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Abstract

The robust Principal Component Analysis (rPCA) effi-

ciently separates an image into the foreground and back-

ground regions. The stixels provide middle-level expres-

sion of a scene using vertical columnar-superpixels of pix-

els with same depth computed from a pair of stereo im-

age. Combining the classification of pixels by rPCA and

depth map, topological labelling of pixels of each frame in

an image sequence is achieved. The algorithm constructs

static stixels and moving boxes of an image sequence from

background and foreground regions, respectively. The al-

gorithm also estimates free-space for motion planning from

background regions as a collection of horizontal columnar-

superpixels parallel to the epipolar lines.

1. Introduction

In this paper, using background/foreground separation

based on robust principal component analysis (rPCA) [1,

2, 3, 4] and epipolar geometry [5], topological labelling of

scenes is derived. The algorithm constructs static superpix-

els [6, 7], which lie on the static background, and moving

superpixels, which lie on the moving regions. The algo-

rithm also extracts moving obstacles [8, 9, 10] as moving

boxes in an image sequence.

Stixels [11, 12], which are vertical columnar-superpixels

computed from depth information, provides a middle-level

visual-expression of scenes [13, 14]. Collection of stix-

els describes both static and dynamic obstacle regions

[11, 12], which are corresponding to moving objects in the

foreground and geometrical obstacles in the background,

respectively. For reliable expression of scenes for au-

tonomous navigation and driving, additional information,

such as local geometry [15], semantics in the scene [16]

derived by segmentation of scene, lider-based spatial ob-

servation [17], of each point and segment in a scene are

demanded. Combination of background/foreground and

depth information derives topological structure in a view

[18, 19, 20] form a pair of stereo images.

Dealing with an image array as a matrix, rPCA extracts

the foreground and background which correspond to sparse

and low rank parts of an image array [1, 2, 3, 4, 10], re-

spectively. In image sequences observed by a car-mounted

imaging system, the background corresponds to the road

and obstacles. Although stixels describe both dynamic and

static obstacles in the front view, a free-space for motion

planning in the front view is estimated using the geometric

assumptions [20]. For autonomous driving and navigation,

understanding of topological structure of scene is the next

step of semantic labelling.

By separating each image in a sequence of images into

the foreground and background images, the algorithm con-

structs stixels as vertical superpixels from background.

From the compliment of stixel regions, the algorithm

extracts a collection of horizontal columnar-superpixels,

which are perpendicular to stixels on an image plane. The

region occupied by these horizontal columnar-superpixels

on the ground-plane regions correspond to free motion plan-

ning region. We call horizontal columnar-superpixels fix-

els. Moreover, applying depth map construction the fore-

ground, we extract regions corresponding to moving obsta-

cles. These procedures separate regions and affix labels to

them based on topology and dynamics in scenes.

2. Topological Segmentation of Scene

2.1. Background/Foreground Separation
using rPCA

The robust principal component analysis (rPCA) decom-

poses a large matrix array into a low-rank part and a sparse

part. Measuring the sparsity of matrix F by |F |0, which

is the cardinality of the non-zero elements of the matrix F ,



minimisation of

J(L,S) = rank(L) + λ|S|0, F = L+ S. (1)

decomposes the m × n data matrix F into the matrices L

and S with the conditions

rank(L) ≤ k ≪ rank(F ), |S|0 ≤ l ≪ m× n. (2)

Equations (1) and (1) decompose matrices by balancing the

relation between the dimensionality and scale of the decom-

posed data, assuming that the simplest and most useful data

all lie near some low-dimensional subspace.

The minimisation problem of eq. (1) is relaxed to the

minimisation problem

Jr(L,S) = |L|∗ + λ|S|1, F = L+ S, (3)

where |A|∗ and |A|1 are the nuclear norm and ℓ1 norm of

matrix A, respectively, by replacing the minimisations of

the rank and ℓ0 norm of matrices to minimisation of the

nuclear and ℓ1 norms, respectively. This relaxed minimi-

sation is achieved by minimising the following augmented

Lagrangian,

J(L,S,Y ) = (|L|∗ + λ|S|1) + 〈Y ,F − (L+ S)〉
+
µ

2
|F − (L+ S)|2F . (4)

Minimisation of eq. (4) is achieved by alternative min-

imisation of L and S. Furthermore, the sparsity condition

is preserved by applying thresholding to the elements of S

in each iteration step. Moreover, the rank condition is pre-

served by applying singular value decomposition (SVD) to

matrix (F − S) in each iteration. Therefore, setting the

proximal operation and SVD operation as

Sτ (x) = sgn(x)max(|x| − τ, 0) (5)

for a scalar x > 0 and

Dτ (F ) = USτ (Σ)V ⊤ (6)

for a matrix F , this minimisation is decomposed to the al-

ternate minimisations

argmin
L

J(L,S,Y ) = Sλ
µ
(F −L+

1

µ
Y ), (7)

argmin
S

J(L,S,Y ) = D 1
µ
(F − S +

1

µ
Y ). (8)

In eq. (7), the proximal operation is independently applied

to each element of F −L+ µ−1Y .

