
Adaptive online k-subspaces with cooperative re-initialization

Connor Lane, Benjamin D. Haeffele, and René Vidal
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Abstract

We propose a simple but principled cooperative re-

initialization (CoRe) approach to k-subspaces, which also

applies to k-means by viewing it as a particular case. CoRe

optimizes an ensemble of identical k-subspace models and

leverages their aggregate knowledge by greedily exchang-

ing clusters throughout optimization. Further, we introduce

an adaptive k-subspaces formulation with split low-rank

regularization designed to adapt both the number of sub-

spaces and their dimensions. Moreover, we present a highly

scalable online algorithm based on stochastic gradient de-

scent. In experiments on synthetic and real image data, we

show that our proposed CoRe method significantly improves

upon the standard probabilistic farthest insertion (i.e. k-

means++) initialization approach—particularly when k is

large. We further demonstrate the improved robustness of

our proposed formulation, and the scalability and improved

optimization performance of our SGD-based algorithm.

1. Introduction

In this work we study the problem of clustering high-

dimensional data drawn from a union of low-dimensional

subspaces [32]. The most effective methods for subspace

clustering are based on the self-expressive principle: data

points belonging to the same subspace can be well repre-

sented as linear combinations of one another [11, 12, 24,

22, 33, 36, 41, 42]. These methods exploit this property to

first build a graph affinity matrix that is likely to have no

false connections between groups, and then apply spectral

clustering [35]. However, a significant limitation of these

methods is that they do not scale well to very large datasets,

since computing the self-expressive matrix is typically at

least an O(N2) operation. On the other hand, k-subspaces,

which generalizes k-means, is a highly scalable, linear time

alternative [31]. But the corresponding optimization prob-

lem is non-convex and suffers from many bad local minima.

In addition, the method requires knowledge of the true num-

ber of subspaces and their dimensions.

Paper Contributions. In this paper, we introduce a co-

operative re-initialization (CoRe) approach to k-subspaces.

The main idea is to simultaneously optimize an ensemble of

identical k-subspace models (replicas), greedily swap clus-

ters between replicas to improve their quality, and iterate

this process till replicas cannot be further improved. By

sharing knowledge in this way, we expect the collective per-

formance of the ensemble to gradually improve.

Importantly, the CoRe method can also be applied to k-

means, which is in fact a particular case of k-subspaces. In

this context, we present CoRe as an alternative to the pop-

ular k-means++ initialization scheme [3]. In contrast with

k-means++, CoRe is designed to iteratively re-initialize

throughout optimization. It is therefore particularly well

suited to the large-scale & online settings, where it is im-

possible or impractical to access the entire dataset up front.

To address the model selection problem, we extend the

k-subspaces formulation by adding low-rank regularization

to the subspace bases [9, 28]. Crucially, we split the regu-

larization into two terms. In one term, the penalty is scaled

relative to cluster size, while in the other the scale is fixed.

This enables the regularization to control both the number

of subspaces and their dimensions simultaneously.

To further improve the scalability of our method, we im-

plement an online algorithm based on stochastic gradient

descent (SGD). Importantly, we exploit the simple structure

of our k-subspaces problem to improve upon general SGD.

This approach is inspired by the k-GROUSE algorithm, de-

veloped for a closely related k-subspaces formulation [4].

Experiments on synthetic data demonstrate the effective-

ness of each component of our method. In the k-means set-

ting, we show that CoRe improves upon k-means++ when

k is large. We observe a similar pattern with unions of sub-

spaces. Interestingly however, we also observe a signif-

icant performance improvement for SGD optimization vs

standard Lloyd alternating minimization. When the num-

ber of subspaces and their dimensions are unknown, we are

nonetheless able to achieve good clustering performance by

using split low-rank regularization. Moreover, this perfor-

mance is robust to the particular choice of regularization



parameter value. Last, we demonstrate competitive cluster-

ing performance on large-scale real image datasets with up

to a 200x speedup compared to previous scalable methods.

2. Problem formulation and related work

Notation. Matrices are denoted with upper case bold let-

ters X; vectors with lower case bold letters v; scalars with

lower case letters α; and arbitrary sets with calligraphic let-

ters S. Sequences are denoted {xi}Ni=1 or {xτ}τ∈I for ar-

bitrary index sets I. We will sometimes omit the indexing

range or index set when it is clear from the context. R
D

denotes the set of real vectors of dimension D; 0D ∈ R
D

the zero vector; ID ∈ R
D×D the identity matrix; [k] the

set of integers 1, . . . , k; ∆k the standard simplex in k di-

mensions. Finally, ‖X‖F , ‖X‖∗, and ‖X‖2 refer to the

Frobenius norm, nuclear norm (also known as trace norm),

and spectral norm, respectively.

Problem statement. Let S1, . . . ,Sk be a collection of k
linear or affine subspaces lying in R

D, each of dimension

dj < D. We assume we are given a collection of data

points X .
= {xi}Ni=1 ⊂ R

D of size N , where each xi ∈ X
is drawn from a distribution Dj concentrated on Sj . For

example, each xi could be sampled according to a noisy

degenerate spherical Gaussian model

xi = U jvij + zi, U⊤
j U j = Id,

vij ∼ N (0dj
, d−1

j Id), zi ∼ N (0D, σ2D−1ID).
(1)

The goal of subspace clustering is to identify for each xi,

the subspace assignment αi ∈ ∆k such that αij = 1 if

xi ∼ Dj , and zero otherwise.

