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Abstract

The perceptual loss functions have been used success-

fully in image transformation for capturing high-level fea-

tures from images in pre-trained convolutional neural net-

works (CNNs). Standard perceptual losses require numer-

ous parameters to compare differences in feature-maps on

both an input image and a target image; thus, it is not af-

fordable for resource-constrained devices in terms of utiliz-

ing a feature-maps. Hence, we propose a compressed per-

ceptual losses oriented Tensor Train (TT) decomposition on

the feature-maps. Additionally, to decide an optimal TT-

ranks, the proposed algorithm used the global analytic solu-

tion of Variational Bayesian Matrix Factorization (VBMF).

Therefore, in proposed method, the low-rank approximated

feature-maps consist of salient features by virtue of these

two techniques. To the best of our knowledge, we are the

first to consider curtailing redundancies in feature-maps via

low-rank TT-decomposition. Experimental results in style

transfer tasks demonstrate that our method not only yields

similar qualitative and quantitative results as that of the

original version, but also reduces memory requirement by

approximately 77%.

1. Introduction

Along with computer vision and deep-learning technol-

ogy, perceptual losses are regarded as an important loss

function in image transformation tasks such as, image de-

noising [21], super resolution [11, 19], image-to-image

translation [5], etc. Perceptual losses can capture percep-

tual differences between an input image and a ground-truth

image using their feature-maps of pretrained convolutional

neural networks (CNNs) [6, 4]. Even though, the percep-

tual losses are extremely powerful, the large scale of their

target image’s feature-maps consumes considerable storage

and memory bandwidth. In addition, this attribute is the

main reason of high computational complexity of percep-

tual losses. Thus, these disadvantages complicate the im-

plementation of perceptual losses on resource-constrained

devices.

To handle these problems, we propose a Tensor Train

(TT) decomposition [14] based method to compress percep-

tual losses. The key contributions of proposed method are:

• A proposed algorithm consists of two simple steps: (1)

TT-ranks selection and (2) low-rank TT-decomposition

with determined TT-ranks.

• In proposed scheme, TT-decomposition [14] with the

rank selected by a global analytic solution of varia-

tional Bayesian matrix factorization (VBMF) [13] is

applied on a pretrained CNN’s feature-maps of target

images. Note that we regard the dominant features

on ground-truth image’s feature-maps, which are ob-

tained through low-rank Tensor-Train decomposition,

as salient features.

• Due to the low-rank approximated feature-maps via

TT-decomposition can implement basic linear alge-

braic operations [14], the proposed method does not

need to be reconstructed with the original form of ten-

sor to calculate the error value of perceptual losses.

• To evaluate the compressed perceptual losses in both

qualitative- and quantitative-way, style transfer exper-

iment based on perceptual losses is conducted [4].

The remainder of the paper is organized as follows. Sec-

tion 2 reviews preliminaries, Section 3 explains proposed

method, Section 4 shows experimental results, and Section

5 summarizes the paper.

2. Preliminaries

Throughout the paper, the N -way tensor is denoted by

Euler script letters, e.g., X ∈ R
I1×I2×···×IN , and matrices

are denoted by boldface capital letters, e.g., A. The mode-n
unfolding matrix of a tensor X ∈ R

I1×I2×···×IN is denoted

by X(n) ∈ R
I1···In×In+1···IN . The mode-n product of ten-

sor X ∈ R
W×H×···×IN and matrix U ∈ R

J×In is defined

by X×nU and is of size I1×· · ·×In−1×J×In+1×· · ·×IN .



2.1. Perceptual Losses

A perceptual losses consists of feature reconstruction

loss and style reconstruction loss. Both of them measure

the high-level perceptual and semantic differences between

images; they use feature-maps F from pretrained CNNs to

define the objective function [6, 4]. The feature-maps of

the jth layer of the CNNs on image y are represented by

Fj(y) ∈ R
W×H×D where W , H , and D are the width,

height, and depth of the feature-maps, respectively.

2.1.1 Feature Reconstruction Loss

The feature reconstruction loss is the Euclidean distance be-

tween the feature-maps of the target image y and input im-

age ŷ:

L
j,F
feat(y, ŷ) =

1

WHD
||Fj(y)− Fj(ŷ)||22. (1)

Using a feature reconstruction loss can encourage the input

image ŷ to be perceptually similar to the target image y,

but does not force it to match exactly with the target image

[6, 4].

