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Abstract

Image deconvolution is the process of recovering convo-

lutional degraded images, which is always a hard inverse

problem because of its mathematically ill-posed property.

On the success of the recently proposed deep image prior

(DIP), we build an image deconvolution model with deep

image and kernel priors (DIKP). DIP is a learning-free rep-

resentation which uses neural net structures to express im-

age prior information, and it showed great success in many

energy-based models, e.g. denoising, super-resolution, in-

painting. Instead, our DIKP model uses such priors in im-

age deconvolution to model not only images but also ker-

nels, combining the ideas of traditional learning-free de-

convolution methods with neural nets. In this paper, we

show that DIKP improve the performance of learning-free

image deconvolution, and we experimentally demonstrate

this on the standard benchmark of six standard test images

in terms of PSNR and visual effects.

1. Introduction

Image restoration is a long studied and challenging prob-

lem that aims to restore a degraded image to its original

form [1]. One way to model the processes of image degra-

dation is convolution with translational invariance [46]

B = X ∗K+E (1)

where X ∈ R
d×m×n is the original image, K ∈ R

h×w is

the convolution kernel, E ∈ R
d×m×n is the additive noise,

B ∈ R
d×m×n is the degraded image, and d denotes the

number of channels in the images (1 for greyscale images

and 3 for color images). Image deconvolution is the process

of recovering the original image X from the observed de-

graded image B, i.e. the inverse process of convolutional

image degradation. This work focuses on image deconvo-

lution in two different settings: kernel-known and kernel-

unknown (a.k.a. blind deconvolution).

Kernel-known: The preliminary stage of image decon-

volution mainly considers the case where the convolution

kernel is given [37], i.e. recovering X with knowing K in

Equ. 1. This problem is ill-posed, because simply applying

the inverse of the convolution operation on degraded image

B with kernel K, i.e. B∗−1
K, gives an inverted noise term

E ∗−1
K, which dominates the solution [16].

Blind deconvolution: In reality, we can hardly obtain

the detailed kernel information and the deconvolution prob-

lem is formulated in a blind setting [25]. More concisely,

blind deconvolution is to recover X without knowing K.

This task is much more challenging than it is under non-

blind settings, because the observed information becomes

less and the domains of the variables become larger [6].

In image deconvolution, prior information on unknown

images and kernels (in blind settings) can significantly im-

prove the deconvolved results. A traditional representation

for such prior information is handcrafted regularizers in im-

age energy minimization [12], e.g. total variation (TV) reg-

ularization for image sharpness [6] and L1 regularization

for kernel sparsity [38, 43]. However, prior representations

like the above-mentioned regularizers have limited ability

of expressiveness [27]. Therefore, this work aims to find

better prior representations of images and kernels to im-

prove deconvolution performances.

Deep neural architecture has a strong capability to ac-

commodate and express information because of its intricate

and flexible structure [40]. Compared to other image prior

representations with limited structures (e.g. regularizers),

neural nets with such powerful expressiveness seem more

capable of capturing higher-level prior of natural images

and degradation kernels. Deep image prior (DIP) [42] is

a neural-based image prior representation which achieved

good performance in various image restoration problems.

The main idea of DIP is to substitute image variable in an

energy function by the output of a deep convolutional neural

net (ConvNet) with random noise inputs, so that the image

prior can be captured by the hyperparameter of the Con-

vNet, and the output image is determined by the parameter

of the ConvNet. One point to emphasize here is that priors

expressed by both handcrafted regularizers and DIP are em-

bodied in their own formulations or structures, which does

not require large datasets for training. In the existing appli-

cations (incl. denoising, inpainting, etc.) of DIP, the degra-



dation processes are considered as known. In this paper, we

are the first to show that deep priors perform well in image

deconvolution. Furthermore, we show that ConvNets can be

utilized as a source of prior knowledge not only for natural

images but also for degradation kernels (named as deep ker-

nel prior, DKP), bridging the gap between traditional meth-

ods and deep neural nets. Through experiments we demon-

strate that our deep image and kernel priors (DIKP) result

in a significant improvement over traditional learning-free

regularization-based priors in image deconvolution1.