Self-expressive subspace clustering. Self-expressive

methods are currently the most effective approach to the

subspace clustering problem [34]. These methods include

sparse subspace clustering (SSC) [11, 12], least-squares re-

gression (LSR) [24], low-rank representation (LRR) [22],

low-rank subspace clustering [33], elastic-net subspace

clustering (EnSC) [41], as well as many others [36]. All of

these methods seek to solve a convex optimization problem

of the form

minimize
C∈RN×N

‖X −XC‖2F +Θ(C), (2)

where X ∈ R
D×N is the data arranged in a matrix, C is

a matrix of self-expressive coefficients, and Θ is a regu-

larization function designed to promote C to be subspace-

preserving, i.e. cij = 0 if xi and xj belong to differ-

ent subspaces. These methods enjoy both strong theoreti-

cal guarantees and state-of-the-art performance in practice.

However, the quadratic cost of computing the N ×N self-

expressive matrix C and applying spectral clustering signif-

icantly limits the methods’ scalability.

Recently, efficient algorithms with theoretical guarantees

have been developed for SSC and EnSC [41, 42]. For exam-

ple, You and colleagues [41] introduced an efficient active

set algorithm to solve the Lasso sub-problem appearing in

SSC and EnSC. As a result, their EnSC algorithm achieves

dramatically faster runtimes and lower memory cost com-

pared to previous methods. Crucially however, their algo-

rithm still has O(N2) computational cost, and requires ac-

cess to the full dataset in memory.

Dictionary based subspace clustering. Another strategy

for scalable subspace clustering is to compute C from a dic-

tionary that is much smaller than the dataset. For example,

[27, 38] randomly subsample the data, [30] uses a sketched

dictionary generated by taking random linear combinations

of the data points, while [1] uses a dictionary learned us-

ing sparse dictionary learning. Recently, [39] introduced

exemplar-based subspace clustering (ESC), which selects

exemplar data points using farthest-first search, where the

“distance” is measured by the SSC objective.

Crucially, the size of the dictionary used by these meth-

ods is often independent of N , which avoids the quadratic

cost of the “complete” self-expressive methods. A remain-

ing question is whether the dictionary methods build in

enough prior knowledge about the problem to compensate

for ignoring some of the data. For example, data that are

representable using sparse codes include union of subspaces

data as a special case. A sparse dictionary learning ap-

proach to subspace clustering then might be too flexible.

k-subspaces. k-subspaces is an alternative subspace clus-

tering method that is at the same time more scalable than

self-expressive methods, and with stronger prior knowledge

than dictionary based methods [31, 44, 45, 7, 2, 18, 17].

k-subspaces is based on solving the optimization problem:

minimize
α,{(Uj ,bj)}k

j=1

1

N

N∑

i=1

k∑

j=1

αij

(
min
v

‖xi − (U jv + bj)‖22
)

s.t. U⊤
j U j = Idj

, αi ∈ ∆k,
(3)

where U j ∈ R
D×dj is an orthogonal basis for the jth sub-

space, bj ∈ R
D is the jth subspace center, and α ∈ R

N×k

is an assignment matrix whose rows αi are constrained to

lie in the standard simplex ∆k. Note that although soft

assignments are technically permitted, the optimal αi are

guaranteed to be one-hot vectors. This simplex constraint

will be assumed throughout and often omitted to reduce no-

tation. Furthermore, v represents a vector of subspace coef-

ficients. Note that including these explicit v coefficients is

unnecessary, since they can be computed by orthogonal pro-

jection (and indeed this is the more standard formulation).

They will be important however in describing the more gen-

eral formulations to follow.

Notice that k-means clustering can be viewed as a spe-

cial case of (3) where all subspaces are 0-dimensional. We

therefore restrict our discussion to k-subspaces for the ma-



jority of this work, although all algorithms apply just as well

to k-means. More broadly, in the sequel we consider gener-

alizations of (3) of the form

minimize
α,{(Uj ,bj)}k

j=1

1

N

N∑

i=1

[ k∑

j=1

αijL(xi,U j , bj)+Θ(U j)

]
, (4)

where L is an assignment loss and Θ is an outside regu-

larizer, as it is not weighted by the assignment variable α.

The term inside the bracket is the ith term of the objec-

tive, and will be denoted Fi. We write the full objective as

F (α, {(U j , bj)}kj=1), and often F ({(U j , bj)}kj=1) to im-

ply an optimal assignment given the U j , bj . Similarly, we

will sometimes consider F applied to arbitrary finite basis

sets F ({(U τ , bτ )}τ∈I).

The standard approach to solving (3) in both the k-means

and k-subspaces cases is the Lloyd alternating minimiza-

tion algorithm [23]. After initializing the k subspace bases,

{(U j , bj)}, in some way, one alternates between comput-

ing the optimal assignment α given the current bases, fol-

lowed by computing the optimal basis for each of the result-

ing groups. Crucially however, the k-subspaces objective is

non-convex and is known to suffer from many poor local

minima. As a result, the Lloyd algorithm is very sensitive

to the choice of initialization.

k-subspaces and k-means initialization. The most widely

used initialization scheme for k-means and k-subspaces

is probabilistic farthest insertion (PFI), popularized by k-

means++ [3]. This algorithm initializes each cluster basis

sequentially. At each iteration it samples a poorly repre-

sented data point x̂ to serve as the center for the next clus-

ter. In the k-means setting, one simply sets the current bj
to be x̂. In k-subspaces one must initialize U j as well. A

common approach is to perform PCA in the neighborhood

of the selected data point [45, 44].

