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Abstract

In this paper, we propose a simple while effective unsu-

pervised deep feature transfer algorithm for low resolution

image classification. No fine-tuning on convenet filters is

required in our method. We use pre-trained convenet to

extract features for both high- and low-resolution images,

and then feed them into a two-layer feature transfer network

for knowledge transfer. A SVM classifier is learned directly

using these transferred low resolution features. Our net-

work can be embedded into the state-of-the-art deep neural

networks as a plug-in feature enhancement module. It pre-

serves data structures in feature space for high resolution

images, and transfers the distinguishing features from a well-

structured source domain (high resolution features space) to

a not well-organized target domain (low resolution features

space). Extensive experiments on VOC2007 test set show

that the proposed method achieves significant improvements

over the baseline of using feature extraction.

1. Introduction

Recently, deep neural networks (DNNs) have demon-

strated impressive results in image classification [19, 14, 3],

object detection [9, 26, 22, 33], instance segmentation [12],

depth estimation [15, 16], and face recognition [4]. The

success of DNNs has become possible mostly due to a large

amount of annotated datasets [7], as well as advances in

computing resources and better learning algorithms [10, 32].

Most of these works typically assume that the images are of

sufficiently high resolution (e.g. 224× 224 or larger).

The limitation of requiring large amount of data to train

DNNs has been alleviated by the introduction of transfer

learning techniques. A common way to make use of transfer

learning in the context of DNNs is to start from a pre-trained

model in a similar task or domain, and then finetune the

parameters to the new task. For example, the pre-trained
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Figure 1. The tSNE [23] of deep features (2048-D) of VOC2007

train set extracted from pool5 layer of pre-trained resnet-101 [14].

(a) Feature of High Resolution (HR) images, and (b) feature of Low

Resolution images. The HR features are well separated, however,

the LR features are mixed together.

model on ImageNet for classification can be finetuned for

object detection on Pascal VOC [9, 26].

In this paper, we focus on low resolution (e.g. 32× 32 or

less) image classification as for privacy purpose, it is com-

mon to use low resolution images in real-world applications,

such as face recognition in surveillance videos [34]. Without

additional information, learning from low resolution images

always reduces to an ill-posed optimization problem, and

achieves a much degraded performance [25].

As shown in Fig. 1, the deep feature of high resolution im-

ages extracted from pre-trained convenet has already learned

discriminative per-class feature representation. Therefore,

it is able to be well separated in the tSNE visualization.

However, the extracted feature of low resolution images is

mixed together. A possible solution is to exploit the transfer

learning, leveraging the discriminative feature representation

from high resolution images to low resolution images.

In this paper, we propose a simple while effective unsuper-

vised deep feature transfer approach that boosts classification

performance in low resolution images. We assume that we

have access to high resolution labeled images during training,

but at test we only have low resolution images. Most existing

datasets are high resolution. Moreover, it is much easier to

label subcategories in high resolution images. Therefore, we



Figure 2. The overview of proposed unsupervised deep feature transfer algorithm. It consists of three modules. In the feature extraction

module, a pre-trained deep convenet is used as feature extractor to obtain HR and LR features from HR and LR images, respectively. Then,

we cluster the HR features to obtain pseudo-labels, which are used to guide the feature transfer learning of LR features in the feature transfer

network. Finally, a SVM classifier is trained on the transferred LR features.

believe it is a reasonable assumption. We aim to transfer

knowledge from such high resolution images to real world

scenarios that only have low resolution images. The basic

intuition behind our approach is to utilize high quality dis-

criminative representations in the training domain to guide

feature learning for the target low resolution domain.

The contributions of our work have three-fold.

• No fine-tuning on convenet filters is required in our

method. We use pre-trained convenet to extract features

for both high resolution and low resolution images, and

then feed them into a two-layer feature transfer network

for knowledge transfer. A SVM classifier is learned

directly using these transferred low resolution features.

Our network can be embedded into the state-of-the-art

DNNs as a plug-in feature enhancement module.

• It preserves data structures in feature space for high

resolution images, by transferring the discriminative

features from a well-structured source domain (high

resolution features space) to a not well-organized target

domain (low resolution features space).

• Our performance is better than that of baseline using

feature extraction approach for low resolution image

classification task.

2. Related Work

Our method is closely related to unsupervised learning of

features and transfer learning.

Unsupervised learning of features: Clustering has been

widely used for image classification [2, 30, 17]. Ji et al. [17]

propose invariant information clustering relying on statistical

learning by optimising mutual information between related

pairs for unsupervised image classification and segmenta-

tion. Caron et al. [2] present a clustering method that jointly

learns the parameters of a neural network and the cluster as-

signments of the resulting features. Yang et al. [30] propose

an approach to jointly learn deep representations and image

clusters by combining agglomerative clustering with CNNs

and formulate them as a recurrent process.

Transfer learning: It is commonly used in the scenario

where the training and testing data distributions are different.