2. Related work

The earliest traditional methods of image deconvolution

include Richardson-Lucy (RL) method [32] and Weiner Fil-

tering [45]. Due to their simplicity and efficiency, these two

methods are still widely used today, but they may be subject

to ringing artifacts [30]. To solve this, many refinements

based on handcrafted regularization priors came out. [8]

adopted TV regularizer as prior in kernel-known deconvo-

lution. [48] proposed a progressive multi-scale optimization

method based on RL method, with edge-preserving regular-

ization as the image prior. For degradation kernels, early

methods [31] only dealt with their simple parametric forms.

Later then, natural image statistics were used to estimate

kernels [11, 26]. After that, [38, 43] adopted L1 regular-

izer as kernel prior in blind deconvolution. However, hand-

crafted priors mentioned above have relatively simple struc-

tures, so their expressiveness is rather limited [27].

This work is inspired by traditional image deconvolu-

tion methods by handcrafted priors [36, 43], but trying to

use deep image priors instead of handcrafted priors. It

uses ConvNet to express the prior information of both nat-

ural images and degradation kernels, putting kernel-known

and blind deconvolution under the same model. Besides,

as discussed in [42], its ConvNet-based image prior rep-

resentation links two sets of popular deconvolution meth-

ods: learning-based approaches by ConvNet [46, 49, 28]

and learning-free approaches by handcrafted prior [38].

3. Data set and evaluation metrics

As discussed in section 1, capturing image prior by either

regularization or deep neural net structures is learning-free.

Therefore, data set explored in this work is only used for

testing. Experiments and performance evaluation are con-

ducted on a data set with 6 standard test images shown in

Fig. 2. Those images, along with their preprocessing and

evaluation mentioned in the following, are in line with stan-

dard practice and widely used in denoising [7], TV deblur-

ring [2], etc., which guarantees the reliability of our results.

1We do not show any results from supervised deep network techniques

because our method is unsupervised and our objective is to prove that our

deep priors are better than handcrafted priors in image deconvolution.
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Figure 1: The generation processes of observed images.

For each process, we first convolve the original image by a

given kernel, then add a noise term to the convolved image.
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Figure 2: Standard test image data set experimented

in our work (zoomed out), containing 4 greyscale and 2
color images, named cameraman (abbr. C.man), house,

Lena, boat, house.c, peppers respectively from left

to right. The original resolutions are marked below them.

3.1. Observed data generation and kernels

To preprocess the image data and obtain degraded obser-

vations, we use the degradation model formulated as Equ. 1

to transfer the original standard test image Xstd to the ob-

served image B, illustrated by the diagram in Fig. 1. The

noise matrix E is i.i.d. Gaussian with respect to each entry,

and the noise strength (i.e. standard deviation) σ is fixed at

0.01 to reduce experimental variables. To explore different

kinds of degradation models, three common kernels for dif-

ferent kinds of degradation, Gaussian kernel [17], defocus

[16] and motion blur [47] are used to generate the data set.

Gaussian: The kernel for degradation caused by atmo-

spheric turbulence can be described as a two-dimensional

Gaussian function [19, 33], and the entries of the unscaled

kernel are given by the formula [16]

Ki,j = exp

[

−1

2

(

i− c1
s1

)2

− 1

2

(

j − c2
s2

)2
]

where (c1, c2) is the center of K, and (s1, s2) determines

the width of the kernel (i.e. standard deviation of the Gaus-

sian). In this work, s1 and s2 are set to s1 = s2 = 2.0.

