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Abstract

Current solutions to discriminative and generative tasks

in computer vision exist separately and often lack inter-

pretability and explainability. Using faces as our applica-

tion domain, here we present an architecture that is based

around two core ideas that address these issues: first, our

framework learns an unsupervised, low-dimensional em-

bedding of faces using an adversarial autoencoder that is

able to synthesize high-quality face images. Second, a su-

pervised disentanglement splits the low-dimensional em-

bedding vector into four sub-vectors, each of which con-

tains separated information about one of four major face

attributes (pose, identity, expression, and style) that can be

used both for discriminative tasks and for manipulating all

four attributes in an explicit manner. The resulting archi-

tecture achieves state-of-the-art image quality, good dis-

crimination and face retrieval results on each of the four

attributes, and supports various face editing tasks using a

face representation of only 99 dimensions. Finally, we apply

the architecture’s robust image synthesis capabilities to vi-

sually debug label-quality issues in an existing face dataset.

1. Introduction

Deep learning algorithms have enabled impressive per-

formance for image categorization [16] or for recognition of

faces in very large databases [7]. In parallel, developments

in generative approaches have demonstrated that deep neu-

ral networks also are able to synthesize highly realistic out-

put, for example, for scenes [29] or for high-resolution faces

[20]. Both discriminative and generative techniques, how-

ever, have come under scrutiny recently for being vulner-

able to adversarial attacks and for a lack of interpretabil-

ity [24], leading to a push to develop more ”explainable”

networks [3, 44]. Importantly, both types of techniques co-

exist separately but are rarely brought together in a common

Figure 1: System overview with an unsupervised autoencoder

and an attribute-disentangling network. For notation, see Sec.3.

framework - such a framework would allow, for example, to

discriminate a face but it would also be able to provide an

explanation of its decision through its generation and edit-

ing capabilities.

In the present paper, we provide such a framework that

provides generative and discriminative paths in one com-

mon representation and demonstrate it in the application do-

main of faces (although our approach works with all types

of data). The core idea of our framework is to create a

compact, low-dimensional embedding of faces that can be

used both for generation and for discrimination (akin to the

”face space” conceptual framework from cognitive neuro-

science [39]). In order to generate such a low-dimensional

embedding, we train an unsupervised adversarial autoen-

coder on a large number of faces containing a lot of varia-



tion in face attributes. In our case, the autoencoder yields a

99-dimensional embedding vector that is able to reconstruct

the training faces and to generate images of high quality.

This vector, however, will most likely contain information

about different face attributes (identity, pose, expression,

gender, age, etc.) in a highly entangled fashion. In the next

step, we therefore add a supervised disentanglement step

that splits the 99 dimensions into attribute-specific, separate

sub-spaces. Owing to the availability of large-scale, anno-

tated face databases, we can encode any number of differ-

ent face attributes - here, we focus on four ”major” face at-

tributes of identity, expression, pose, and style. Importantly,

the disentanglement step ensures that the information in the

99 dimensions is separated and useful for discrimination,

but it also makes use of the generative aspects by creating its

own augmented training images that are fed into the training

cycle. Our network architecture (see Fig.1) uses a number

of cross-checks to ensure consistency of the feature vectors

and the resulting, low-dimensional face embedding. With

this architecture, we can

• create realistic-looking faces within standard GAN-

like applications

• recognize identities, expression, and pose with, es-

pecially, expressions reaching state-of-the-art perfor-

mance on a challenging, large dataset

• conduct attribute-specific face editing

• explore failure cases of discrimination by means of the

robust, generative capabilities to check ”where things

went wrong and why”

with a low-dimensional embedding of just 99 dimensions.

2. Related Work

Discriminative methods based on convolutional neural

networks (CNNs) have shown impressive results in a num-

ber of areas in computer vision, defining state-of-the-art

performance in face detection [35], verification [7], attribute

[11] and expression recognition [40] (for a combined multi-

task approach, see [32]. On the other side, generative ad-

versarial networks (GANs) [9] are able to generate data

from random noise through adversarial training enabling

super-resolution [25, 43], face synthesis [19], and image-

to-image translation [42,46]. Since GANs per se do not of-

fer inference capabilities, a number of generative methods

have been proposed that build upon an autoencoder archi-

tecture [4,15] to map input images into a latent space which

can also be sampled from to generate new images [23, 26].

