.

Embedding dimension: We would like embeddings
with small memory footprints. Our multi-res embeddings
might generate large memory footprints if implemented
naively. Table 1 asks the salient question: given a tar-
get dimension for an embedding (of say, 128d), do multi-
resolution embeddings outperform their fixed counterpart?
The answer is yes! Multi-resolution embeddings composed
of two 64 dimensional embeddings (MR-I, 128-dim and
MR-]J, 128-dim) outperform single-res embeddings of equal
size (SR+FT,128-dim) which are trained on the same data
with the same loss function.

r3Xr;

Figure 7: Jointly trained multi-resolution embedding MR-
J. Each low-res image is super-resolved by SR. The figure
shows that certain parts of the network are designed to only
operate on images of specific resolution. These parts out-
put embeddings tuned to images of those resolutions. As
discussed earlier, (1)they adapt in complexity to the reso-
lution of the input, such that larger embeddings are pro-
duced when additional high-res information is available (bot-
tom). (2)they produce disentangled representations where
frequency-specific components can be "switched off" when
not presenting the input (top/centre). (3) they can be adapted
on-the-fly to any desired resolution

TPR at FPR le-3
LFW-16 vs LFW-25 LFW-20 vs LFW-25

SR+FT(16) SR+FT(25) VGG2 || SR+FT(20) SR+FT(25) VGG2
745 || 96.7 96.7 88.5

94.1 89.0

Table 2: Given a probe and gallery image pair of dif-
ferent resolutions, what should be the resolution of the
embeddings used to compare them? The table shows that
in case of a large mismatch in resolution of the probe and the
gallery image: the best performance is achieved by resizing
the higher resolution image (25 px) to the lower resolution
(16 px), and employing lower-resolution (16 px) embedding
(left). If the mismatch is not large, we can use either repre-
sentation (right). Full plots are shown in the supp. material.

3.3. Adaptive inference

Choosing the ideal representation: Thus far, our results
indicate that when comparing two images at a particular
resolution, we should use MR embeddings tuned for that
resolution. Now, what about comparing two faces at different
resolutions? Two natural options are (a) downsample the
larger image to the smaller size, and use a model tuned for
the smaller resolution or (b) upsample the smaller image and
use a model tuned for the larger image. We analyze these
strategies along with the baseline approach on dissimilarly
resized LFW datasets for a clean evaluation. Table. 2 shows
that when the two resolutions are similar (20px vs 25px),
it doesn’t quite matter. But for a large mismatch (16px
vs 25px), (a) using a representation tuned for the lower



responding to each scale are pooled separately to generate
the final multi-resolution representation of a template, as
described by Eqn.4

resolution image is more effective.

Adaptive multi-resolution inference: Assume we are
given a gallery of high-resolution face images. Our model
produces a multi-resolution embedding that is stored for all
gallery images. Given a probe of a particular size 7, our
prior experiments suggest that we should tune the gallery to
the closest-anchor resolution, r;. This is trivial to do with a
disentangled multi-resolution embedding. Simply tune the
gallery embeddings “on-the-fly” with array indexing:

()L : ] 3)

Multi-resolution pooling: Practical face recognition
methods often operate on sets of faces (say, extracted from
a video sequence). Such methods generate an aggregate
template representation by pooling embeddings of face im-
ages in the set. The templates are then used to efficiently
compare these sets with a single image or with an other set
of faces. In our supplementary material, we show that naive
pooling of our multi-resolution embeddings is not optimal.
Intuitively, naive pooling mixes information across scales.
Rather, we should use only high-resolution faces to construct
the pooled high-frequency feature. We operate on the "
anchor resolution as follows:

1
=50 > dili) “4)

where S; is the set of images in the set that are of at least the
resolution of 73, and ¢; is the pooled feature for anchor reso-
lution r; (Fig. 8). These features are concatenated to output
a multi-resolution template embedding, as done earlier.

4. Experiments

As argued earlier, we focus our final results on the IJB-C
dataset because it includes real low resolution images. We
create 4 resolution constrained subsets of low resolution
faces (height < 60) from the IJBC dataset to test the effec-
tiveness of our algorithm at various scales. Each of these
subsets, named LJBC-X, contains faces of height close to
X € {20, 25, 35,50}. For example, a face of height 28 px
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Figure 9: We visualize the salient features captured by a
16px embedding by plotting both the low-res image pairs
and their high-res counterparts. The top-left quadrant show
face pairs of the same identity with high cosine similarity
(shown at the bottom of each pair). The top right shows face
of same identity with low similarity (due to expression or
makeup changes). The bottom left mistakes suggest that the
low res model relies heavily on racial and face shape cues,
as different people from the same race are predicted to have
high similarity. The bottom right suggests that gender ap-
pears to be an easily distinguishable feature at low resolution,
previously observed in [31]

is placed in the IJBC-25 subsct. We will make these subsets
publicly available.