Defocus: Out-of-focus is another issue in optical imag-

ing. Knowledge of the physical process that causes out-of-

focus provides an explicit formulation of the kernel [16]

Ki,j =

{

1/(πr2) if (i− c1)
2
+ (j − c2)

2 ≤ r2,

0 otherwise.



(a) Gaussian (b) Defocus (c) Motion blur

Figure 3: Visualization examples of the 3 kernels.

where r denotes the radius of the kernel, which is set to

r = ⌊min (h/2, w/2)⌋ in this work.

Motion blur: This happens if an image being recorded

changes in a single exposure when taking a photograph. For

example, when taking a picture, moving objects being taken

at high speed or lens shake will blur the picture. In noiseless

case, the convolution processes of motion blur with ampli-

tude u and shifting angle α are given by the formula [21]

Bi,j =
1

2u+ 1

u
∑

k=−u

Xi+k cosα,j+k sinα

in which the shape of the kernel is a line segment as Fig. 3c

shows. In this work, the blur amplitude and shifting angle

are set as u =
√
2 · ⌊min (h/2, w/2)⌋ and α = 3π/4.

All the kernels adopted in data generation processes and

experiments in this work are in shape 9×9 (i.e. h = w = 9)

with center (4, 4) (i.e. c1 = c2 = 4), and scaled such that

elements in each kernel sum to 1 [16]. Fig. 3 gives visu-

alization examples of the 3 different kernels adopted with

given settings mentioned above.

3.2. Evaluation metrics

We use the Mean Square Error (MSE) between the de-

graded image variable Bvar = X ∗K and the observation

MSE (Bvar,B) =
1

d ·m · n ‖Bvar −B‖22

to measure the energy function [42] and to track parameter

iterations in the first experiment (see subsection 5.2). Using

this metric, to minimize the energy is to find the image X

that, when degraded, is the same as the observation B.

To measure image deconvolution quantitatively, we use

the Peak Signal to Noise Ratio (PSNR) (in dB) [18] between

the image variable X and the standard test image Xstd

PSNR (X,Xstd) = 10 log10

[

R2

MSE (X,Xstd)

]

where R is the maximum possible pixel value of the image,

e.g. R = 1 if images in double-precision floating-point

data type, R = 255 if in 8-bit data type. In this work, we

use double-precision floating-point data type, i.e. R = 1.

In subsection 5.3, we compare the gradient distributions

among output images and standard test images. To mea-

sure the similarity between a gradient frequency distribution

Pr (·) and one by standard test images Prstd (·), we use the

Kullback-Leibler (KL) divergence [24]

DKL (Pr ‖ Prstd) = −
∑

b∈B

Pr (b) log
Prstd (b)

Pr (b)

where b denotes a bin corresponding to a range of gradient

values, B is the whole bin set covering all possible gradient

values. From the definition, the similarity between two dis-

tributions and their KL divergence are negatively correlated.

4. Methodology

According to section 1, both regularization-based prior

and deep image prior are embedded in energy minimization

models, which, in general, are formulated as [12]

min
X

E (X; B) +R (X) (2)

where E (X; B) indicates the energy term associated with

the data, and R (X) is the prior term. A general explanation

of the energy term is the numerical difference between the

given image data and the image variable processed by given

degradation. For image deconvolution, the degradation op-

erator is convolution, therefore the energy is designed as

E (X; B) = MSE (X ∗K,B). The energy term E (X; B)
can also be designed for other tasks in image restoration,

such as inpainting [39], super-resolution [14] and image de-

noising [36]. Methods adopted in this work are all based on

the deconvolution energy model and its mutants.

4.1. Baseline models with regularization prior

The gradient magnitude of a two-dimensional function

x (s, t) is defined and formulated as the following [15]

|∇x| (s, t) = ‖∇x (s, t)‖2 =

√

(

∂x

∂s

)2

+

(

∂x

∂t

)2

,

the discrete formulation of which for an image X is given

by the following matrix

|∇X| =
√

(

XD
⊤
1,n

)2
+ (D1,mX)

2

where the square and the square root calculations are entry-

wise, and D1,n is the discrete partial derivative operator

(see [16, Chap. 7] and [3, Sec. 2] for its formal definition

and its specified usage in this paper, respectively).