Figure 1 shows the results of rPCA applied to the im-

age illustrated on the left. We set µ = m × n/4|F |1 and

λ = 1/
√
m× n for the m × n image array F . Figure 1

shows that rPCA separates the backgrounds as low-rank im-

age matrices from the original images.

2.2. Topological Properties of Segments

We decompose an m×n image array F into three image

arrays such that

F = M +H + T , (9)

where M , H and T correspond to the moving obstacles in

the foreground, the free-space on which objects in M move

and static obstacles in the background. We derive matrix

factorisation of eq. (9) from the minimiser of eq. (1).

For the derivation of M , H and T from L and S using

geometric properties of these matrices, we define matrix op-

erations.

For the image F = ((fij)), we define the lower array as

F (u) = ((fu
ij)), fu

ij =

{

fij , if fij ≤ u,
0, otherwise.

(10)

The binalisation and projection of a matrix array are

χ(F ) = ((f ij)), f ij =

{

1, if fij �= 0
0, otherwise,

(11)

and

ΠΩ(F ) = ((f̌ij)), f̌ij =

{

fij , if (i, j) ∈ Ω,

0, otherwise,
(12)

for an appropriate rectangle set Ω ⊂ [1,m]× [1, n], respec-

tively. The inclusion relation of matrices is defined as

χ(F ) ❁ χ(G) ⇔ {f ij �= 0}m,n
i=1,j=1 ⊂ {gij �= 0}m,n

i=1,j=1.
(13)

For a triplet of m × n matrices A = ((aij)), B = ((bij))
and C = ((cij)), we define

C = A ⊔B ⇔ cij = max(aij , bij). (14)

Since S and L correspond to moving foreground, which

occupy a collection of small regions, and background,

which are static, respectively, we assume the relations

L = H + T +E, (15)

O = χ(H)⊙ χ(T ), (16)

χ(T ) ❁ χ(F ⊙ χ(L)), (17)

χ(M) ❂ χ(F ⊙ χ(S)), (18)

χ(M) = ΠRχ(M) (19)

for

|E|0 < c, |ΠRχ(M)− χ(F ⊙ χ(S))|0 < ε, (20)

where c and ε are a positive constant and a positive small

constant, respectively, and O is the zero matrix. In eqs.

(16), (17), (18) and (19) A ⊙ B = ((aijbij)) is the



(a) Original F (b) Low-rank L (c) Sparse S

(d) Original F (e) Low-rank L (f) Sparse S

(g) Original F (h) Low-rank L (i) Sparse S

(j) Original F (k) Low-rank L (l) Sparse S

Figure 1. Examples of rPCA applied to images from KITTI data set. Images in the left, middle and right columns are the original, low-rank

and sparse image arrays, respectively. rPCA separates the backgrounds as low-rank image matrices from the original images.

Hadamard product of matrices A = ((aij)) and B =
((bij)).

Equations (15) and (16) imply that regions correspond-

ing to H and T are mutually compliment in the back-

ground. Equation (17) implies that static stixels are con-

tained in the low-rank part of the image matrix. Equations

(18) and (19) imply that non-zero elements in M are a col-

lection of moving boxes which contain S. Equation (20)

describes minimisation criteria on labelling of regions based

on matrix decomposition.

If S is a collection of connected components which are

not overlapping, M can be decomposed into {Mk}nk=1

which satisfy the condition

M =
n
⊔

k=1

Mk, χ(Mk) = ΠΩk
(χ(Mk)) (21)

for

Ωk = [mk(1) ≤ i ≤ mk(2)]× [nk(1) ≤ j ≤ nk(2)] (22)

in the image grid [1,m]× [1, n].

3. Matrix Decomposition

using Epipolar Geometry

3.1. Pixel Labelling in the Background

Stixels are mathematically vertical columnar-superpixels

with the same depth in the background of an image [14]. We

extract static stixels from F ⊙ χ(L) in a stereo pair. Fur-

thermore, for smoothing of the background, the operation

B(L(t)) := B(L(t+1))⊙ (−2B(L(t)))⊙B(L(t−1)) (23)

is applied, where L
(t) is the low-rank matrix part of the

images at the frame t.
Since the rPCA separates an image into the foreground

and background, we omit the free-space estimation step and

height evaluation step from the standard stixel estimation

procedure [12, 13, 14]. We only adopt depth information

[12, 13] for the estimation of vertical columnar-superpixels

as obstacle regions. The we construct image matrix T from

pixels in the stixels.