In the following subsections, we discuss the results of
our algorithms on probe images drawn from these splits
when tested under various protocols of the IJB-C dataset
and compare them with the baseline VGG2. Additionally,
we compare our results with a VGG2 model finetuned with
artificially downsampled images of all resolutions, FT-all
and show that our models massively outperform it. This
demonstrates that it is necessary to handle images of very
different resolutions with resolution-specific streams.

4.1. Single image verification

Setup: The simplest IIB-C protocol is 1:1 covariate ver-
ification, where a single probe image is compared with a
single reference image. The protocol specifies over 48M
verification pairs from which we sample those pairs with at
least one low resolution image (height < 60). We bin verifi-
cation pairs into one of 4 groups, IJBC Covariate- X, when
the lower resolution image in the pair belongs to IIBC-X.

Results: First, we begin with qualitative results for
resolution-specific verification (Fig. 9). We refer the reader
to the caption for a more detailed analysis. Fig. 10 shows
the true positive rate (TPR) at 1e-3 false positive rate (FPR).
The plot shows that a simple resolution-specific model tuned
for images of height 16, (both MR-J, SR+FT) almost dou-
bles the performance of VGG2 on both IJBC Covariate-20,
IJBC Covariate-25. Note that for the lowest anchor resolu-
tion (16x16), MR-J is same as SR+FT. Similarly, resolution-
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Figure 10: Performance on Single image verification. The
plots show the TPR at 1e-3 FPR for various methods at dif-
ferent input resolutions. The plots are generated by veri-
fying pairs from IJBC Covariate-X. We observe that MR-
J(W) almost doubles VGG2’s performance and easily out-
performs FT-all for IIBC Covariate-20, and IJBC Covariate-
25. SR+FT surpasses VGG2 by 45% on IJBC Covariate-35,
and 6% on 1JBC Covariate-50. Remarkably, MR models
outperform VGG2 by 70% on IJBC Covariate-35 and 11%
on [JBC Covariate-50. Notice that MR-I models outperform
MR-J models at both these resolutions. It is interesting to
observe that the difference between our best models and
FT-all increases with decrease in probe resolution. Full ROC
plots are presented in the supplementary material.

specific models SR+FT, exceed the baseline’s performance
by 45% on 1IJBC Covariate-35, and 6% on IJBC Covariate-
50 respectively. More importantly, we draw attention to
the remarkable performance of multi-resolution embeddings,
MR-J(W), MR-J and MR-I. We find that the MR models out-
perform VGG2 by 70% on IJBC Covariate-35, and 11% on
IJBC Covariate-50. They also easily surpass the resolution-
specific models and FT-all. All relative improvements are
reported at 10~ False Positive Rate.

Discussion: (a)Why do MR models massively outper-
form other models? Disentangling resolution-specific fea-
tures forces models to learn to encode scale-specific features
which were ignored when trained on higher resolution im-
ages. Also, verifying faces by comparing them at multiple
scales seems to help recognition.

(b)In particular, we demonstrate that although FT-all and
MR-J are trained on same images, with the same loss, and
similar size (25M vs 23M params.), the small resolution-
specific streams operating at the top of MR-J greatly improve
its recognition performance at all low resolutions. FT-all
also allows us to show that an unmodified single ResNet
model cannot optimally encode both low and high resolution
features.

(c)MR-J(W) models slightly outperform MR-I models.
This shows that joint training of multi-resolution models
enjoys an advantage over training independently, as they do
not encode redundant information. MR-J(W) also slightly
outperform MR-J. We propose that, apart from model com-
plexity ( 3 times larger), the inability of a single network to
optimally model scale variation is also a contributing factor.

(d) In our experiments, we observed that a model tuned
for images of height 16 alone performs better than tuning
multiple resolution-specific models for images of height < 30.
This is surprising, as we would expect appropriately tuned
resolution-specific models to perform better! One probable
reason is that the effective resolution of real images is influ-
enced by other factors such as JPEG compression, motion
blur etc., and the additional blur created by using a model
tuned for a lower resolution assists in dealing with them.
This observation suggests that a multi-resolution model can
naturally handle these factors by adopting an embedding
tuned to a lower resolution.

(e) The difference between our best models, and FT-all
increases with a drop in resolution. Also the performance
of our MR-J model which shares parameters across all res-
olution drops in comparison to MR-J(W). This observation
validates our method, as it shows that lower resolution im-
ages need separate models for optimal performance.

4.2. Identification

Setup: Given a face image from IJBC-X, this protocol
asks which one of N (3531) identities does it belong to? Each
of the N subjects in the gallery is represented by a set of
high quality images. It is an important protocol resembling
the operational work of law enforcement [23]. Moreover, it
allows us to test test multi-resolution pooling, and adaptive
inference for multi-resolution embeddings.