One limitation of PFI is that it is unable to correct poorly

initialized clusters. To address this issue one can consider

iterative re-initialization schemes, such as the “swap-based”

re-initialization strategies, which are particularly relevant

to our work [13, 14, 20]. Throughout optimization, these

methods seek to identify bad clusters and “swap” them with

potentially better alternatives. Strategies for choosing the

replacement cluster prototypes include random selection

from the data or duplication of an existing cluster. These

are heuristic methods however, with no explicit connection

to minimizing the objective. Moreover, to the best of our

knowledge, no existing swap method leverages the aggre-

gate knowledge of an ensemble to re-initialize.

Another closely related family of methods are the ge-

netic clustering algorithms [5]. These methods do in fact

rely on exchanging information among the members of an

ensemble to improve performance, much like our proposed

method. Often however a heuristic or stochastic criterion

is used to guide the “crossover” process. For example, in

the classic work of [26], random subsets of clusters are ex-

changed between selected “chromosomes” (i.e. replicas).

By contrast, our proposed method for cluster exchange is

guided by decreasing an objective function.

At least one prior work on k-subspaces has also consid-

ered an ensemble approach. In [21], Lipor and colleagues

introduce ensemble k-subspaces (EKSS), which follows the

consensus clustering framework [16]. EKSS runs Lloyd k-

subspaces on multiple random initializations, and combines

the resulting clusterings through a co-occurrence affinity

matrix, which is then clustered by spectral clustering. Two

limitations of this approach are (1) many initializations are

needed to accumulate enough information about the under-

lying clusters (often up to 1000, compared to only 8 used

in our experiments), and (2) there is still an O(N2) cost to

computing and representing the dense affinity matrix.

3. Description of the proposed method

3.1. Cooperative re-initialization

The first component of our CoRe method is to simul-

taneously optimize an ensemble of R identical k-subspace

replicas, each starting from a different random initialization.

Intuitively, we expect that at convergence each replica’s

clustering will be at least partially correct and that not all

replicas will make the same pattern of errors. To exploit

this aggregate knowledge across the ensemble, we optimize

each replica r0 ∈ [R] until its progress slows and then

re-initialize it by performing several greedy cluster swaps.

More precisely, we attempt to re-initialize a replica r0 as

soon as its objective value has failed to decrease by a frac-

tion δtry for at least Ttry iterations (Algorithm 2, line 13).

At each swap step, we replace one of replica r0’s subspace

bases with a better alternative from one of its sibling repli-

cas. Specifically, we first identify the particular subspace

basis from the pool of (R− 1)k candidates, across all other

replicas, whose addition to r0’s clustering would produce

the greatest objective decrease. After adding that candi-

date basis to the clustering, we then identify the basis in

r0 whose removal would result in the smallest objective in-

crease (possibly the same basis that was just added, if no im-

provement is possible). Finally, we accept the cluster swap

if sufficient overall objective decrease is observed.

The CoRe algorithm itself is outlined formally in Algo-

rithm 1. The iterates of the algorithm are sets of replica

index, cluster index pairs Ω ⊂ [R] × [k], or “clus-

terings”. Given a complete set of Rk subspace bases

{(U r,j , br,j)}R,k
r,j=1, where r denotes the replica index and

j denotes the cluster index within replica r, we define the

objective value of the subset of cluster bases indexed by Ω
to be F (Ω) � F ({(U r,j , br,j)}(r,j)∈Ω). At each iteration,

the objective function is evaluated first on (R − 1)k candi-

date clusterings of size k + 1 to find the best cluster to add

(line 5), then on k + 1 clusterings of size k to determine



the best cluster to drop (line 7). Note that clusters from the

same replica r0 need not be considered in line 5, since such

additions do not reduce the objective.

Computational complexity. To avoid a dependence on the

number of data points N , the objective function in Algo-

rithm 1 is evaluated only on a data subset of size nswap. In

the online optimization setting (Section 3.3), we maintain

a cache of recently accessed points, while in the batch set-

ting the subset is sampled uniformly at random from the

full dataset on each CoRe attempt. By first evaluating and

caching the assignment loss L(xi,U r,j , br,j) and outside

regularization Θ(U r,j , br,j) for every r, j and xi in the

cache, the two primary steps of the algorithm (lines 5, 7)

can be computed using O(nswapRk) time and space. We

typically choose the maximum number of swap steps, Tswap,

to be O(k), nswap to be O(1), and R to be O(log k), result-

ing in overall time complexity O(k2 log k). By contrast,

initializing k bases by standard PFI costs O(Nk2) opera-

tions (ignoring dependencies on the ambient and subspace

dimensions). Our CoRe method therefore trades the large

up-front cost of PFI for a much smaller online cost.

3.2. Split low-rank regularization for adapting k, d

The original k-subspaces formulation requires know-

ing the exact number of subspaces k and their dimensions

d1, . . . , dk in advance. Here we introduce a modified for-

mulation, split low-rank k-subspaces (SLR-KSS), designed

to adapt these parameters through regularization. As a re-

sult, our method can tolerate over-estimates k̂ ≥ k and

d̂ ≥ maxj dj . Our formulation is as follows.

minimize
α,{Uj ,bj}

1

N

N∑

i=1

[ k̂∑

j=1

αij

(
min
v

‖xi − (U jv + bj)‖22

+ ‖v‖22 + λin‖U j‖2F
)
+ λout‖U j‖2F

]
,

(5)

where now U j ∈ R
D×d̂ for all j. In the notation of (4),

the term inside the parentheses is the assignment loss L and

Θ(U j) = λout‖U j‖2F . Compared to (3) we have replaced

the orthogonality constraint on U j with Frobenius-squared

regularization and added ℓ2-squared regularization on v. To

motivate this choice, let Nj be the size of cluster j and de-

fine a matrix V j ∈ R
d̂×Nj whose columns are the coeffi-

cient vectors v corresponding to the points assigned to clus-

ter j. The proposed regularization then merely penalizes

the sum of squared Frobenius norms for U j and V j . This

is a simple and standard approach to controlling the rank

of the product U jV j by penalizing its nuclear (trace) norm

through its variational form (see Proposition 3.1) [28, 9].