3.2. Pixel Labelling using Epipolar Geometry

We define horizontal columnar-superpixels in the back-

ground of an image for the construction of the matrix H .

Definition 1 A fixel (Free space pIXEL) is a collection of



Figure 2. Pipeline for image decomposition and labelling. The algorithm first separates the background and foreground by applying rPCA

to the image matrix. The algorithm then extracts the depth of each pixel and epipolar lines on an image from a stereo pair image in a stereo

sequence. Then, the algorithm constructs stixels and removes stixel regions from the background. Second, the algorithm determines the

fixels as horizontal columnar-superpixels using vanishing lines and epipolar lines. Finally from the foreground, the algorithm extracts the

moving boxes with depth information.

pixels along an epipolar lines between a pair of vanishing

lines on a planar area in the background.

This definition implies that fixels are horizontal columnar-

superpixels on χ(H) with width one, which are perpendic-

ular to stixels in L.

Algorithm 1: Fixel construction

Input: time series image

Compute rPCA for an image array.

repeat

Compute edge pixels.

Compute stixels.

Compute epipolar lines.

Assign labels on pixels along epipolar lines

Compute fixels

until Compute free space for all frames

Output: a sequence of fixels

Algorithm 1 describes the procedure for the fixel con-

struction to compute the image matrix H from the back-

ground computed by rPCA. First, the algorithm separates

the background using rPCA for image matrix. The al-

gorithm constructs stixels in the background and removes

stixel regions from the background. Finally, using vanish-

ing lines and epipolar lines on the image, the algorithm de-

termines the fixels as horizontal columnar-superpixels in the

complement region to the region occupied stixels.

Using local geometric properties of pixels along epipo-

lar lines, we extract the fixels in the background. In this

step, we remove thin and short stixels as shown in Figure

3. Figures 3(a) and 3(b) describe this removing step after

removing thin stixels. This process guarantees stable ex-

traction of fixels from the complement regions of the area

occupied by stixels.

Assigning that symbols e, p and s are assigned to pixels

on an edge line (a relaxed line of the vanishing line), planar

area and stixels, respectively, the symbol sequence of pixels

f along epipolar lines between a pair of vanishing lines on

a plane is

f = ∗pm ∗ ∗pn∗, (24)

where ∗ ∈ {e, s, φ}. From each labelled sequence, we ex-

tract the subsequences ∗pn∗ that are longer than a prede-

fined threshold from each f . Since the slope of a horizontal

epipolar line is small, we assign labels for a straight strip

line whose slope is small. Assuming S and W to be the

slope and width of the strip, respectively, we compute n
such that S × 10n > 1 subject to 10n < W .

Figure 4 illustrates configurations of an epipolar line and

obstacles on an image plane. Figure 4(a) shows a string

of labels on an epipolar line and obstacles without any car

in the front view. Figure 4(b) shows a string of labels on

an epipolar line and obstacles with a car, which separates

pixels along the epipolar line into two parts, in the front

view.

Figures 5(a) and 5(b) describe state transitions of a sym-

bol sequence on an epipolar line. The automaton in Fig.

5(a) accepts ideal sequences without noise caused by ex-

tracted edges on the road. The automaton in Fig. 5(b) ac-

cepts sequences with noise caused by extracted edges on the

road.



(a) (b)

Figure 3. Stixel selection. Thin and short stixels are removed before the fixel-labelling procedure. (a) and (b) show the image with thin and

short stixels and the image after removing thin and short stixels.

(a) (b)

Figure 4. Configuration of labels on an epipolar line. (a) String of labels on an epipolar line and obstacles without any car in the front view.

(b) String of labels on an epipolar line and obstacles with a car, which separates pixels along an epipolar line into two parts, in the front

view. Symbols e, p and s are assigned to pixels on an edge line (a relaxed line of the vanishing line), planar area and stixels, from each

labelled sequence, we extract the maximum sequence of pn∗ from each f .

3.3. Moving Box Separation using Depth Map

Depth information in F ⊙ χ(S) computed from stereo

pairs decomposes M into {Mk}nk=1. We call each M i

a moving box. Appling depth reconstruction for filtered

stereo pairs

F+ = F+ ⊙ΠR+
(B(S+)), (25)

F= = F− ⊙ΠR
−

(B(S−)), (26)

where + and − express the left and right images, respec-

tively, we compute three dimensional configurations of por-

tions in the foreground in an image.