In the context of face processing, a number of GAN net-

work architectures were proposed that enable realistic re-

constructions of face images combined with the generation

of random faces [13,33,38]. However, the encoding of input

images does not perform well in regard to preserving facial

attributes, such as an individual’s expression or identity. To

overcome this issue, approaches have been studied that con-

dition the encoding and generation process on specific fa-

cial attributes. For example, [45] propose a conditional ad-

versarial autoencoder (CAAE) that is able to generate faces

by controlling the observed age of the face. Similar meth-

ods have been developed to generate additional training data

for discriminative face processing tasks. For example, [18]

or [37] use pose information to improve face verification

performance and [8] exploit the idea of a face space de-

fined by a 3D model to generate faces conditioned on ex-

pression, pose, and identity. Generative adversarial meth-

ods have also targeted facial expressions analysis. In [36],

for example, fiducial points are employed to control facial

expression synthesis. Gu et al. [10] modify facial expres-

sion in training images to increase the accuracy of a facial

expression classifier.

Recent work in generative methods have attempted to

disentangle facial attributes in a more controlled fashion.

In [45], for example, pose and expression are separated

from identity for independent face synthesis. An approach

that is similar to ours in spirit is [34] in which an autoen-

coder learns the disentanglement into an identity-distilling

feature and an identity-dispelling feature. One feature can

be used for discriminative identity recognition, whereas the

remaining feature can be modified independently to control

other attributes in a generated face. Importantly, existing

work like [34] so far has only dealt with one or two explicit

facial attributes. Our method extends this by disentangling

four major attributes (pose, identity, expression, and style)

in a face image at the same time. It also adds two important

architectural elements: first, we separate disentanglement

from face space learning, thus allowing training of the lat-

ter on very large datasets of unlabeled data in an unsuper-

vised fashion. Second, through the incorporation of cycle-

consistency into the disentanglement process, we are able

to separate multiple features in parallel without the need for

a feature-wise information distilling/dispelling scheme as

used in [34] which allows for an integrated formulation that

can also be extended with additional attributes.

3. Methods

In this section we describe the two components of our

approach. First, an adversarial autoencoder learns an unsu-

pervised feature representation z ∈ R
d of face images. A

subsequent supervised process then splits this feature vec-

tor into a disentangled representation f = (fp, fid, fe, fs)
consisting of an independent encoding for pose, identity, ex-

pression, and style, respectively. Style serves as a residual

feature capturing aspects in the image that are not attributed

to either pose, identity, or expression.



3.1. Unsupervised adversarial autoencoder

Fig.1 shows the architecture of the autoencoder that is

used to encode facial images into a feature vector repre-

sentation. Given an input image x, the encoder network

E(x) produces a feature vector z ∈ R
d. The decoder G(z)

projects z back into image space: x̃ = G(E(x)). The en-

coding and decoding process is guided by a set of loss func-

tions that ensure the faithful reconstruction of input images

as well as the learning of a smooth manifold of faces.

Reconstruction loss : An accurate representation of in-

put faces is critical for subsequent classification and editing

tasks. This is achieved through an ℓ1 reconstruction loss

that penalizes pixel errors:

Lrec(E,G) = Ex∼p(x)[‖x−G(E(x))‖1] (1)

Adversarial feature loss: Following [9], a discriminator

Dz imposes the prior distribution p∗ ∼ p(z) on z. This

forces the generator E to produce a continuous embedding

space that can be sampled to generate new images.

Lenc(E,Dz) = Ez∗∼p(z)[logDz(z
∗)]

+ Ex∼p(x)[log (1−Dz(E(x)))]
(2)

Adversarial image loss: Autoencoders trained with im-

age reconstruction losses typically suffer from creating

blurry images. We observed the same behavior leading to

accurate image reconstructions in terms of pixel differences,

yet smoothing out finer details such as wrinkles. However,

for tasks such as expression recognition higher-frequency

information is vital [41]. Hence, an adversarial loss,

Ladv(E,G,Dx) = Ex∼p(x)[logDx(x)]

+ Ex∼p(x)[log(1−Dx(G(E(x))))],
(3)

is added where encoder E and decoder G are optimized to

auto-encode images x̃ = G(E(x)) that look similar to the

input images x from the training set. The discriminator Dx

tries to distinguish real images from their reconstructions

x̃. Dx can only be fooled if the same amount of detail is

present in the auto-encoded face as in the original image.