Our main contribution here is to include the seemingly re-

dundant “split regularization” terms corresponding to λin

and λout, which we argue help our method adapt to the sub-

space dimensions and number of subspaces, respectively.

Algorithm 1 Cooperative re-initialization (CoRe)

1: Input: replica r0 ∈ [R]; max swap steps Tswap > 0;

objective decrease accept tolerance 0 < δaccept < 1

2: Output: Updated replica clustering Ω
(s)
r0

3: Ω
(0)
r0 ← {r0} × [k]

4: for s = 1, . . . , Tswap do

⊲ Add cluster giving most objective decrease

5: r̂, ĵ ← argmin(r,j)∈[R]×[k] F (Ω
(s−1)
r0 ∪ {(r, j)})

6: Ω̂
(s)
r0 ← Ω

(s−1)
r0 ∪ {(r̂, ĵ)}

⊲ Drop cluster giving least objective increase

7: r̄, j̄ ← argmin
(r,j)∈Ω̂

(s)
r0

F (Ω̂
(s)
r0 � {(r, j)})

8: Ω̄
(s)
r0 ← Ω̂

(s)
r0 � {(r̄, j̄)}

⊲ Accept swap if sufficient overall objective decrease

9: if F (Ω̄
(s)
r0 ) ≤ (1− δaccept)F (Ω

(s−1)
r0 ) then

10: Ω
(s)
r0 ← Ω̄

(s)
r0

11: else: Ω
(s)
r0 ← Ω

(s−1)
r0 ; break

To better understand the effect of this regularization,

consider the optimization problem with respect to U j , bj ,

and the newly defined V j for a fixed group j. Assume that

the subset of the data assigned to group j, Xj ∈ R
D×Nj , is

centered so that we may ignore bj . After re-arranging (5),

this restricted optimization problem can be written as

minimize
Uj ,V j

‖Xj −U jV j‖2F + (λinNj + λoutN)‖U j‖2F

+ ‖V j‖2F .
(6)

To further characterize the problem, we give the following

proposition based on standard facts (see e.g. [10]).

Proposition 3.1. The restricted problem (6) is equivalent to

the nuclear norm proximal optimization problem

minimize
W

1

2
‖Xj −W ‖2F + τj‖W ‖∗, (7)

with τj = (λinNj + λoutN)1/2. Also, a solution to (7) is

given by W ∗ = P (Σ − τjI)+Q
⊤, where Xj = PΣQ⊤

is the SVD and (X)+ = max(X, 0) is applied entrywise.

Consequently, a solution to (6) is U∗ = P (Σ − τjI)
1/2
+ ,

V ∗ = (Σ− τjI)
1/2
+ Q⊤, provided d̂ ≥ rank(W ∗).

Thus, the proposed Frobenius-squared regularization

controls the ranks of the subspaces through singular value

soft-thresholding. However, note that λin and λout con-

tribute differently to the threshold τj . Because the λin term

is placed inside the assignment loss in (5), its effect depends

on the size of the jth group, Nj . On the other hand, the im-

pact of the λout term is independent of Nj .

To first understand the impact of λin, suppose λout = 0.

For typical datasets, we expect the singular values of Xj

to scale like O(
√

Nj) and for there to exist a gap after the



1 2 3 4 5 6

Singular values

(σ/
√
D)(

√
Nj ±

√
D − dj)

(
√
1/dj + σ2/D)(

√
Nj ±

√
dj)

Figure 1. Singular value histogram for synthetic Gaussian data

generated according to (1) with d = 20, D = 100, Nj = 500, and

σ = 0.4. The red and green lines indicate the “noise” and “data”

singular value intervals respectively. Best viewed in color.

dj th largest singular value. For example, in the degenerate

spherical Gaussian setting (1), we know with high proba-

bility that the top dj “data” singular values will lie in the

interval (
√

1/dj + σ2/D)(
√
Nj ±

√
dj), whereas the re-

maining “noise” singular values will lie in (σ/
√
D)(

√
Nj±√

D − dj) [15] (Figure 1). There should therefore exist an

interval [λin
0 , λ

in
1 ], depending primarily on the noise level of

the data, such that if λin
0 ≤ λin ≤ λin

1 , the solution to (6) will

recover dj , regardless of the cluster size Nj .

A side-effect of this invariance to Nj , however, is that

splitting a cluster can only reduce the objective in (5). Note

that when λout = 0, appending a duplicate basis to the cur-

rent model will not increase the objective. Thus, when k is

over-estimated, some λout > 0 is necessary to avoid exces-

sive splitting. Intuitively, the correct choice for λout should

depend on the principal angles between the subspaces and

the noise level. The formulation will prefer to merge two

closely aligned subspaces if λout is too large. On the other

hand, if the data are noisy, setting λout too small will result

in unnecessary splits. As with λin, we conjecture that for a

given dataset there will exist an interval of λout values for

which one can recover the true number of subspaces.

To simplify the selection of particular λin, λout for a given

problem, we re-parameterize in terms of two more inter-

pretable quantities, a noise estimate σ̂ > 0 and a “minimum

cluster fraction” ρ ∈ [0, 1], as well as the estimated number

of subspaces k̂ and their dimension d̂, as follows:

λin = (σ̂2/D)
(
1 +

√
(D − d̂)k̂/N

)2

λout = (1/d̂+ σ̂2/D)(ρ/k̂).