In image processing, discrete gradient magnitudes are

proven to be a strong prior to natural images [38, 16]. The

sum of such magnitudes in a single image is a regularization



representation of the image prior, i.e. total variation norm

‖X‖TV
:=

m
∑

i=1

n
∑

j=1

√

(

XD
⊤
1,n

)2

i,j
+ (D1,mX)

2

i,j
.

The efficiency of TV norm has been proven for recovering

blocky images [10] and images with sharp edges [5].

It is also known that L1 norm is capable of expressing

the sparsity of matrices [13], defined as

‖X‖1 =

m
∑

i=1

n
∑

j=1

|Xi,j | .

In most instances, degradation convolution kernels are

sparse [38]. Thus L1 sparsity regularization is a strong prior

to convolution kernels in blind settings.

The baseline models in this work are energy minimiza-

tion with TV and L1 regularization priors, of which the de-

tails in the two main settings are as follows.

Kernel-known: The baseline model with K known is

formulated as the following energy minimization model

with TV regularization prior

min
X

MSE (X ∗K,B) + α ‖X‖TV (3)

where α is the TV regularization parameter. To solve

the TV regularization system efficiently, we adopt a fast

gradient-based algorithm named MFISTA [2] , which

has performed remarkable time-efficiency and convergence

property in TV regularization.

Blind deconvolution: The baseline system in blind set-

ting introduces a new sparsity prior compared to the non-

blind baseline above, which is formulated as

min
X,K

MSE (X ∗K,B) + α ‖X‖TV + β ‖K‖1 (4)

where β is the L1 regularization parameter. This TV-L1

double-prior system can be solved using TNIP-MFISTA al-

gorithm proposed in [43]. To optimize both the image and

the kernel, this algorithm adopts fix-update iterations be-

tween MFISTA and an L1 regularization algorithm named

Truncated Newton Interior Point method (TNIP) [22].

4.2. Deconvolution with DIKP

DIKP aim to capture the priors of images/kernels by the

structures of generative deep neural nets. Taking image

variable X as an example, it re-parameterises the image X

as the neural net output X = f (z; θ), defined as the fol-

lowing surjection

f∗ : supp p×Θ
ConvNet7−−−−→ X , (z,θ)→ X

where supp p denotes the support2 of the input noise prob-

ability density function p, Θ denotes the weight space de-

termined by the network structure, and X is the solution

2supp p = {z ∈ Ω | p (z) 6= 0} [35], where Ω is the sample space of

noise vector z.

z

ConvNet

with

parameter

θ

ConvNet output

X = f(θ) X * K

Observation

B

Noise input

Conv

ConvNet

with

parameter

η
z' K

energy function: MSE(X * K, B)

run SGD on ConvNet parameter(s)  

Original DIP

Our DKP
(deactivate if kernel-known)

Figure 4: The overall pipeline of our DIKP deconvolu-

tion model, corresponding to Equ. 6 and Equ. 7.

space of X, containing the prior information. The neural

net f∗ maps the random noise network input z and the net-

work weights θ to the output X. Ideally, by adjusting the

network structure to its optimum, the solution space X only

contains images on desired prior information.

From the perspective of mechanics, the desired prior is

expressed by the network structure, and the weights θ ex-

plores solutions on the prior. The random input noise z is a

high-dimensional Gaussian. The main reason to take a ran-

dom noise as the network input is to increase the robustness

[29] to overcome degeneracy issues. On the other hand,

high-dimensional Gaussian vectors are essentially concen-

trated uniformly in a sphere [20]. Therefore the input space

supp p can be approximated as a single point, and the sur-

jection can be rewritten with the input space eliminated

f : Θ 7→ X , θ → X

which maps only a selection of parameters θ on the net-

work, to an output image X. In the rest of the report, f (θ)
denotes output image by deep image prior f with weight θ.