Saenko et al. [28] learn a regularized non-linear transfor-

mation in the context of object recognition to minimize the

effect of domain-induced changes in the feature distribution.

Chen et al. [6] transfer knowledge stored in one previous

network into each new deeper or wider network to accel-

erate the training of a significantly larger neural network.

Yosinski et al. [31] experimentally study the transferability

of hierarchical features in deep neural networks. Azizpour et

al. [1] investigate the factors of transferability of a generic

deep convolutional networks such as the network architec-

ture, distribution of the training data, etc. Tzeng et al. [29]

learn a CNN architecture to optimize domain invariance and

transfer information between tasks. Long et al. [21] propose

a deep adaptation network architecture to match the mean

embeddings of different domain distributions in a reproduc-

ing kernel Hilbert space. Guo et al. [11] propose an adaptive

fine-tuning approach to find the optimal fine-tuning strategy

per instance for the target data. Readers can refer to [24] and

the references therein for details about transfer learning.

3. Proposed Approach

This section describes the proposed unsupervised deep

feature transfer approach.

3.1. Preliminary

With the recent success of deep learning in computer vi-

sion, the deep convnets have become a popular choice for

representation learning, to map raw images to an embedding

vector space of fixed dimensionality. In the context of super-

vised learning, they could achieve better performance than



humanbeings on standard classification benchmarks [13, 19]

when trained with large amount of labelled data.

Let fθ denote the convenet mapping function, where θ

is the corresponding learnable parameters. We refer to the

vector obtained by applying this mapping to an image as

feature or features. Given a training set X = {x1, · · · , xN}
of N images, and the corresponding ground truth labels

Y = {y1, · · · , yN}, we want to find an optimal parameter

θ∗ such that the mapping f∗

θ predicts good general features.

Each image xi associates with a class label yi in {0, 1}k.

Let gw denote a classifier with parameter ω. The classifier

would predict the labels on top of the features fθ(xi). The

parameter θ of the mapping function and the parameter ω

of the classifier are then learned jointly by optimizing the

following objective function:

min
θ,ω

1

N

N∑

i=1

L(gw(fθ(xi), yi)) , (1)

where L is the multinominal logistic loss for measuring the

difference between the predicted labels and ground-truth

labels given training data samples.

3.2. Unsupervised Deep Feature Transfer

The idea of this work is to boost the feature learning for

low resolution images by exploiting the capability of unsu-

pervised deep feature transfer from the discriminative high

resolution feature. The overview of proposed approach is

shown in Fig. 2. It consists of three modules: feature extrac-

tion, unsupervised deep feature transfer, and classification,

discussed below.

Feature extraction. We observe that the deep features

extracted from convenet could generate well separated clus-

ters as shown in Fig. 1. Therefore, we introduce the transfer

learning to boost the low resolution features learning via the

supervision from high resolution features. Then, we extract

the features (N-Dimensional) of both high and low resolu-

tion images from a pre-trained deep convenet. More details

are described in Sec. 4.2.

Unsupervised deep feature transfer. We propose a fea-

ture transfer network to boost the low resolution features

learning. However, in our assumption, the ground truth la-

bels for low resolution images are absent. Therefore, we

need to make use of the information from high resolution

features. In order to do this, we propose to cluster the high

resolution features and use the subsequent cluster assign-

ments as “pseudo-label” to guide the learning of feature

transfer network with low resolution features as input. With-

out loss of generality, we use a standard clustering algorithm,

k-means. The k-means takes a high resolution feature as

input, in our case the feature fθ(xi) extracted from the con-

venet, and clusters them into k distinct groups based on a

geometric criterion. Then, the pseudo-label of low resolution

features are assigned by finding its nearest neighbor to the

k centroids of high resolution features. Finally, the parame-

ter of the feature transfer network is updated by optimizing

Eq. (1) with mini-batch stochastic gradient descent.

Classification. The final step is to train a commonly used

classifier such as Support Vector Machine (SVM) using the

transferred low resolution features. In testing, given only

the low resolution images, first, our algorithm extracts the

features. Then feeds them to the learned feature transfer

network to obtain the transferred low resolution features.

Finally, we run SVM to get the classification results directly.

4. Experiments

4.1. Dataset

We conduct the low resolution classification on the PAS-

CAL VOC2007 dataset [8] with 20 object classes. There are

5, 000 images in VOC2007 trainval set and 4, 952 images in

VOC2007 test set. However, the images in the dataset are

high resolution images only. We follow [20] to generate the

low resolution images. In this work, we generate high reso-

lution images by resizing the original images to 224× 224
using bicubic interpolation. We generate the low resolution

images by down-sampling the original to 32× 32, and then

up-sampling to 224× 224.

4.2. Implementation Details

We conduct our experiment using Caffe [18]. We use

the resnet-101 [14] pre-trained on ILSVRC20121 [27] as

the backbone convenet to extract the features from high and

low resolution images. We extract the features from the

pool5 layer, which gives a feature vector with dimension of

N = 2048.