(8)

Applying Proposition 3.1, these choices yield a singular

value threshold τj = (Njλ
in +Nλout)1/2 satisfying

τj ≥ max
{
(σ̂/

√
D)

(√
Nj +

√
(D − d̂)(Nj k̂/N)

)
,

(√
1/d̂+ σ̂2/D

)(√
ρN/k̂

)}
.

(9)

Following the previous discussion, the first term represents

the estimated right bulk edge of the “noise” singular values,

whereas the second term corresponds to the median “data”

singular value (again assuming the Gaussian data setting

(1)). As a result, when σ̂ is accurate, we expect to threshold

all noise singular values and recover the true dimensions dj .

On the other hand, if a cluster’s size approaches ρN/k, we

will begin to threshold the data singular values. This should

significantly reduce the cluster’s ability to represent its as-

signed data and, we conjecture, cause it to further shrink in

size until no assigned points remain and the basis is set to

zero.

3.3. An online algorithm based on SGD

A central goal for the current work was to design a highly

scalable subspace clustering method. k-subspaces is inher-

ently more scalable than self-expressive methods, since its

computational and memory costs are only linear in N com-

pared to quadratic. Here we consider an online algorithm

(Algorithm 2) based on stochastic gradient descent (SGD),

whose per-iteration computational and memory cost is in-

dependent of N .

Algorithm 2 SGD for split low-rank k-subspaces with co-

operative re-initialization (CoRe SLR-KSS SGD)

1: Input: dataset X ; formulation parameters

(k̂, d̂, λin, λout); number of replicas R; patience param-

eters (Ttry, δtry); CoRe parameters (Tswap, nswap, δaccept);
SGD parameters (T, nbs, η, β, Tbs)

2: Output: Final subspace models for each replica

{(U (T )
r,j , b

(T )
r,j )}

3: Initialize subspace models {(U (1)
r,j , b

(1)
r,j )} with small

Gaussian entries.

4: for t = 1, . . . , T do

5: Sample a data mini-batch I ⊂ [N ] of size nbs

6: for r = 1, . . . , R do

7: Find optimal v by least-squares (for all j, i ∈ I)

8: Find optimal assignments αr,i

9: Evaluate FI({(U (t)
r,j , b

(t)
r,j)}); update EMA F̄

(t)
r

10: Update running Hessian H
(t)
Ur,j

based on FI

11: L̃
(t)
r = maxj ‖ diag(H(t)

Ur,j
)‖∞

12: SGD(η/L
(t)
r , β) step on {(U (t)

r,j , b
(t)
r,j)}

13: for r = 1, . . . , R do

14: if F̄
(t)
r has not decreased by δtry in Ttry iters then

15: Ω
(t)
r ← CoRe(r, Tswap, δaccept)

16: Make swaps in {(U (t)
r,j , b

(t)
r,j)} according to Ω

(t)
r

17: if t mod Tbs = 0 then: nbs ← 2nbs

At each iteration we first sample a data mini-batch I ⊆
[N ] of size nbs. For each replica, we proceed as follows. For



each cluster and data point in the batch, we compute the op-

timal coefficients v exactly by solving a least-squares prob-

lem. This is the most computationally expensive step of the

algorithm, requiring O(Rk̂d̂2(D+nbs)) operations in total.

Next, we assign each data point to the cluster achieving the

smallest assignment loss. We then take a stochastic gradi-

ent step on the {(U r,j , br,j)} with momentum β. Last, we

attempt cooperative re-initialization (Algorithm 1) on any

replicas whose progress in objective has slowed. Since we

do not have access to exact objective values, we use expo-

nential moving averages (EMAs) F̄
(t)
r instead.

To select the stochastic gradient step size, we exploit

the relatively simple structure of the k-subspaces objec-

tive. The optimization problem with respect to the sub-

space parameters (U r,j , br,j) is a convex quadratic, with

a mini-batch Hessian of the form
∑

i∈I viv
⊤
i ∈ d̂ × d̂

(up to constants). This Hessian can be computed inexpen-

sively, allowing us to easily estimate step sizes based on

the local Lipschitz constant of the gradient. Specifically,

we first accumulate the full Hessian HUr,j
over the current

epoch and one previous, for every replica and cluster, fol-

lowing [25]. We then approximate the local Lipschitz con-

stant as Lr = ‖HUr,j
‖2 by the maximum diagonal entry

L̃r = maxj ‖ diag(HUr,j
)‖∞ ≤ Lr. This approximation

is cheaper to compute compared to evaluating the spectral

norm, and is expected to be accurate since U j is expected

to have nearly orthogonal columns (Proposition 3.1).

In SGD, it is common to reduce the step size during op-

timization to gradually temper the effect of gradient noise.

Alternatively, one can also increase the batch size to achieve

similar benefits [29]. This latter strategy is well-suited

to our case since we know a reasonable step size for the

problem a priori. Furthermore, increasing batch size rather

than reducing step size significantly improves data through-

put when using GPUs, strengthening the scalability of our

method. We chose a very simple batch size schedule: dou-

bling nbs every Tbs steps until reaching a fixed upper bound

depending on memory capacity.

4. Experiments

Across all experiments, we compared two optimization

algorithms: Lloyd alternating minimization and SGD (Al-

gorithm 2), as well as two (re-)initialization strategies: PFI

and CoRe. The intended regime for our method is large-

scale data, where accessing the entire dataset for initializa-

tion is impossible or impractical. Consistent with this, both

PFI and CoRe were restricted to using data subsets of only

1000 samples. In addition, only 8 initializations/replicas

were used in each experiment.