4.2.1 Energy functions of DIKP deconvolution

Traditional energy minimization (formulated as Equ. 2) for

image deconvolution explores the whole image space as the

domain. By re-parameterising the image term X into the

neural net output f (θ), the solution space contains the prior

information expressed by the structure of f , instead of the

prior term R (X). Thereby with deep image prior the gen-

eral energy model by Equ. 2 turns into

min
θ

E(f (θ) ; B). (5)

By optimizing network weights θ on a ideal structure, an

image is optimized conditioned on the desired prior.

Kernel-known image deconvolution objective with deep

image prior is derived directly from Equ. 5, by applying the

deconvolution energy function

min
θ

MSE (f (θ) ∗K,B) (6)



where K is the observed kernel. The minimizer θ∗ is ob-

tained by Adam optimizer [23] with random initialization.

Blind deconvolution: In blind settings, the convolution

kernel K is assumed to be unobservable. Thereby the kernel

is parameterised by another deep neural net structure g (η)
containing prior information regarding degradation kernels.

After parameterisation on kernel matrix in Equ. 6, the blind

deconvolution objective with deep image prior is formu-

lated as the following system

min
θ,η

MSE (f (θ) ∗ g (η) ,B) (7)

where f and g have different ConvNet structures since the

prior information of natural images and kernels are appar-

ently different. To obtain the minimizers θ∗ and η∗, we use

Adam to update the two variables simultaneously.

Fig. 4 gives a diagram summarizing our DIKP deconvo-

lution model. Hyperparameter settings for both f and g are

explained in detail in section 5.

5. Experiments

To explore to what extent deep priors can capture prior

knowledge of natural images in deconvolution models, we

a) compare the energy convergence property during DIKP

deconvolution optimization between natural images and

noise images; b) compare the gradient distributions among

standard test images and images from both baseline model

and DIKP. This part of experiments aims to evaluate DIKP’s

expressiveness on natural images, therefore it is only con-

ducted in kernel-known setting, i.e. DKP is deactivated.

The second part of our experiment aims to find out

whether our proposed DIKP deconvolution models improve

the performance of image deconvolution in both kernel-

known and blind settings, compared with the baselines. In

our results, PSNR comparison is conducted for quantita-

tive analysis on deconvolution performance, and qualitative

analysis is based on the presented images.

5.1. Experiment Setup

Convolution: Convolution processes in this paper, in-

cluding data generation and energy calculations, are subject

to reflexive boundary condition [16]. Specifically, for color

images, all channels share the same kernel [16].

Baseline: In kernel-known setting, the TV regularization

parameter α is set to 2 × 10−2, within a reasonable range

for image deconvolution according to [2]. In blind setting,

the regularization parameters are set to α = 2 × 10−3 and

β = 5 as the same in [43], among the experiments of which

such setting achieved the best results.

ConvNet architecture as DIKP: As suggested for

super-resolution setting in [42], we use hourglass architec-

ture (shown in Fig. 5) as the main body of DIKP, whose

hyperparameter settings are shown as follows
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Figure 5: The hourglass architecture as our DIKP struc-

tures. The upper half is the high-level encoder-decoder net-

work with skip connections [28]. The detailed structures in-

side each downsample connection di, upsample connection

ui and skip connection si are shown below the high-level

structure, where nu[i], nd[i], ns[i] denote the numbers of

filters in their respective connections at depth i, and ku[i],
kd[i], ks[i] are the corresponding kernel sizes.

For images:

z
i.i.d.∼ U (0, 0.1);

nu = nd = [128]× 5;

ku = kd = [3, 3, 3, 3, 3];
ns = [4, 4, 4, 4, 4];
ks = [1, 1, 1, 1, 1];
upsample stride size 2;

Sigmoid to output.