2.1.2 Style Reconstruction Loss

The style reconstruction loss is squared Frobenius norm

of the difference between the Gram matrices of Fj(ŷ) and

Fj(y):

L
j,F
style(y, ŷ) = ||G(Fj(y))−G(Fj(ŷ))||2F , (2)

where G(Fj(·)) is the Gram matrix of Fj(·) and is of size

D×D. The style reconstruction loss preserves the stylistic

features of the ground-truth image y, but does not maintain

its content information such as spatial structure [6, 4].

2.2. Tensor Decomposition

The tensor decomposition is a form of high-order prin-

cipal component analysis [9]. It decomposes a tensor into

a core tensor multiplied by matrices along each mode. For

example, when we consider a three-way tensor case X ∈
R

I1×I2×I3 ,

X ≈ G×1 U1 ×2 U2 ×3 U3 ≡ �G;U1,U2,U3� (3)

where U1 ∈ R
I1×R1 ,U2 ∈ R

I2×R2 and U3 ∈ R
I3×R3

are factor matrices that can be considered as the prin-

cipal components in each mode. G ∈ R
R1×R2×R3 is

called the core tensor and its entries indicate the interac-

tion level between the different components. Rn is rank

of the mode-n matricization of the tensor which has a size

of In × I1 · · · In−1In+1 · · · I3. If the core tensor is super-

diagonal and R1 = R2 = R3, this is called the CP decom-

position [7]; otherwise, this is called the Tucker decomposi-

tion [18]. Perceptual losses are based on the linear algebraic

Table 1. Storage complexities of tensor decompositions for a N -

way tensor X ∈ R
I1×I2×···×IN . I = max{I1, ..., IN} and R is

the maximum rank value of each tensor decompositions, e.g., in

TT-decomposition R = max{R0, ..., RN} .

Tensor format Storage complexity

Full tensor O(IN )

CP-decomposed tensor O(NIR)

Tucker-decomposed tensor O(NIR+RN )

TT-decomposed tensor O(NIR2)

computation of tensors. However, since these decomposi-

tions can not perform linear algebraic operations in their

decomposed state, the original size of the tensor must be re-

constructed. In order to compress perceptual losses, hence,

the proposed method used the TT-decomposition which can

perform the linear algebraic operations in decomposed state

[14, 2].

3. Proposed Method

3.1. Low-rank approximated Feature-maps via TT-
decomposition

In order to reduce the storage complexity of perceptual

losses, proposed method utilizes TT-decomposition. TT-

decomposition decomposes target image’s feature-maps,

Fj(y) ∈ R
W×H×D, into sparsely interconnected three core

tensors. Following consecutive expressions for the low-rank

approximated feature-maps Fj(y) via TT-decomposition

are as follows:

F
j

(1)(y) = U
(1)

V
(1) ∈ R

W×HD, (4)

V(1) = reshape(V(1)) ∈ R
R1×H×D, (5)

G(1) = reshape(U(1)) ∈ R
R0×W×R1 , (6)

where the U(1) and V
(1) are factor matrices of sizes W×R1

and R1×HD, respectively. The G(1) is the first core tensor

in TT-format of Fj(y). Since TT-decomposition imposed

the boundary condition, R0 is equivalent to 1,

V
(1)
(2) = U

(2)
V

(2) ∈ R
R1H×D, (7)

G(2) = reshape(U(2)) ∈ R
R1×H×R2 , (8)

G(3) = reshape(V(2)) ∈ R
R2×D×R3 , (9)

where the U(2) and V
(2) are factor matrices of sizes R1H×

R2 and R2×D, respectively. G(2) and G(3) is second- third-

core tensor in TT-format of Fj(y). Also due to the boundary



condition, R3 becomes 1. Thus, the rank-(R0, R1, R2, R3)
TT-decomposition of the feature-maps Fj(y) has the form:

Fj(y) ≈ ψ(Fj(y)) = G(1) ×1 G
(2) ×1 G

(3), (10)

where ψ(Fj(y)) is low-rank approximated feature-maps

via TT-decomposition. G(1) ∈ R
R0×W×R1 , G(2) ∈

R
R1×H×R2 , and G(3) ∈ R

R2×D×R3 are three-

dimensional core tensors. The rank set constituting with

(R0, R1, R2, R3) is TT-ranks which are imposed “bound-

ary conditions” R0 = R3 = 1.