Unless otherwise stated, we optimized for a fixed 50

epochs using step size η = 0.1, momentum β = 0.9, ini-

tial batch size nbs = 50, and batch size increase period

Tbs = 10 epochs. We also used a fixed re-initialization

tolerance δtry = 0.01 with patience Ttry = 200 steps for

SGD and Ttry = 2 steps for Lloyd. We set the number

of swap iterations Tswap = k/2, and swap accept tolerance

δaccept = 0.001. The values reported in the experiments

were taken “at convergence”. That is, they correspond to

the first epoch achieving an objective value within a factor

of 10−3 of the lowest observed.

Our primary performance metric is clustering error, de-

fined to be the fraction of incorrectly classified data points,

up to permutation of the cluster labels. We used the Hun-

garian algorithm to compute the optimal matching between

cluster labels and true labels. When k̂ �= k, the Hungarian

algorithm selects optimal label subsets of size min{k̂, k}
for both cluster and true labels. The matching is then com-

puted just over these subsets. If a data point’s assigned

cluster label or true label does not belong to the respective

matched subset, it is considered incorrect. We report clus-

tering error in 1/k “cluster size” units. A clustering error

of 1 therefore indicates approximately 1 cluster’s worth of

mistakes. For example, a clustering error of 3 for k = 10
indicates 30% error.

4.1. Synthetic k-means

We first evaluated our CoRe SLR-KSS SGD algorithm

in a synthetic k-means setting with known k and no regu-

larization. Data were generated according to the model

xi = µj + z

µj∼N (0D, (ψ2/2)D−1ID), z∼N (0D, D−1ID),
(10)

so that in high-dimension, the separation between clusters is

‖µj − µj′‖2 ≈ ψ and ‖xi − µj‖2 ≈ 1 if xi is drawn from

group j. When ψ < 2, there can be significant overlaps in

distribution between clusters. However, if k < D, then in

the relevant subspace spanning the k cluster centers, there

will be no overlap with high probability for separations as

small as ψ = 2
√

k/D [6].

We performed one experiment varying the number of

clusters k = 10, 20, . . . , 100 with fixed ψ = 2, and a sec-

ond experiment fixing k = 10 and varying ψ. We fixed

the ambient dimension D = 100 and number of data points

N = 10, 000. We varied the separation ψ across 10 lin-

early spaced values within [
√

k/D, 1.5]. Importantly, at

ψ =
√

k/D we expect poor performance due to near total

cluster overlap. We let k̂ = k and did not include regular-

ization. Finally, we repeated both experiments for 20 trials

with different random datasets and initializations.

Figure 2 (left and middle left) reports the mean cluster-

ing errors across the two experiments. First, for increas-

ing k we observe steadily increasing errors for both PFI-

initialized optimization algorithms. By contrast, both algo-

rithms using CoRe achieve perfect clustering for all values

of k. This clearly demonstrates CoRe’s ability to iteratively



20 40 60 80 100

k

0

2

4

6

E
rr
or

(1
/k

u
n
it
s)

Synthetic k-means — varying k

0.50 0.75 1.00 1.25 1.50

Separation (ψ)

Synthetic k-means — varying ψ

PFI Lloyd

CoRe Lloyd

PFI SGD

CoRe SGD

40 60 80 100

k

0

20

40

60

80

E
rr
or

(1
/k

u
n
it
s)

Synthetic k-subspaces — varying k

40 50 60

d

Synthetic k-subspaces — varying d

PFI Lloyd

CoRe Lloyd

PFI SGD

CoRe SGD

Figure 2. Clustering error on synthetic k-means and k-subspaces data. (Left) k-means clustering errors for increasing number of clusters

k and well-separated means (separation ψ = 2.0). (Middle left) k-means clustering errors for increasing cluster separation with fixed

k = 10. The black vertical line indicates the overlap threshold ψ = 2
√

k/D. (Middle right) k-subspaces clustering errors for increasing

k, fixed d = 20, and fixed noise level σ = 0.4. (Right) k-subspaces clustering errors for fixed k = 20, increasing d, and fixed σ = 0.4.

Shaded region represents stdev. Best viewed in color.

correct poorly initialized clusters (which occur more often

in PFI with increasing k).

In the second experiment, we observe near perfect clus-

tering performance for all methods except PFI SGD once

the overlap threshold ψ = 2
√
k/D is reached. PFI SGD on

the other hand requires greater separation to achieve com-

parable performance. Intuitively, the gradient noise in SGD

should make resolving closely packed clusters more diffi-

cult. We implement an increasing batch size schedule partly

to overcome this challenge (Section 3.3). Interestingly, this

result suggests that increasing batch size alone is not suf-

ficient when PFI is used, and that iterative re-initialization

with CoRe is beneficial.

4.2. Synthetic k-subspaces with known k, d

We next evaluated our proposed method in a synthetic

union of subspaces setting where we assume k and d are

known. We generated data according to the degenerate

spherical Gaussian model (1) with fixed D = 100, σ = 0.4,

and N =10,000. The subspaces were sampled uniformly

from the Grassmannian of dimension d by sampling U j

with standard Gaussian entries and orthogonalizing.