For kernels (if blind):

z
i.i.d.∼ U (0, 0.1);

nu = nd = [128]× 5;

ku = kd = [3, 3, 3, 3, 3];
ns = [4, 4, 4, 4, 4];
ks = [1, 1, 1, 1, 1];
upsample stride size 1;

Softmax to output.

We put Sigmoid and Softmax on ConvNet outputs for im-

ages and kernels respectively, because image pixels range

from [0, 1] and kernel pixels sum to 1. The reason for setting

upsample stride size to 1 for kernel generation is to prevent

degeneration due to their small size (9×9). It is worth men-

tioning that we apply add-noise regularization to the neural

network, i.e. we disturb the noise input z with an additive

Gaussian z ← z + ∆ z at the beginning of each iteration.

This technique aims to increase model robustness to pertur-

bation [29]. Although this regularization has a negative im-

pact on the optimization process, we find that the network

can still converge the energy to 0 with a sufficient number
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originally shown in Fig. 6 (from iteration 80 to 200).

of iterations and improve deconvolution performance.

5.2. Bias in convergence

Even though the complex structure of the neural network

in a DIKP model allows the solution space to have a variety

of features regarding natural images, it is still possible for

the DIKP model to express interference information other

than natural images [40], e.g. noise. Therefore, we intro-

duce noise into our experiments, using our DIKP kernel-

known model on natural images (incl. greyscale and color

images) and noise respectively. By comparing the conver-

gence property of the energy functions on the two in the

optimization process, we can know whether our model can

block such interference information in its solution space.

In our control experiment, we decide to use Gaussian

white noise and uniform noise, generated from Gaussian

N (0, 1) and uniform U (0, 1). Fig. 6 shows the optimiza-

tion curves of energy values with respect to iterations in

DIKP kernel-known deconvolution, where each plot corre-

sponds to each degradation kernel. In spite of the Gaus-

sian kernel, energy value convergence shows obvious differ-

ences between natural images and noise in DIKP deconvo-

lution with defocus and motion blur kernels. More specifi-
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Figure 8: Log-probability distributions of image gradients.

cally, we observe that curves by the noise are clearly above

those by natural images, and sudden leaps take place for en-

ergy values by noise in both plots. We speculate, the cause

of this observation is that, the ConvNet structures in DIKP

are unstable to parameter fluctuations for noise generation,

which also explains how DIKP deconvolution blocks noise

information. For the Gaussian, although in Fig. 6 we can-

not see a wild difference between noise and natural images,

in Fig. 7 we can still observe that the energy value by the

uniform noise converges slower than that by natural images

in early iterations, which also indicates that DIKP model

blocks uniform noise in Gaussian degraded deconvolution.

The DIKP deconvolution in the control experiments with

noise indeed shows biases to natural images from the per-

spective of energy function convergence, which means in

most cases, DIKP are capable of blocking interference and

irrelevant information in image deconvolution.

5.3. Image gradient distributions

Previous image statistics studies [44, 34] have shown

that natural image gradients follow heavy-tailed distribu-

tions, which provide a natural prior for natural images.

Starting from this, we consider evaluating the gradient dis-

tributions of our model-generated images with a “standard”

distribution which can be assumed as the natural prior.



C.man house Lena boat house.c peppers avg.

Gaussian
reg 24.108 29.541 29.663 26.353 27.842 28.550 27.676

Ours 25.093 30.745 30.705 27.436 29.021 28.827 28.638

Defocus
reg 23.841 29.053 29.164 25.874 27.488 28.210 27.272

Ours 25.688 30.473 30.355 27.480 29.594 29.089 28.780

Motion blur
reg 6.921 6.142 5.251 6.268 6.172 5.697 6.075

Ours 27.089 31.566 31.801 28.435 30.007 29.661 29.760

Table 1: Kernel-known deconvolution PSNR comparison between baseline (denoted by reg above) and ours.