Table 1 shows storage complexities of several ten-

sor decompositions including CP-decomposition, Tucker-

decomposition and TT-decomposition. It can be seen

that TT-decomposition has asymptotically the same storage

complexity as the CP-decomposition, but since the compu-

tation of TT-decomposition is based on low-rank approx-

imation of auxiliary unfolding matrices, it is more stable

than CP-decomposition. We regard the ψ(Fj(y)) as the

low-rank approximated feature-maps which are consisted

with only the most salient features. The main reason for us-

ing TT decomposition to compress perceptual losses is that

it can perform linear algebraic operations in its decomposed

state. In [14], they show how TT-format tensors perform ba-

sic linear algebraic operations such as addition, scalar prod-

uct, matrix-by-vector product, and norms. Therefore, in or-

der to compute the perceptual losses, proposed method has

no need to reconstruct the decomposed feature-maps into

original shaped feature-maps.

3.2. TT-rank Selection via global analytic solution
of VBMF

The TT-ranks are important hyper-parameters which

control the storage complexity of compressed perceptual

losses. In this paper, the compression rate M is defined to

indicate the number of parameters required in compressed

version compared to that of the original perceptual losses;

M =
R1W +R1R2H +R2D

WHD
, (11)

where the denominator term and numerator term are repre-

sented by the number of parameters of Fj(y) and ψ(Fj(y)),
respectively. Since W , H , and D are already fixed param-

eters, it can be seen that the compression rate is related

with the value of TT-ranks, only. In [14], they show how

to select the TT-ranks with tolerance of reconstruction er-

ror, but it is time-consuming trial-and-error. Therefore, the

proposed method utilizes data-driven one-shot TT-ranks se-

lection method via global analytic solution of VBMF [13].

Recently, the global analytic VBMF is promising rank se-

lection method which is based on empirical Bayes [12] with

automatic relevance determination prior [17]. In order to

Figure 1. Comparison of visual results for style reconstruction

(top); feature reconstruction (bottom). First column: examples

of target images. Second column: the output images via com-

pressed perceptual losses. Third column: the output images via

standard perceptual losses.

claim the feasibility of TT-ranks selection via global ana-

lytic solution of VBMF, we present the proposition based

on theorem about TT-ranks in [14].

Proposition 1. If global analytic VBMF can find the rank

Rn of unfolding matrix X(n) with theoretical condition for

perfect rank recovery, then the determined TT-ranks via

global analytic VBMF can be the upper-bound of TT-ranks,

because there exists a TT-decomposition with TT-ranks not

higher than Rn.

Although global analytic VBMF generates suboptimal

TT-ranks, it is highly reproducible approach because it

makes the proposed method without time consuming TT-

rank selection algorithm. Therefore, the proposed method

employs the global analytic VBMF in Eq. 4 and 7.

3.3. Compressed Perceptual Losses

The compressed feature reconstruction loss and com-

pressed style reconstruction loss are as follows:

L̃
j,F
feat(y, ŷ) =

1

WHD
||ψ(Fj(y))− Fj(ŷ)||22, (12a)

L̃
j,F
style(y, ŷ) = ||G(ψ(Fj(y)))−G(Fj(ŷ))||2F . (12b)

As shown in Fig. 1, the output images from the com-

pressed style reconstruction loss ŷ = argminŷ L̃
j,F
style(y, ŷ)

and output images from the compressed feature reconstruc-

tion loss ŷ = argminŷ L̃
j,F
feat(y, ŷ) preserve the stylistic

features and content information from the target image y,

respectively. Moreover, it is difficult to distinguish the dif-

ferences between the output of original version and that of

the compressed version. This implies that we can obtain

very similar results from the proposed method qualitatively

even though our method requires lower memory than the

original loss function.



Figure 2. Comparing visual results of style transfer with original perceptual losses [4] and proposed perceptual losses. First column: the

content images yc. Second column: the style images ys. Third column: the output images of style transfer with the proposed perceptual

losses. Fourth column: the output images of style transfer with the original perceptual losses. In this paper, experiments presented in

from first row to fourth row are referred to as VINCET, LEE, SIMPSONS, and DONKEY, respectively.