As with k-means, we considered two experimental set-

tings for varying clustering difficulty. In the first setting, we

varied k = 40, 45, . . . , 100 with a fixed (relatively) small

subspace dimension d = 20. Importantly, note that the

subspaces are non-independent even for the smallest choice

of k. In the second setting, we fixed k = 20 and varied

d = 35, 38, . . . , 65. Since D = 100, there will be guaran-

teed intersections between every pair of clusters as soon as

d > 50, making clustering significantly more difficult. We

let k̂ = k, d̂ = d and did not include regularization. Both

experiments were repeated for 30 random trials.

Figure 2 (middle right and right) reports mean cluster-

ing errors across the two experiments. The first pattern we

observe in both settings is that SGD optimization alone sig-

nificantly improves clustering performance, across initial-

ization schemes. This is in contrast to the k-means case

where the choice of optimization only impacted PFI initial-

ization, and only when varying cluster separation. Second,

we note that CoRe performs much worse than PFI for Lloyd

optimization, but much better for SGD.

One possible explanation for these observations is that

the noise present in SGD optimization helps the replicas es-

cape or avoid poor local minima that Lloyd optimization

would otherwise get stuck in. Indeed, it has been argued

that SGD is often able to avoid sharp local minima in favor

of wider, more robust regions of the optimization landscape

[19]. When clusters are first initialized randomly in the

CoRe only case and Lloyd optimization is used, the replicas

may quickly become stuck in very poor, sharp local minima.

Since CoRe depends on the initial clusterings being at least

partially correct, it is unable to correct these gross errors.

SGD on the other hand might provide enough of a “jump

start” to allow CoRe to further refine the clusterings.

Focusing on SGD optimization, we observe results that

are largely consistent with the k-means setting. For increas-

ing k, PFI initialization produces significant errors (up to

k/2 clusters’ worth), whereas CoRe remains perfect up to

the maximum k = 100. This further solidifies CoRe’s ad-

vantage in the large k regime.

We observe a similar pattern in the varying dimension

experiment. All methods undergo a severe phase transi-

tion near d = 50. The threshold occurs earliest, however,

for CoRe Lloyd, and latest for CoRe SGD. Intuitively, PFI

initialization is more likely to fail when the subspaces are

high-dimensional and overlapping. This is because the lo-

cal neighborhoods of the candidate insertion centers (used

to initialize new bases) are likely to be more sparsely pop-

ulated and corrupted with outlier points from other groups.

CoRe on the other hand should be more robust in this set-

ting, since the candidate re-initialization bases (drawn from

other replicas) are fit over the course of optimization to an

entire cluster instead of just a neighborhood.
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4.3. Adapting to unknown k and d

We next examined how well our proposed split low-rank

regularization is able to adapt to unknown k and d on syn-

thetic union of subspaces data. We again generated data

according to the Gaussian model (1) with fixed D = 100,

σ = 0.4, and N =10,000. In this experiment, we also

concentrated on a relatively easy setting from Section 4.2:

k = d = 20, and restricted to only SGD optimization.

We again considered two experimental settings: first as-

suming a known k and unknown d, and second assuming

both an unknown k and d. In each setting we also evaluated

two approaches for adapting to the unknown data param-

eters: first, searching over the approximate parameters k̂,

d̂ directly, without regularization (explicit search), and sec-

ond, using fixed over-estimates for k̂ and d̂ while searching

over the regularization parameters σ̂ and ρ (adaptive regu-

larization). The key question is whether clustering perfor-

mance is more robust in one approach vs the other.

Note that in (1), the standard deviation of the noiseless

data is 1. Thus, a reasonable upper limit is σ̂ = 1, cor-

responding to noise equal in magnitude to the underlying

signal. Moreover, there is a clear “ground truth” choice:

σ̂ = σ. It is less clear how to choose the minimum clus-

ter fraction ρ, although we do know the acceptable range of

values: ρ ∈ [0, 1).

In the first experimental setting, we consider d̂ =
10, 15, . . . , 80 and no regularization (σ̂ = 0) for explicit

search, and d̂ = 60 = 3d with σ̂ = 0.1, 0.2, . . . , 1.5 for

adaptive regularization. For both strategies we set ρ = 0. In

the second experiment, we set an over-estimate d̂ = 60 =
3d and fix σ̂ = σ = 0.4 for both search strategies. Then for

explicit search we look at k̂ = 10, 15, . . . , 80 and ρ = 0,

while for adaptive regularization we set k̂ = 60 = 3k and

vary ρ = 0.01, 0.03, . . . , 0.29.

Figure 3 reports mean clustering errors for these exper-

iments. In the first experiment, we find that PFI initialized

SGD (without regularization) is moderately sensitive to de-

viations from the true d = 20. For example, for d̂ = 60, the

method suffers up to 2 clusters’ worth of errors. Interest-

ingly, CoRe appears significantly less sensitive, achieving

near zero error for the same d̂. Although for d̂ > 60 its error

increases sharply, ultimately surpassing PFI at d̂ = 60. It is

not entirely clear why CoRe should favor these more accu-

rate solutions. Without regularization, a correct clustering

will not produce a significantly smaller objective than, for

example, a solution that merges several subspaces into one

group. One possibility is that CoRe introduces unaccounted

implicit regularization that biases the clusterings in this way.

By contrast, for the adaptive regularization strategy we

observe stable, near perfect performance across the range

of reasonable values σ̂ ∈ (0, 1). The only exception is the

somewhat worse performance of PFI for smaller σ̂. This ro-

bust performance is strong evidence in favor of the proposed

adaptive regularization approach. One caveat however is

that clustering performance severely degrades for σ̂ ≥ 1,

particularly for CoRe initialization (not shown in Figure 3).