Setting D to be the depth map computed from F+ and

F+, we reset

M = N ⊙ χ(D(u)), N = F ⊙ χ(S), (27)

assuming that depths of pixels in the moving foreground is

shallow. On M , we define the moving boxes for discon-

nected portions in S. Then, we accept the moving boxes

larger than a predetermined size. Classification of pixels us-

ing depth decomposes M into {M i}mi=1 in each box. After

detecting box region and depth of each pixel in each box, the

description of topology of boxes is achieved by Algorithm

2. These boxes might be overlapping, if parts of object with

deep depth are occluded by objects in near sides.

Definition 2 Let v and h be the lengths of the vertical and

horizontal edges of rectangles, respectively. For γ = h/v,

Algorithm 2: Dynamic box extraction

Input: time series image

Compute moving box for a frame

repeat

Set boxes

Compute the depth of pixels

Construct depth histogram

Classify pixels using depths

Affix depth labels

Construct boxes with depths

until moving boxes for all frames

Output: a sequence of boxes

we call horizontal and vertical rectangles, if γ > 1 and

γ < 1, respectively.

The rPCA-based foreground/background separation extract

artefacts caused by shadows on the road as a sparse part

of an image array matrix. A region separated from shadows

yields a collection boxes, whose horizontal edges are longer

than vertical edges, encircled by fixel areas. Therefore, we

remove boxes if these boxes are horizontal rectangles encir-

cled by fixel areas.
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Figure 5. Automata which accept sequence pn from the labelled sequence on an epipolar line. (a) Automaton for ideal sequences without

noise caused by extracted edges on the road. (b) Automaton for practical ideal sequences with noise caused by extracted edges on the road.

4. Numerical Examples

Figure 6 shows the results for real KITTI image se-

quence. In these two examples, (a) and (c) are the left and

right images of a stereo sequence. (b) is the left image with

epipolar lines. (d) and (f) are the left and right images of the

stixels. (e) is the left image of the fixels.

In Figure 7, each figure shows results on image decom-

position. In each image of these figures, left two images in

the middle row are input stereo images with rectification.

Furthermore, images in the right column, From top to bot-

tom, fixel, stixel and moving box images, respectively. In

these examples, the horizontal rectangles with the condition

γ ≥ 2.5 are removed.

For the removal of motion artefacts caused by shadows

in RGB-colour images sequences, selection of the colour

space is the fundamental problem [21, 22], since removal

and detection of artefacts caused by shadows depends on

the colour-space selection. In our experiment, geomet-

ric assumption removes artefacts caused by shadows from

monochrome image sequences.

Figure 8 shows the heat map of depths of moving boxes.

From top to bottom, frames 199, 200, 201 and 202 of se-

quence # 0015 of KITTI dataset are shown. From shallow

to deep for depth, colour changes from red to blue. These

sequences show the motion of car using boxes and depth

colour labels.

These two results demonstrate the performance

of our method on topological labelling from fore-

ground/background images and the depth map.

5. Conclusions

For autonomous driving, estimation of topological struc-

ture and detection of moving obstacles in the front view are

essential tasks for safe driving.

Our algorithm extracts vertical and horizontal columnar-

superpixels as stixels and fixels, respectively and moving

box in the front view. By separating each image in a se-

quence into the background and foreground, the algorithm

constructs stixels from background as vertical columnar-

superpixels. From the complement of stixel regions in back-

ground, the algorithm extracts a collection of horizontal

columnar-superpixels, which are called fixels. Morover, we

extract moving obstacles with depth information from the

foreground. Stixels and moving boxes describe static obsta-

cles and dynamic objects in the font view. The fixels on the

ground-plane regions correspond to free space for motion

planning.
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Figure 7. Decomposition Examples. From top to bottom results for sequences 0009, 0015, 0039, 0051 and 0071 are shown. For sequence

0009, from left to right results in frames 027, 035, 225, 271 and 413 are shown. For sequence 0015, from left to right results in frames

116, 190, 200, 215 and 242 are shown. For sequence 0039, from left to right results in frames 169, 187, 294, 314 and 363 are shown. For

sequence 0051, from left to right results in frames 023, 186, 230, 303 and 327 are shown. For sequence 0071, from left to right results in

frames 036, 122, 163, 970 and 1027 are shown.



(a) (b)

(c) (d)

Figure 8. Depth map of moving box. From top to bottom, frames 199, 200, 201 and 202 of sequence # 0015 of KITTI dataset are shown.

In this sequence from shallow to deep for depth, colour labels change from red to blue.