Generative image loss: The adversarial image loss has

the drawback that it only operates on images from the train-

ing set. It does not encourage the generator to create realis-

tic face images from the latent code z. The generator is thus

prone to overfitting training images. We therefore add the

adversarial loss of a Generative Autoencoder Network:

Lgen(G,Dx) = Ex∼p(x)[logDx(x)]

+ Ez∗∼p(z)[log (1−Dx(G(z∗)))]
(4)

Figure 2: Data flow through the disentanglement procedure.

Stages 1), 2) and 3) are referenced in the text.

This encourages the generator to produce realistic im-

ages for any z ∈ p(z), not only instances of z that are cre-

ated by the encoder.

Full autoencoder objective: The full objective of our ad-

versarial autoencoder is given by:

min
E,G

max
Dz,Dx

LAE(E,G,Dz, Dx) =

λAE(Lrec(E,G) + Ladv(E,G,Dx))

+ Lenc(E,Dz) + Lgen(G,Dx)

(5)

where λAE = 0.9 weights training image reconstruction

versus quality of random image generation.

3.2. Disentangling facial components

After the autoencoder has learned a general face encod-

ing z, the aim is to disentangle z into a new latent variable

f which is composed of sub-vectors representing individual

facial attributes. As depicted in Fig.1, the disentanglement

consists of an autoencoding scheme with z supplied to a net-

work Φ(z) → f and its output f (Fig.2 stage 1)) returned to

the inverse network Φ−1(f) → z̃ to reconstruct the original

vector z.

3.3. Encoding reconstruction loss

The two feature space transformations should lead to

an identity cycle with z̃ ≈ Φ−1(Φ(z)). This is enforced

through the reconstruction loss LΦ
rec as defined by:

LΦ
rec = Ez∼pdata(z)[

∥

∥z − Φ−1(Φ(z))
∥

∥

1
] (6)

We chose the ℓ1 distance here since its linear output

range balances this value against the other loss terms.

3.4. Discriminative task loss

The disentanglement is driven by supervised task-

specific loss terms LΦ
fk

that are calculated by evaluating



feature distance functions F‖ with k ∈ p, id, e, s for pose,

identity, expression, and style.

LΦ
fk

= Ef [Fk(fk, yk)], (7)

where yk denotes ground truth labels. Training images dur-

ing the disentanglement process are taken from different

datasets that contain varying types of annotations of pose,

identity, expression, and style. We obtain ground truth iden-

tities yid from datasets for face identification and expression

annotations from FER datasets [27]. Head poses yp are ex-

tracted for all datasets using a face detection algorithm [1].

Lastly, we collect information on image and face style by

considering variances within and across video clips [28].

More details and feature comparison metrics are given in

Sec.3.7.

3.5. Attribute cycle-consistency loss

Through supervised encoding following Eq.(7), informa-

tion regarding a certain facial factor k is distilled into a at-

tribute vector fk. For a disentangled representation, how-

ever, we need to ensure that no information about this at-

tribute is present in the remaining vectors fj with j �= k.

This is achieved using a cycle-consistency loss on a mod-

ified attribute vector f∗
k = π(fk). Other components of the

feature vector fi, i �= j are kept unchanged. The new vector

f∗ is passed to the reconstruction pipeline G(Φ−1(f)) → x
to produce a novel generated face image x∗ (Fig.2 stage 2)).