This pattern is even clearer in the second experiment

where both k and d are unknown. For the explicit search

strategy, clustering performance quickly deteriorates as k̂
deviates from the true k = 20. Whereas for fixed k̂ = 60,

clustering performance is perfect for both methods as long

as ρ is above a threshold ≈ 0.1. Importantly, both strate-

gies employ the same level of “inside” regularization, with

“outside” regularization included only for the adaptive reg-

ularization strategy. This suggests that the two seemingly

redundant regularization terms are in fact crucial for simul-

taneously adapting to k and d.



Table 1. Clustering accuracy

SLR-KSS SGD EKSS EnSC ESC

PFI CoRe · · k-NN 100 320

EYaleB 62.3 77.0 85.7 67.9 94.5 — —

COIL100 71.9 82.3 71.4 86.2 60.3 — —

MNIST 98.5 98.4 97.6 94.0 98.3 — —

EMNIST 62.0 66.1 — — — 66.3 73.4

Table 2. Runtime (seconds)

SLR-KSS SGD EnSC ESC

PFI CoRe · k-NN 100 320

EYaleB 307 583 47 60 — —

COIL100 806 661 34 73 — —

MNIST 476 556 2234 2264 — —

EMNIST 113 52 — — 4015 10837

4.4. Clustering real image data

In a final experiment, we evaluated the clustering per-

formance and runtime of our proposed CoRe SLR-KSS

SGD method on four real image datasets: Extended Yale-

B face images under varying illumination (EYaleB; k = 38,

N = 2, 414), COIL100 objects under rotation (k = 100,

N = 7, 200), MNIST digits (k = 10, N = 70, 000),

and Extended MNIST lower case letters (k = 26, N =
190, 998). The datasets were pre-processed following [37].

EYaleB images were downsampled to 48×42 and then pro-

jected to D = 500 by PCA. For all other datasets, we first

extracted scattering network features [8], followed by PCA

to reduce also to D = 500. In addition, on some evaluation

trials, we performed a form of pseudo-whitening where 1-

2 of the top principal components were removed from the

dataset. This procedure has been used previously with k-

subspaces, and is argued to help create separation between

subspaces with small principal angles [45].

We evaluated SLR-KSS SGD with both initialization

schemes over a range of 30 hyper-parameter settings sam-

pled uniformly from a defined grid, and report the best

setting based on cluster accuracy. The parameters we

considered and their ranges were: the number of prin-

cipal components removed in whitening ∈ {0, 1, 2}, the

subspace dimension d̂ ∈ {5, 10, 20, 40}, the noise es-

timate σ̂ ∈ {0.0, 0.1, . . . , 0.6}, the step size η ∈
{0.01, 0.02, 0.04, . . . , 0.64}, and initial batch size n ∈
{20, 40, 80, 160, 320}. We optimized for a fixed 100

“epochs” of size 70, 000 samples irrespective of dataset

size, and report values corresponding to the first epoch

achieving a clustering error at most .1% worse than the best

observed. Finally, each run of our evaluation was executed

using an Nvidia RTX 2080 GPU with 11GB of memory.

For comparison, we include accuracies and runtimes

drawn from the respective papers for three scalable sub-

space clustering methods, one for each class of methods re-

viewed in Section 2: ensemble k-subspaces (EKSS) [21],

elastic-net subspace clustering (EnSC) [41], and exemplar

subspace clustering (ESC) [40]. We include two variants

for EnSC: one using the standard affinity construction and

another where the self-expression matrix is used to compute

a k-nearest neighbor graph. For ESC, we include results

for 100 and 300 exemplar data points. The pre-processing

pipelines used here are largely identical to those for EnSC

and ESC, whereas [21] analyzes a 10,000 sample subset of

MNIST and uses slightly different pre-processing steps.

The results of our evaluation are reported in Tables 1

and 2. First, we observe that for the EYaleB, COIL100,

and EMNIST datasets, CoRe initialization significantly out-

performs PFI (24%, 14%, and 7% relative improvement re-

spectively). On MNIST, there is little room for CoRe to

improve, since both initializations meet the state-of-the-art

clustering performance. On EMNIST, the CoRe method ap-

proaches the previously reported accuracies for ESC-100,

but not those of the more accurate (and computationally ex-

pensive) ESC-300. On EYaleB and COIL100, our method

is able to out-perform some comparisons but not others (al-

though the winning comparison method is different in the

two cases). Importantly, these are also small scale datasets

which do not represent our intended regime.

In terms of runtime, our proposed methods provide sig-

nificant speed-ups on the larger datasets compared to the

other scalable methods, albeit using more powerful (but not

uncommon) compute hardware (4x-10x on MNIST, 10x-

77x on EMNIST vs ESC-100, and 30x-210x vs ESC-300).

Interestingly, the runtimes on the two smaller datasets are

somewhat slower. This result suggests that the time needed

to reach convergence on these datasets is largely indepen-

dent of dataset size, as is common for online algorithms.

5. Conclusions

We proposed the cooperative re-initialization (CoRe)

method for k-subspaces and k-means as a way to itera-

tively escape bad local minima throughout optimization.

In addition, we introduced an extension of the standard k-

subspaces formulation that includes a “split low-rank” reg-

ularizer. We also implemented a highly scalable online al-

gorithm based on SGD, but which also takes advantage of

the special simple structure of the optimization problem.

We validated all three components of our method in syn-

thetic experiments, and demonstrated competitive cluster-

ing accuracy and state-of-the-art scalability on large-scale

image data. Possible future directions for this work in-

clude developing extensions to handling various forms of

corrupted data [4], as well as extensions to nonlinear mani-

folds through integration with deep auto-encoders [43].
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