The feature transfer network is a two-layer fully con-

nected network. We conduct grid search to find the opti-

mal design for the network architecture, see Sec. 4.3. It

is initialized using MSRA [18] initialization. We train the

feature transfer network using stochastic gradient descent

with weight decay 0.0005, momentum 0.9, batch size 1, 000,

epoch 1, 000, total iteration 31, 561. The initial learning rate

is 0.01, and is decreased by 10 after every 15, 000 iterations.

4.3. Feature Transfer Network

The feature transfer network is shallow, with two fully

connected layers. Let N1 and N2 denote the neurons of the

first and second fully connected layers, respectively. We

conduct grid search to find the optimal combination for N1

and N2, as shown in Table 2. The number N2 is determined

by the number of clusters k for the pseudo labels in k-means.

As we can see, when the neurons of N2 is fixed, the mAP

increases as the neurons of N1 increases. This is because the

1We download the Caffe Model from https://github.com/

BVLC/caffe/wiki/Model-Zoo



aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv mAP

Baseline-HR 97.6 92.7 89.2 85.8 90.6 87.5 96.2 94.3 81.4 83.3 80.0 86.9 84.2 90.0 95.4 95.0 88.3 71.6 96.0 95.9 89.1

Baseline-LR 87.5 84.8 77.5 77.4 80.4 76.5 90.6 72.1 75.1 72.9 69.5 65.0 71.7 73.9 92.8 90.8 78.3 48.6 83.3 92.3 78.1

Ours 89.1 86.5 80.1 78.1 79.6 77.4 92.4 75.4 79.4 73.2 72.5 68.5 74.0 77.1 95.0 91.9 77.6 53.4 86.1 92.5 80.0

Table 1. Per-class average precision (%) for object classification on the VOC2007 test set.

Figure 3. The tSNE of features on VOC2007 test set. (a) Feature (2048-D) of High Resolution (HR) images, (b) feature (2048-D) of Low

Resolution (LR) images, (c) transferred feature (100-D) of LR image.
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N2

N1
256 512 1024 2048 4096

20 0.704 0.741 0.771 0.786 0.800

100 0.718 0.752 0.768 0.789 0.800

200 0.727 0.746 0.771 0.788 0.800

500 0.717 0.743 0.766 0.784 0.795

1000 0.713 0.743 0.762 0.783 0.793

2048 0.718 0.739 0.765 0.783 0.794

Table 2. We use grid search to find the optimal combination of N1

and N2 for the two-layer feature transfer network by calculating

the mean average precision (mAP) on VOC2007 test set.

capacity of the two-layers feature transfer network increases

as the neurons increases in N1. However, given a fixed

number of neurons of N1, the value of mAP would increase

first, and then decrease when the value of neurons in N2 is

larger enough, maybe 200 is a threshold value in our two-

layer network as shown in the table. We observe that the

hyperparameters with N2 = 100 and N1 = 4096 for the

neurons give us the best performance. We use the same

values in our experiment.

4.4. Low Resolution Image Classification

We evaluate the performance of image classification in

the context of binary classification task on the VOC2007 test

set using SVM [5] classifier in matlab. We have compared

our algorithm with two baselines: Baseline-HR and Baseline-

LR, discussed below. Baseline-HR is to use the extracted

high resolution features (2048-D) of VOC2007 trainval set

to train the SVM and report the classification performance

on VOC2007 test set. It is similar for Baseline-LR, but with

the extracted low resolution features (2048-D). Our method

transfers the low resolution feature from 2048-D to 100-D.

Therefore, we train the SVM using the 100-D features for

each class. We show the comparison in Table 1.

The Baseline-HR is the upper bound of our method, and

Baseline-LR is the lower bound. As we can see from the Ta-

ble 1, the proposed unsupervised deep feature transfer is able

to boost the low resolution image classification by about 2%.

Except for the classes of “bottle” and “sheep”, our method

outperforms the Baseline-LR. As shown in Fig. 3, we find

the transferred low resolution features are sperated much bet-

ter than the extracted low resolution features. Those indicate

that the proposed unsupervised deep feature transfer algo-

rithm does help transfer more discriminative representations

from high resolution features. Therefore, it boost on low

resolution images classification task. The feature transfer

network could also be embedded into the state-of-the-art

deep neural networks as an plug-in module to enhance the

learned features.

5. Conclusion

In this paper, we propose an unsupervised deep feature

transfer algorithm for low resolution image classification.

The proposed two-layer feature transfer network is able to

boost the classification by 2% on mAP. It can be embedded

into the state-of-the-art deep neural networks as a plug-in fea-

ture enhancement module. While our current experiments

focus on generic classification, we expect our feature en-

hancement module to be very useful in detection, retrieval,

and category discovery settings as well in the future.
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