This image differs from the original input image by the edits

carried out in fk. Image x∗ is then returned to the encod-

ing pipeline Φ(E(x)) → f to obtain a reconstructed feature

vector f̃∗ (Fig.2 stage 3)). Loss LΦ
cyc penalizes errors dur-

ing this process:

LΦ
cyc = Ez[‖π(f)− I(π(f)‖1] (8)

In Eq.(8) I(f) denotes an identity function representing

one full pass through autoencoder and disentanglement,

I(f) = Φ(E(G(Φ−1(f)))), (9)

and π(f) is a feature editing function. To guarantee that

all edited attribute vectors f̃k are valid encodings, π does

not create new vectors but performs a random permutation

across a training batch.

If attributes are disentangled and independent from one

another, Eq.(8) will return low values. Consider for exam-

ple an image with an angry expression. If the encoded an-

gry feature is replaced by an encoded happy expression, the

generated new image will only differ from the input image

by a modified facial expression. If this image is encoded

again, the resulting attribute vector should be identical to

the attribute vector of the original (happy) image with the

replaced (angry) expression vector. If disentanglement fails,

this is due to one of three cases:

• Expression data is present in other attribute vectors:

This leads to a generated image not depicting a purely

angry expression. Encoding would reflect this in pro-

ducing a non-angry expression vector.

• Other information (e.g. identity) is present in the ex-

pression vector: This leads to more information being

transfered during the feature shuffle than only expres-

sion. The generated image will exhibit a change in

identity and the resulting identity code will differ from

the code of the original image.

• No relevant information is contained in the expression

vector. Since generated images will not be affected by

the content of the vector, also encoded feature vectors

will not be different from original ones. Eq.(8) would

in fact output a low loss. However, if this were the case

the task loss in Eq.(7) would return very high errors.

The flow of data through our networks to calculate the

cycle-consistency loss is shown in Fig.2 by the red arrows.

3.6. Attribute cycle-augmentation loss

Through the shuffling process, novel face images are

created. Yet, the attribute cycle-consistency loss (8) does

not consider the correctness of the recognized attributes on

these images. On the other hand, the task loss (7) only op-

erates on real images from the training set. To take full ad-

vantage of the cycle process, we therefore combine (8) and

(7) into a new loss LΦ
aug:

LΦ
aug = Fk(I(π(f))k, π(yk)) (10)

Here the feature shuffling function π produces the same

output for features f and labels y. By requiring that the

encoded attributes from the generated images after feature

shuffling match the ground truth labels we perform implicit

data-augmentation. The generated images are not part of

the training set, however, although it is possible to assign

labels for supervised training. Consistency in regard to im-

age content and label data is assured by the attribute cycle-

consistency loss LΦ
cyc as illustrated in Sec.3.5

3.7. Supervised feature losses

For the attribute of Pose, the supervised loss consists of

the differences for yaw, pitch, roll yp = (ϕ, θ, ψ)

Fp = ‖yp − fp‖1 (11)

3.7.1 Attribute embedding via triplet loss

Additional attributes in our network are analyzed via triplet

losses that preserve relative distances in the embedding with

a general equation for the loss of:

tlk(f, f
+
k , f−

k ) =max(0,
∥

∥fatt − f+
k

∥

∥

2

2

−
∥

∥fk − f−
att

∥

∥

2

2
+ δk)

(12)



where k indexes the attribute, and for a given feature f we

select f+
k from the same class as f and f−

k from a different

class as f .

Identity tlid: To calculate Fid we create a triplet loss by

regarding an image of the same identity as a positive match

and as a negative match if from any other identity. We create

triplets within batches. For each image in a training batch

a random positive and a random negative feature is picked

from the same batch.

Expression tle: To encode expression information we

need to a way to distinguish face images based on the de-

picted expression. Emotion category labels from datasets

such as [27] could be used but this would disregard the fact

that images of the same emotion can display very different

facial expressions [21]. Furthermore, as discussed below,

category annotations are sometimes inconsistent and the en-

coding has to deal with ambiguous information. To mit-

igate these issues, we additionally consider annotated va-

lence and arousal scores from the AffectNet dataset. Given

an expression label ye = (v, a, l), with valence v ∈ [0, 1],
arousal a ∈ [0, 1], and emotion label l ∈ Nm we measure

the expression distance between samples as:

dist(yie, y
j
e) =

∥

∥(v, a)i − (v, a)j
∥

∥

2

2
+ λlδli,lj (13)

where δx,y refers to the Kronecker delta returning 1 for

x = y and 0 otherwise. λl = 0.25 controls the weight of

the expression category information.