C.man house Lena boat house.c peppers avg.

Gaussian
reg 19.553 14.214 29.798 26.323 14.662 24.790 21.557

Ours 23.230 27.748 26.094 24.977 27.122 21.347 25.086

Defocus
reg 18.845 13.519 27.435 24.035 13.849 24.782 20.411

Ours 23.021 23.094 26.286 25.154 24.462 28.229 25.041

Motion blur
reg 16.835 12.865 25.304 22.625 15.295 22.207 19.189

Ours 23.935 24.382 26.156 25.039 22.862 26.152 24.754

Table 2: Blind deconvolution PSNR comparison between baseline (denoted by reg above) and ours.

With notations in subsection 4.1, the gradients of im-

age X can be defined as matrices XD
⊤
1,n (horizontal) and

D1,mX (vertical) [9], where each element is a gradient

value. In this experiment, we calculate the image gradient

value distributions in 3 image sets, standard test images, im-

ages by the baseline model and images by the DIKP model.

The estimated probability distribution from frequency for

each set is denoted by P̂rstd (·), P̂rreg (·) and P̂rdikp (·),
where P̂rstd (·) is assumed to be the “standard” distribu-

tion. Therefore between the distributions by the 2 model-

generated image sets, the one with greater similarity to the

“standard” distribution is more in line with the natural prior.

Since the values of image gradients are continuous be-

cause of their double-precision floating-point data type, we

split the range of gradient values [−1, 1] into 64 disjoint

bins and count the number of gradient values that fall in

each bin as the frequency. Fig. 8 plots the logarithm prob-

ability distribution for each image set. Since the plot is in

log scale, we can infer that all the three distributions have

the heavy-tailed property, and their log-probability curves

are similar in shape to each other. The peak close-up in

the distribution shows a decreasing order of baseline-DIKP-

standard in terms of log-probability, the gradient values in

which lie around 0. This shows that the density of the base-

line and DIKP model where the gradient values are close to

0 is larger than the standard images, and further speaking,

the DIKP model performs closer to the standard than the

baseline in this range. However, the close-up in the middle

of peak and tail gives an order of standard-baseline-DIKP,

which indicates the exact opposite to the above peak-range

results. The results above are in expectation because the

TV regularizer in the baseline tends to reduce image gradi-

ent values due to the property of TV norm [4] and thereby

gives high frequency where gradients are close to 0, and

low frequency outside of peak range, which also illustrates

DIKP’s better performance in high frequency gradients.

Overall, the KL divergence between gradient distribu-

tions of DIKP-generated images and standard test images

is DKL

(

P̂rdikp

∥

∥

∥
P̂rstd

)

= 0.954, while for the baseline,

DKL

(

P̂rreg

∥

∥

∥
P̂rstd

)

= 1.260. This indicates that DIKP

have a greater similarity to the “standard” than the baseline

in terms of gradient distribution. The result is foreseeable

because although the baseline performs closer to the stan-

dard than DIKP in the middle range, DIKP perform closer

to the standard in the peak with much higher frequency.

5.4. Performance on deconvolution

We run our baselines and DIKP models on 18 degraded

images (3 degradation kernels on 6 standard test images) in

both kernel-known and blind settings. Then we compute the

PSNR between generated results and original standard test

images, and visualize some of the results for quantitative

and qualitative comparison respectively.