Results: Fig. 11 presents the percentage of probe images
which had the ground truth (GT) in one of their top-10 pre-
dictions for each of our models and the baseline over various
IJBC-X. From the figure, we observe that the resolution-
specific embeddings MR-J(W) quadruples the performance
of VGG2 for probes from IJBC-20, and double the base-
line’s performance for probes from IJBC-25. Similar to
earlier experiment, SR+FT surpasses VGG2’s performance
by 44% and 13.5% for IJBC-35, ITBC-50 respectively.

We can observe that MR-I, and MR-J again outperform
the baseline by 66% on probes from IJBC-35, and 22% on
IIBC-50. Also, MR models’ significantly better performance
validates adaptive multi-resolution inference.

4.3. Image set-based verification

Setup: This is the more common 1:1 verification protocol
defined in 1JB-C dataset[23]. In this setting, probe sets
are compared with gallery sets. We sample relevant probe
sets with more than 60% images of very low resolution
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Figure 11: Performance on Identification. The plots show
the percentage of probes with GT in their top 10 predictions.
The plots were generated by classifying single image probes
from IJBC-X, to one of a defined gallery of 3531 classes,
each represented by a set of images. The plots for IIBC-20,
and IJBC-25 show that MR-J(W) at least doubles VGG2’s
performance. The plots for IJBC-35, and IIBC-50 show
that SR+FT models perform much better VGG2. They also
demonstrate that MR models surpass VGG2’s performance
by 66% and 22% respectively. The full CMC curves arc
presented in the supplementary material.

(height<30) to perform this experiment.

Results: In the plots of Fig. 12, we show our results with
probes containing increasing fractions of very low resolu-
tion images. The figure shows that the SR+FT outperforms
VGG?2, and FT-all, by 11%, 30% respectively, on probe
sets with larger fraction of very low res images (0.8, 0.9).
Their performances are comparable for probe sets with lower
fractions (0.6, 0.7) of low res images, as SR+FT is unable
to capitalize on the additional high-res information in the
probe set. We show that both MR models outperform all
other approaches with increasingly larger margins on probe
sets with increasing fractions of low resolution images. Par-
ticularly, the MR-J, MR-J(W) models beat the baseline by
11.1%, 11.9%, 28.8%, 47.1% for probe scts with fraction
of low resolution images greater than 0.6, 0.7, 0.8, and 0.9
respectively, proving that the MR models optimally combine
both high-resolution and low-resolution features of images
in the probe and reference sets.

4.4. Megaface

Megaface is a popular large-scale testing benchmark for
face recognition. However, the dataset does not contain im-
ages of low resolutions. To test our method at this large
scale, we resize all images in the Megaface dataset to spe-
cific sizes before evaluating our methods on these resized
images. Table 3 shows the Rank-1 accuracy obtained by our
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. MR-J
SR+FT

100

- MR-J(W)
MR-

e FT-all
Bl VGG2
80

True Positive rate
N B
o o o
\ \ ,
—
"
H
!
! ! !
1 !
! H
! ! i

0.9 0.8 0.7 0.6
Fraction of imgs of height < 30px. in Probe

Figure 12: Image set based verification. These plots show
TPR at 1e-3 FPR, for probe sets with varying ratios of low-
resolution images. SR+FT outperforms VGG2 and FT-all
at higher ratios (0.8, 0.9). MR models (particularly MR-
J) outperform all other approaches with increasingly larger
margins for higher ratios. The full ROC plots are presented
in the supplementary material.

Rank 1. Acc.
Face height | MR-J(W) MR-J] SR+FT FT-all VGG2
20 40.1 389  40.1 32.0 159
35 71.5 70.7 702 58.0 51.0
50 79.2 775 774 643 652

Table 3: Rank-1 accuracy on downsized images
(height={20,35,50}) of the Megaface dataset (100K image
disctractor set). The table shows that our multiresolution
models continue to outperform the baseline models (VGG2,
FT-all), and also the SR+FT models. However, note that the
difference between SR+FT and MR-X is not high because
the test images are artificially downsampled and the models
may overfit to this downsampling method.

models and the baseline at various such sizes. All results are
obtained by using a distractor set of 100K images.

5. Conclusion

We propose a simple yet effective approach for recog-
nizing faces at low resolution. We first point out that state-
of-the-art face recognizers, which use fixed-resolution em-
beddings, perform dramatically worse as face resolution
drops below 30 pixels. We then show that by simply tun-
ing resolution-specific embedding we can significantly im-
prove the recognition accuracy. We further explore multi-
resolution embedding that cfficiently adapts in size and com-
plexity to the resolution of test image on-the-fly. Finally,
comparing to state-of-the-art fixed-resolution embeddings,
our proposed embedding dramatically reduces recognition
error on small faces on standard benchmarks.
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