For each sample i in a batch of length n we order all

other samples in the batch by their distance to i according to

Eq.(13). The feature vector of the closest sample is selected

as positive feature f+
e and a random sample in the interval

[k, n) of ordered samples is selected as negative feature f−
e .

Style tls: The style attribute is supposed to encode image

content that is not represented by any of the other compo-

nents. This includes background appearance, illumination

as well as attributes and object in the face that are not (nec-

essarily) linked to an identity such as sun glasses, hats or

beards. To learn this space of style information we need

to find images that are constant within this component but

vary across others. We chose video clips of VoxCeleb with

annotated identity labels to create triplets for learning an

embedding. Let f i
s be from a video clip va, we find a posi-

tive match by selecting an image from a different video clip

vb but depicting the same person.

3.7.2 Full disentanglement objective

The full objective for the optimization of the disentangle-

ment networks Φ,Φ−1 is stated as:

min
Φ,Φ−1

LΦ = λrecL
Φ
rec + LΦ

fk
+ LΦ

cyc + LΦ
aug (14)

Training of these networks can be done using a fixed ver-

sion of the autoencoder. Since Φ and Φ−1 only perform

transformations of low-dimensional feature vectors, these

networks contain few layers and parameters. Training runs

very efficiently with the biggest contribution to computa-

tion time being the feed-forward process through the au-

toencoder for the cycle losses.

3.8. Joint training

The adversarial autoencoder is trained fully unsuper-

vised without any task-specific feedback. In contrast, the

disentanglement is limited by the descriptive power of the

encoded feature vectors z. Through training both modules

jointly, these feature encodings can be adjusted to better

capture content required by subsequent tasks. Importantly,

our experiments have shown, however, that training all net-

works jointly from scratch is infeasible due to the high num-

ber of competing loss terms. To overcome this issue, we

conduct joint training only once unsupervised training of

the autoencoder and subsequent, supervised training of the

disentanglement has reached convergence and losses stabi-

lize. The training objective for joint training is then formal-

ized as:

min
E,G,Φ,Φ−1

max
Dz,Dx

LAE(E,G,Dz, Dx) + LΦ(Φ,Φ
−1)

3.9. Multi-dataset and multi-feature training

To create triplets for identity and style we iterate over

training data in macro-batches. A macro-batch contains 20

persons for identity training, and 5 persons with 4 video

clips each for style. Disentanglement needs to be trained on

multiple datasets in parallel since no single dataset contains

labels for all attributes. In [6] a scheme was suggested that

joins samples from multiple sources into joint batches and

maintains indexing vectors to associate samples with source

domains. In our approach this is not feasible since we need

to iterate in macro-batches. Mini-batchsize would have to

be prohibitively large to guarantee the presence of enough

identities/clips to find positive and negative triplet pairs.

4. Implementation

4.1. Network architecture

The entire system consists of six networks: four net-

works for the autoencoder (encoder E, generator G, latent

space discriminator Dz , real/fake image discriminator Dx),

and two networks for the disentanglement (Φ and Φ−1).

Encoder/Generator The backbone of our system is a

ResNet18 [12] for E and an inverted ResNet18 for G. The

inverted ResNet has the first convolutional layers in each

block replaced with a 4× 4 deconvolutional layer. Encoder

input size is 128×128, output size a 99-dimensional vector



(similar to the 100d input size of DCGAN [31]). Input and

output sizes are swapped for the generator.

Discriminators Dz is a simple network with 3 fully-

connected layers with 1000 dimensions each. We use batch

normalization, dropout (p = 0.2) and the ReLu activation

function. For Dx we adopt the architecture of the DCGAN

discriminator [31].

Disentanglement networks Networks Φ and Φ−1 consist

of two fully-connected layers with 1000 dimensions. We

do not use batch normalization or dropout layers, as we did

not observe performance differences by adding these lay-

ers. Input and output sizes for both networks have the same

dimensionality as the output size of the encoder E (99d).