Shown in Table 1 and Table 2 are PSNR comparisons be-

tween baseline and deep priors for kernel-known and blind

deconvolution respectively. Overall, our DIKP deconvolu-

tion models always perform better than baseline models in

terms of average PSNR on different degradation kernels. In

kernel-known setting, DIKP even give a larger PSNR value

on every single degraded image. Particularly, when the ker-

nel type is set as motion blur, the baseline gives unexpect-

edly bad results as shown by the PSNR values marked in

red in Table 1. We suspect this is because TV regularizer

overfits the gradient prior on the motion deblur, so that the

non-edge regions of the image tend to be in the same pixel

value (see Fig. 9b). When the kernel is set to Gaussian or

defocus, the performance is improved by around 1.2 ± 0.3
in terms of PSNR as we expect. In blind setting, DIKP im-

prove the PSNR performance by around 5.0± 0.5, which is



(a) motion blurred (b) kernel-known baseline (c) Ours (kernel-known) (d) blind baseline (e) Ours (blind)

Figure 9: Comparison on motion blurred cameraman between baseline and DIKP in both kernel-known and blind settings.

(a) Gaussian (b) baseline (kk) (c) Ours (kk)

(d) defocused (e) baseline (kk) (f) Ours (kk)

Figure 10: Comparison on Gaussian degraded Lena, defo-

cused house.c between baseline and deep image prior in

kernel-known (abbriviated as kk above) setting.

significantly beyond the performance of the baseline. How-

ever, baseline gives higher PSNR values than the deep im-

age prior for a few pictures and kernel types, such as Lena

degraded by Gaussian or defocus. A possible reason is that

the gradient values in Lena are relatively small, so that TV

regularization gives better results on this specific image.

Fig. 10 visualizes the comparison between images

restored from Gaussian degraded Lena and defocused

house.c in kernel-known setting. From the pictures and

their close-ups, we see that DIKP perform better in detail

recovery. For example, the hair in Fig. 10b has only a clear

outline, while the details shown in Fig. 10c are more abun-

dant as well as the trees shown in Fig. 10f compared with

Fig. 10e. One possible explanation is that TV regularizer

over-optimizes the sharpness of images, resulting in good

performance only in outlines but not in detail.

In spite of the two kernels above, DIKP achieve remark-

able results especially in motion blur deconvolution. Fig. 9

visualizes the comparison between images restored from

motion blurred C.man in both settings. As mentioned pre-

viously, kernel-known baseline gives an unsatisfactory re-

sult (Fig. 9b), where only the basic outline of the camera-

man can be observed, and all other details inside the image

are lost, while kernel-known DIKP restore the image almost

perfectly as shown in Fig. 9c. For blind motion deblurring

on C.man, The result (Fig. 9d) given by baseline still has

motion blur, and the shape of its kernel is completely dif-

ferent from motion blur, while DIKP remove motion blur

efficiently and the shape of its kernel is much closer to mo-

tion blur than the baseline (see Fig. 9e), which also verifies

ConvNet’s expressiveness on degradation kernels.

6. Conclusions

We investigate deep ConvNet’s expressiveness on the

prior information of natural images and degradation kernels

in DIKP image deconvolution, and present its performance

in both kernel-known and blind settings. More importantly,

we propose DIKP-based energy minimization pipelines for

image deconvolution in the two settings, and achieve perfor-

mance which is far beyond our baselines [2, 43]. Our mo-

tivation is to adopt DIKP with more complex structures to

express image prior information based on the idea of tradi-

tional learning-free optimization methods, and at the same

time to improve image deconvolution performance by tra-

ditional learning-free methods. Through the first two ex-

periments, we prove that the ConvNet structures of DIKP

capture strong prior information on natural images in terms

of generation types and gradient distributions. In the final

experiment, we show the significant improvement by DIKP

models compared with the baselines in terms of both PSNR

values and visual effects, especially for motion-blurred im-

ages. However, we verify DIKP’s expressiveness on degra-

dation kernels only by an adjusted hourglass structure. It

is hard to associate kernel features and deep neural struc-

tures intuitively. Therefore, future endeavours in this topic

should focus on the structures of DIKP generating kernels,

trying other hyperparameters on hourglass, or other Con-

vNet structures, e.g. texture nets [41]. Besides, as applied

in [38], the formulation of energy functions may be adjusted

with gradient terms to become more suitable for this task.
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