4. Experimental Results

To confirm the validity of the proposed method, we de-

signed a style transfer application owing to its simple for-

mulation comprising the superposition between feature re-

construction loss and style reconstruction loss. In addition,

we used image quality measures to compare between the

output images of the original perceptual losses and those of

the compressed perceptual losses [20].



4.1. Style Transfer

The aim of style transfer is to make an input image ŷ by

inserting target style ys on the target content image yc [6, 4].

Thus, we jointly minimize both the compressed feature re-

construction loss and compressed style reconstruction loss.

As a baseline, we implemented the primary framework of

[4] in our model. Namely, our objective function for style

transfer is expressed as follows:

ŷ = argmin
ŷ

αL̃j1,F
feat(yc, ŷ)+

β(L̃j2,F
style(ys, ŷ) + · · ·+ L̃

j6,F
style(ys, ŷ)),

(13)

where α and β are the weighting parameters for the feature

and style losses, respectively. In addition, j1, ..., j6 explic-

itly represent the 10th, 1st, 3rd, 5th, 9th, and 13th layer in

a pre-trained VGG-19 [16] on the ImageNet dataset [3], re-

spectively.

4.1.1 Training Details

We used Adam optimizer [8] with a learning rate of 3 ×
10−4. To improve the convergence speed, we set the target

image yc as ŷ in the first iteration. The ratio α/β is fixed

as 1 × 10−6. The number of maximum iterations for train-

ing is 2 × 103. Our implementation utilizes PyTorch [15],

Tensorly [10] and cuDNN [1] on a GTX 1080 8-GB GPU.

4.1.2 Qualitative Results

In Fig. 2, we compare the result images of style transfer

from the original perceptual losses and proposed method.

Although the proposed method spends much smaller mem-

ory than the original method, our experimental results

are qualitatively similar to the outcomes from the original

losses. For example, both the original method and proposed

method tend to preserve objects such as plane, person, shoe,

and cat, but remove the content detail on the background

information. Therefore, it is verified in Fig. 2 that the

proposed algorithm can conserve the performance of the

original loss function by low-rank approximated feature-

maps which is comprised of dominant features (i.e., TT-

decomposition).

4.1.3 Quantitative Results

To analyze the effects of our perceptual losses, we reported

the PSNR and SSIM [20] between the output of the pro-

posed method and that of the original version. In Table 2,

it can be seen that PSNR and SSIM are more than 25 dB

and 90%, respectively, in all experiments. In other words,

there is only a small difference between the results of the

proposed method and the original method. In addition, the

compressed perceptual losses use only almost a quarter of

Table 2. The Peak Signal-to-Noise Ratio (PSNR) and Struc-

tural Similarity Index (SSIM) for the output images via proposed

method, with the output images through original method as the

reference. The compression rate of proposed method is defined as

M .

Experiment SSIM (%) PSNR (dB) M (%)

VINCENT 92.44 28.6488 21.90

LEE 92.53 31.9854 23.88

SIMPSONS 91.90 25.1664 21.37

DONKEY 93.24 30.1937 25.56

Average 92.53 28.9986 23.18

the number of parameters in the original version. Accord-

ing to Fig.2 and Table 2, the proposed method not only has

quantitatively and qualitatively close results to the output of

original perceptual losses, but also utilizes almost 23% of

the memory on average compared to the conventional one.

4.2. Limitation and Future work

Since the proposed method can decompose the target im-

age’s feature-maps directly, it leads to perform the large

scale singular value decomposition which has cubic compu-

tational complexities to the number of input size. To handle

this difficulties, [14, 2] have proposed the huge scale struc-

tured matrices TT-decomposition by transforming the X ∈
R

I×J into X ∈ R
I1×J1×···IN×JN , where I = I1 · · · IN and

J = J1 · · · JN . Thus, those algorithms could alleviate the

large scale matrices decomposition problem present in the

proposed method.

5. Conclusion

We herein proposed a novel compressing scheme for per-

ceptual losses based on low-rank TT-decomposition. Fur-

ther, we extended the feature maps into the low-rank TT-

decomposition mechanism to efficiently extract salient fea-

tures by using only small memory storages. Using two al-

gorithms, i.e., VBMF and TT-decomposition, we obtained

the optimal ranks by reducing the required memory with al-

most 77% reduction and preserved the performance of the

original perceptual loss version simultaneously.
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