Attribute features vectors have dimensionalities 3,32,32,32

for fp, fid, fe, fs respectively.

4.2. Image preprocessing

We perform face detection, fiducial point detection, and

head pose estimation using OpenFace2.0 [1]. Images from

all datasets are rotation aligned and cropped using the ex-

tracted fiducial points. Finally, histogram equalization is

applied to the extracted crops.

4.3. Training details

During training we mirror images with a probability of

50%. We do not perform other forms of data augmenta-

tion. We train the autoencoder with a constant learning rate

of learning rate of 5 ∗ 10−5, and employ the Adam opti-

mizer [22] (β1 = 0.0, β2 = 0.999) for parameter update.

For disentanglement training the learning rate is set to 10−4
with Adam β1 = 0.9/β2 = 0.999. Batch size is 100 images

for both stages.

5. Experiments1

5.1. Datasets

CelebA consists of 200K images of celebrities with an-

notated facial attributes (160K images for training, 19k for

validation and 19k for testing) and is commonly used to

evaluate generative networks. We employ CelebA for iden-

tification training as well. For the larger dataset, we use

VGGFace2 [5], from which we take 1M faces for training

and 170k for testing. We use LFW [17] for identity test-

ing with 1000 face pairs, AffectNet [27] with eight anno-

tated facial expressions and valence/arousal ratings contain-

ing 288K training and 4K validation images for expression

training, and VoxCeleb [28] with video clips of 1k different

speakers for training of ”style”.

1For experiments on loss terms, parameter tuning, and visualization of

the embedding, see supplementary materials.

Figure 3: Image reconstructions for CelebA, VGG, AffectNet,

and LFW test sets.

FID RMSE

Training set CelebA AffectNet VGG LFW

CelebA (160K) 17.79 22.87 23.64 22.87 21.23

VGGFace2 (1M) 18.01 19.56 21.78 21.21 20.41

Table 1: Comparison of reconstruction errors (RMSE) for models

trained of CelebA and VGGFace2 across different test sets con-

taining unseen images. Image size is 128× 128.

5.2. Autoencoder training

5.2.1 Reconstruction and random face generation

To evaluate the performance of our adversarial autoencoder

we first train a model on the training set of CelebA. We aim

for high reconstruction accuracy on test images (shown as

CelebA-CelebA in Fig.3) while still being able to generate

visually appealing images with a high degree of variation

(see supplementary materials).We measure reconstruction

accuracy by calculating RMSE values on the CelebA test

set. To evaluate generated faces we employ the Fréchet In-

ception Distance (FID) [14] that measures the distance be-

tween two distributions. We extract 10k real images from

the CelebA training set and generate 10k random images

for comparison. Reconstruction errors are listed in Tab.1.

5.2.2 Full training on VGGFace2

Since we want to capture as much face variation as pos-

sible, we next train a new autoencoder on VGGFace2, a

much larger database of faces. Reconstructions on this



Training set fp fe fs f¬id fid

CelebA 55.8 64.9 62.7 67.5 80.3

CelebA (joint) 53.3 64.3 62.2 66.3 85.4

VGG (joint) 53.6 63.7 61.3 64.4 95.8

Table 2: Face verification accuracy evaluated on LFW for sepa-

rate and joint training. Chance level is 50%.

neut happ sad surp fear disg ang cont AVG

ATL [40] 0.86 0.96 0.89 0.89 0.90 0.84 0.88 0.83 0.88

RN [12] 0.82 0.95 0.89 0.85 0.91 0.87 0.86 0.88 0.88

VGG [30] 0.76 0.92 0.81 0.81 0.82 0.81 0.77 0.82 0.85

fp 0.53 0.58 0.51 0.54 0.58 0.56 0.56 0.58 0.55

fid 0.65 0.73 0.69 0.74 0.72 0.69 0.73 0.67 0.70

fs 0.61 0.68 0.63 0.66 0.67 0.61 0.61 0.62 0.64

f¬e 0.66 0.78 0.73 0.76 0.77 0.72 0.76 0.71 0.74

fe 0.76 0.92 0.80 0.82 0.81 0.78 0.81 0.81 0.81

Joint fp 0.57 0.59 0.54 0.55 0.66 0.56 0.54 0.61 0.58

Joint fid 0.68 0.79 0.74 0.79 0.77 0.76 0.79 0.72 0.76

Joint fs 0.66 0.71 0.66 0.69 0.75 0.64 0.66 0.70 0.69

Joint f¬e 0.73 0.84 0.78 0.81 0.83 0.78 0.81 0.77 0.79

Joint fe 0.83 0.94 0.86 0.86 0.87 0.82 0.85 0.84 0.86

Table 3: Recognition accuracy (AUC) on AffectNet validation

set (neut=neutral, happ=happy, surp=surprise, disg=disgust,

ang=anger, cont=contempt; AVG denotes average AUC;

ATL=AFFNet-TL, RN=ResNet18, VGG=VGG-Face descriptor).

database after 235k iterations also show high quality (shown

as VGG-VGG in Fig.3). Importantly, this network also

exhibits good generalization to other databases as shown

for reconstructions on the test sets of AffectNet and LFW

(VGG-AffectNet and VGG-LFW in Fig.3) - databases that

will be used for expression and identity attributes below.

5.3. Discriminative performance

Here, we report discriminative results of the resulting

embedding representation after disentanglement training on

the different datasets. It is important to stress that given

the highly-compressed representation of our architecture,

we do not expect our results to beat the state-of-the-art in

the field that makes use of very deep, specialized networks

with hundreds of millions of parameters. In our experi-

ments, we are interested, first, to check whether a specific

facial attribute is encoded only into the respective feature

vector and not into the others in order to validate the dis-

entangling process and, second, to chart the performance

levels our full pipeline achieves for discriminating each of

the face attributes using both sequential training (11k itera-

tions) and additional joint training (another 11k iterations).

5.3.1 Pose

Pose errors for the AffectNet validation set for yaw, pitch,

and roll were 3.61◦, 3.53◦, 2.09◦. Results for the CelebA

test set were 2.66◦, 2.95◦, 2.05◦. These results are on par

(or better) than published results on other datasets such as

ALFW, for example, but it should be noted that our ”ground

truth” labels consist of the outputs of the face detector rather

than crowdsourced labels. Overall, pose detection perfor-

mance is more than sufficient for our applications.

5.3.2 Identity

We next investigate how well identity information is dis-

tilled in the identity sub-feature by performing face veri-

fication on the popular Labeled-Faces-in-the-Wild (LFW)

benchmark. We trained verification on CelebA using the

identify-specific components fid of the feature embedding

and its remainder f¬id. In addition, we evaluate for both

methods whether joint training of the full pipeline increases

performance. Results in Tab.2 show a large performance

increase when focusing on the identity sub-vector. In ad-

dition, joint training helps to further fine-tune the discrim-

inative information, resulting in 85.4% overall verification

performance. After training on the much larger VGGFace2

dataset, results improve further to 95.8% with decreased ac-

curacy in the nonpertinent sub-vectors.

5.3.3 Facial Expressions

We train a small classification network consisting of three

200d fully connected layers. We add dropout (p=0.2) and

ReLU layers after the first and second fully connected layer.

We train this network on extracted feature vectors form

the AffectNet training set. Since the AffectNet training

set is highly imbalanced we employ a cross-entropy loss

weighted inversely by the number of image in each emotion

category. The model is then evaluated on the AffectNet val-

idation set. We report values for the area under the ROC

curve (AUC) in Tab.3 after training for 5 epochs. Tab.3 also

lists results for each of the different attribute vectors for

sequential and joint training as well as comparisons with

state-of-the-art results in the literature [30, 40] and a stan-

dard pre-trained ResNet18 architecture [12].

Our results again demonstrate that feature information is

mostly concentrated in the expression attribute, as fe has

significantly higher scores compared to the other compo-

nents. Note, however, that residual information about ex-

pression is still present in the identity attribute showing that

training may not have completely disentangled the informa-

tion. Again, joint training is shown to boost the results with

our final performance being very close to state-of-the-art on

this difficult dataset.



Figure 4: Top-7 images retrieved for two query images on the

CelebA dataset.

5.3.4 Face retrieval

We can perform expression-based image retrieval by using

nearest neighbor search in the embedding space based on

queries that are specific to each attribute (or a combination

of attributes). Fig.4 shows results of the Top-7 closest faces

on two query images with queries in the CelebA dataset,

separated by attribute. Note again, how the system manages

to correctly retrieve similar faces according to the specified

attribute - queries for identity for the baby face, for example,

result in baby faces, and the top results for the actor also

contain a correct match.

5.4. Generative capabilities

5.4.1 Face editing

Given the successful disentangling of the face attributes

shown above, we next showcase the architecture’s capabil-

ity for face editing. Fig.5 shows a panel of face editing tasks

in which information from a target face about a certain face

attribute is transferred from a source to a target image. We

demonstrate transfer of pose, identity, expression, and style

in the first four rows and transfer of all information except

for pose, identity, expression, and style in rows 5-8.

For the first row, the system performs ”frontalization”

given that the source pose is frontal, which works as ex-

pected. In the second row, we transfer the identity of the

source face into the other targets - for target 3, we see that

residual style attributes (lipstick) are still inferred in the

transfer, which does, however, still result in a fully realistic

face. The expression transfer in the next row is challenging,

given the extreme pose and occlusion of the source image,

Figure 5: Examples of attribute-specific face editing on random

examples from CelebA test set.

but note how the system correctly transfers a slightly open

mouth to the target faces. Style transfer in row 4 also cor-

rectly pushes over hairstyle, background, illumination, and

skin tone of the source image.

In the following four rows, the system should transfer

everything except the attribute (which is equivalent to trans-

ferring the attribute of the target onto the source). These re-

sults demonstrate the consistent transfer of three attributes

and yield highly consistent synthesized faces.

5.5. Towards explainability

Although our recognition results on facial expressions

approach state-of-the-art levels, performance for several

classification schemes seems to hover around 0.85AUC.

As label quality has been highlighted as a major issue for

many cases, including for facial expressions on a different

dataset [2], we next explored the confusions that our frame-

work made in this task. Importantly, the use of the genera-

tive pipeline allows us to visually inspect each decision as

we have access to the autoencoder reconstruction.

Fig.6 shows input faces in the top row together with

their AffectNet ground-truth label and reconstructed output

faces in the bottom row (color frames encode expression

label as well). The first two columns are from correctly-

recognized expressions (green dot, happy and surprised ex-



Figure 6: Reconstructed faces and recognized expressions for

samples from AffectNet.

pressions) with matching reconstructions. Columns 3-8 are

from incorrectly-recognized examples and both the input

images and the reconstructed images show that label anno-

tations seem also compatible with the labels predicted from

the reconstructed images (see also supplementary material).

Hence, similar to [2], annotation quality may be a ceiling for

AffectNet at the present moment.

6. Conclusion

In this paper we present an architecture that supports

both discriminative and generative tasks by means of a com-

mon, low-dimensional face representation. The represen-

tation is bootstrapped with an unsupervised learning on a

large, unlabeled database and then split into separate com-

ponents in a subsequent, supervised disentanglement train-

ing.

Results show that our system can produce face images

with a visual quality at the level of recent GAN approaches

for this resolution. The subsequent disentangling process

successfully separates different face attributes in the em-

bedding vector as shown by the discrimination experiments

with joint post-training of both the encoder and the disen-

tangling providing the best overall results. Not surprisingly,

discrimination performance is lower compared to state-of-

the-art networks given our low-dimensional embedding and

the fact that we rely on a generative framework throughout -

nonetheless, performance especially for expression recogni-

tion is comparable to state-of-the-art. Our architecture also

yields robust, high-quality results for face retrieval and face

editing tasks and the generative framework helps to ”debug”

database quality and the face representation.

Limitations of the current work include limited recon-

struction quality in challenging cases (such as extreme

poses) and the presence of typical biases in the training

databases. Currently, the disentanglement also does not ex-

plicitly deal with age and gender, which will be added as the

next step. Additional improvements are necessary to fur-

ther increase the discriminative performance [34]. Finally,

it will be interesting to extend our architecture to other ap-

plication domains, such as scene or object analysis [29].
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